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1 Network architecture

In this section, we describe the network architecture of Dense RepPoints in de-
tails. Similar to [2], we use a center point based initial object representation
and utilize Dense RepPoints as the intermediate feature sampling locations. The
overall architecture is illustrated in Figure 2 of main paper, using an FPN back-
bone like in [1, 2], where feature pyramid levels from 3 (downsampling ratio of
8) to 7 (downsampling ratio of 128) are employed. The head architecture is
illustrated in Figure 1.

In addition to the class head and localization head, we introduce an optional
attribute head to predict the score of each point. The localization subnet first
computes offsets o1 for the Dense RepPoints, then the refinement and attribute
predictions are obtained by bilinear sampling on the predicted refine fields o2

and attribute maps a1 with sampling locations based on o1. For the classification
branch, we use group pooling to sample the features of Dense RepPoints with
sampling locations based on o1, then fully-connected layers are used to predict
the classification results. We use the same label assignment approach as in [2].
For the additional attribute branch, we use per-point binary cross entropy for
the foreground / background attribute prediction.
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Fig. 1. Illustration of the head design. The attribute head is optional.

2 Details of triangulation post-processing

Dense RepPoints is defined as R = {(xk, yk,ak)}nk=1, where ak is the foreground
score associated with the k-th point. We use Delaunay triangulation to trian-
gulate the image space. Then, for any image pixel (x, y) inside of a triangle
with vertices (xi, yi,ai), (xj , yj ,aj) and (xk, yk,ak), its barycentric coordinate
(λi, λj , λk) satisfies:

λixi + λjxj + λkxk = x

λiyi + λjyj + λkyk = y

λi + λj + λk = 1.

By solving the above equation, we can obtain the barycentric coordinates
(λi, λj , λk) of (x, y) as

λi =
(yj − yk)(x− xk) + (xk − xj)(y − yk)

(yj − yk)(xi − xk) + (xk − xj)(yi − yk)

λj =
(yk − yi)(x− xk) + (xi − xk)(y − yk)

(yj − yk)(xi − xk) + (xk − xj)(yi − yk)

λk = 1− λi − λj .

The foreground score of pixel (x, y) is computed by a linear interpolation
using its Barycentric coordinates, as a = λiai + λjaj + λkak.

2.1 Upper Bound Analysis

We design two oracle experiments to reveal the full potential of our method.
Upper bound of attribute scores. The first experiment shows how much gain can
be obtained when all the learned attribute scores are accurate and the learned
point locations remain the same. In this experiment, we first calculate the IoU
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Fig. 2. Illustration for upper bound of Dense RepPoints.

between predicted bboxes and ground-truth bboxes to select positive samples
(IoU threshold=0.5). Then, we change the predicted attribute scores of these
positive samples to ground-truth scores. The attribute scores of negative samples
remain the same. Finally, we utilize these new attribute scores to generate binary
masks. This experiment on a ResNet-50 backbone yields about 39.4 detection
mAP (the fluctuation of detection performance under different numbers of points
is negligible). Results are shown in Figure 2. We observe large performance
gain when the attribute scores are absolutely accurate, which suggests that our
method still has great potential if the learned attribute scores are improved.
When the number of points increases to 1225, the upper bound performance
can improve nearly 60% over the original segmentation performance. Clearly, a
better detection result (better point locations) will also boost the upper bound
of our mask representation.
Upper bound of DTS and triangulation The second experiment examines the
upper bound when all the attribute scores and point locations are equal to the
ground truth. First, we use DTS to generate points for each ground-truth mask.
Then we assign ground-truth attribute scores to these points. Finally, we use
triangulation interpolation to predict masks. Table 1 shows the average IoU of
our predicted masks and ground-truth masks. It can be seen that the IoU is
nearly perfect (above 95%) when the points number increases, which indicates
that our DTS and triangulation post-processing method can precisely depict the
mask.

n 9 25 49 81 225 441 729

IoU 53.9 70.2 78.5 84.3 91.2 94.3 95.6

Table 1. The upper bound of IoU between predicted masks and ground-truth using
DTS and triangulation post-processing under different point numbers.
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