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Abstract. We present a new object representation, called Dense Rep-
Points, that utilizes a large set of points to describe an object at mul-
tiple levels, including both box level and pixel level. Techniques are
proposed to efficiently process these dense points, maintaining near-
constant complexity with increasing point numbers. Dense RepPoints
is shown to represent and learn object segments well, with the use of
a novel distance transform sampling method combined with set-to-set
supervision. The distance transform sampling combines the strengths
of contour and grid representations, leading to performance that sur-
passes counterparts based on contours or grids. Code is available at
https://github.com/justimyhxu/Dense-RepPoints.

1 Introduction

Representation matters. While significant advances in visual understanding algo-
rithms have been witnessed in recent years, they all rely on proper representation
of visual elements for convenient and effective processing. For example, a single
image feature, a rectangular box, and a mask are usually adopted to represent
input for recognition tasks of different granularity, i.e. image classification [23, 19,
38], object detection [16, 36, 28] and pixel-level segmentation [18, 26, 7], respec-
tively. In addition, the representation at one level of granularity may help the
recognition task at another granularity, e.g. an additional mask representation
may aid the learning of a coarser recognition task such as object detection [18].
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We thus consider the question of
whether a unified representation for
recognition tasks can be devised over

various levels of granularity.

Recently, RepPoints [47] was pro-
posed to represent an object by a
small set of adaptive points, simul-
taneously providing a geometric and — peingoer oy aemne sy o
semantic description of an object. It
demonstrates good performance for Fig. 1. Visual object in different geometric
the coarse localization task of object forms (top row from left to right): bound-
detection, and also shows potential to ing box, boudary sampling(Contour), Grid
conform to more sophisticated object sampling(binary mask), Distance transform
structures such as semantic keypoints. Sampling. These various object forms can
However, the small number of points be unified representgd by a dense point set,
(9 by default) limits its ability to re- called Dense RepPoints (bottom row).
veal more detailed structure of an object, such as pixel-level instance segmen-
tation. In addition, the supervision for recognition and coarse localization also
may hinder learning of more fine-grained geometric descriptions.

This paper presents Dense RepPoints, which utilizes a large number of points
along with optional attributes to represent objects in detail, e.g. for instance
segmentation. Because of its high representation flexibility, Dense RepPoints
can effectively model common object segment descriptors, including contours
(polygon) [21,29,45] and grid masks [18,7], as illustrated in columns 2 and 3
of Figure 1. Dense RepPoints can also model a binary boundary mask, a new
geometric descriptor for object segments that combines the description efficiency
of contours and the reduced dependence on exact point localization of grid masks,
as illustrated in column 4 of Figure 1.

To learn and represent binary boundary masks by Dense RepPoints, three
techniques are proposed. The first is a distance transform sampling (DTS) method,
which converts a ground-truth boundary mask into a point set by probabilistic
sampling based on the distance transform map of the object contour. With this
conversion, the Dense RepPoints prediction and ground truth are both point sets
and are thus comparable. The second is a set-to-set supervision loss, in contrast
to the commonly used point-to-point supervision loss, e.g. [45, 33]. The set-to-set
supervision loss avoids assigning exact geometric meaning for every point, which
is usually difficult and semantically inaccurate for instance segmentation but
is required by point-to-point methods. The third is a novel conversion method
from the learnt non-grid Dense RepPoints to an instance mask of any resolution,
based on Delaunay triangulation.

With these three novel techniques, Dense RepPoints are learnt to well repre-
sent the binary boundary map of objects. It also yields better performance than
methods based on a contour or grid mask representation. The method achieves
39.1 mask mAP and 45.6 box mAP on the COCO test-dev set using a ResNet-101
backbone network.
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In addition to greater representation ability and better accuracy, Dense Rep-
Points can also be efficiently processed with our proposed techniques. The com-
plexity of vanilla RepPoints increases linearly with the number of points, making
it impractical for large point sets, e.g. hundreds of points. To resolve this issue,
we propose two techniques, group pooling and shared offset / attribute field, for
object classification and offset / attribute prediction, respectively. These tech-
niques enable near-constant complexity with increasing numbers of points, while
maintaining the same accuracy.

The contributions of this work are summarized as follows:

— We propose a new object representation, called Dense RepPoints, that mod-
els objects by a large number of adaptive points. The new representation
shows great flexibility in representing detailed geometric structure of ob-
jects. It also provides a unified object representation over different levels of
granularity, such as at the box level and pixel level. This allows for coarse
detection tasks to benefit from finer segment annotations as well as enable
instance segmentation, in contrast to training through separate branches
built on top of base features as popularized in [10, 18].

— We adapt the general Dense RepPoints representation model to the instance
segmentation task, where three novel techniques of distance transform sam-
pling (DTS), set-to-set supervision loss and Delaunay triangulation based
conversion are proposed. Dense RepPoints is found to be superior to previ-
ous methods built on a contour or grid mask representation.

— We propose two techniques, of group pooling and shared offset / attribute
fields, to efficiently process the large point set of Dense RepPoints, yielding
near constant complexity with similar accuracy.

2 Related Work

Bounding box representation. Most existing high-level object recognition bench-
marks [14, 29, 24] employ bounding box annotations for object detection. The
current top-performing two-stage object detectors [17,16,36,11] use bounding
boxes as anchors, proposals and final predictions throughout their pipelines.
Some early works have proposed to use rotated boxes [20] to improve upon axis-
aligned boxes, but the representation remains in a rectangular form. For other
high-level recognition tasks such as instance segmentation and human pose esti-
mation, the intermediate proposals in top-down solutions [10, 18] are all based on
bounding boxes. However, the bounding box is a coarse geometric representation
which only encodes a rough spatial extent of an object.

Non-bozx object representations. For instance segmentation, the annotation for
objects is either as a binary mask [14] or as a set of polygons [29]. While most
current top-performing approaches [9,18,6] use a binary mask as final predic-
tions, recent approaches also exploit contours for efficient interactive annotation
[4,1,30] and segmentation [8,45]. This contour representation, which was pop-
ular earlier in computer vision [21,5,39-41], is believed to be more compatible
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Fig. 2. Overview of Dense RepPoints. First, the initial representative points are gener-
ated by regressing from the center point as in RepPoints [47]. Then, these initial points
are refined by the proposed efficient approaches to obtain refined, attributed represen-
tative points. Finally, post-processing is applied to generate the instance segment.

with the semantic concepts of objects [32,40]. Some works also use edges and
superpixels [46,22] as object representations. Our proposed Dense RepPoints
has the versatility to model objects in several of these non-box forms, providing
a more generalized representation.

Point set representation. There is much research focused on representing point
clouds in 3D space [34,35]. A direct instantiation of ordered point sets in 2D
perception is 2D pose [43, 3, 2], which directly addresses the semantic correspon-
dence problem. Recently, there has been increasing interest in the field of object
detection on using specific point locations, including corner points [25], extreme
points [50], and the center point [49,13]. These point representations are ac-
tually designed to recover a bounding box, which is coarse and lacks semantic
information. RepPoints [47] proposes a learnable point set representation trained
from localization and recognition feedback. However, it uses only a small num-
ber (n = 9) of points to represent objects, limiting its ability to represent finer
geometry. In this work, we extend RepPoints [47] to a denser and finer geometric
representation, enabling usage of dense supervision and taking a step towards
dense semantic geometric representation.

3 Methodology

In this section, we first review RepPoints [47] for object detection in Sec. 3.1.
Then, we introduce Dense RepPoints in Sec. 3.2 for strengthening the repre-
sentation ability of RepPoints from object detection to fine-grained geometric
localization and recognition tasks, such as extracting an instance mask, by as-
sociating an attribute vector with each representative point. In addition, these
fine-grained tasks usually require higher resolution and many more representa-
tive points than object detection, which makes the computational complexity of
vanilla RepPoints infeasible. We discuss how to reduce the computational com-
plexity of vanilla RepPoints in Sec. 3.3 for representing an instance mask. In
Sec. 3.4, we describe how to use Dense RepPoints to model instance masks with
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different sampling strategies, and then design appropriate supervision signals in
Sec. 3.5. Since representative points are usually sparse and non-grid while an
instance segment is dense and grid-aligned, we discuss how to transform repre-
sentative points into an instance segment in Sec. 3.6. An overview of our method
is exhibited in Fig. 2.

3.1 Review of RepPoints for object detection

We first review how RepPoints [47] detects objects. A set of adaptive represen-
tative points R is used to represent an object in RepPoints:

R ={pi}iz, (1)

where p; = (x; + Ax;, y; + Ay;) is the i-th representative point, x; and y; denote
an initialized location, Azx; and Ay; are learnable offsets, and n is the number
of points. The feature of a point F(p) is extracted from the feature map F
through bilinear interpolation, and the feature of a point set F(R) is defined as
the concatenation of all representative points of R:

F(R) = concat(F(p1), ..., F(pn)) (2)

which is used to recognize the class of the point set. The bounding box of a
point set can be obtained by conversion functions [47]. In the training phase,
explicit supervision and annotation for representative points is not required.
Instead, representative points are driven to move to appropriate locations by
the classification loss and box localization loss:

Laet = Llc)ls + L?oc (3)
Both bilinear interpolation used in feature extraction and the conversion function
used in bounding box transformation are differentiable with respect to the point
locations. These representative points are suitable for representing the object
category and accurate position at the same time.

3.2 Dense RepPoints

In vanilla RepPoints, the number of representative points is relatively small
(n = 9). It is sufficient for object detection, since the category and bounding
box of an object can be determined with few points. Different from object de-
tection, fine-grained geometric localization tasks such as instance segmentation
usually provide pixel-level annotations that require precise estimation. There-
fore, the representation capacity of a small number of points is insufficient, and
a significantly larger set of points is necessary together with an attribute vector
associated with each representative point:

R = {(z; + Az, y; + Ay, ) iy, (4)

where a; is the attribute vector associated with the i-th point.
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In instance segmentation, the attribute can be a scalar, defined as the fore-
ground score of each point. In addition to the box-level classification and local-
ization terms, L’C’ls and L{’OC, we introduce a point-level classification loss L%
and a point-level localization loss L? . The objective function of Eq. 3 becomes:

loc*
L= L+ Lhoe + LB, + L, (5)
N e’ N———
Laet Limask

where L?, _is responsible for predicting the point foreground score and L7, is for
learning point localization. This new representation is named Dense RepPoints.

3.3 Efficient computation

Intuitively, denser points will improve the capacity of the representation. How-
ever, the feature of an object in vanilla RepPoints is formed by concatenating the
features of all points, so the FLOPs will rapidly increase as the number of points
increases. Therefore, directly using a large number of points in RepPoints is im-
practical. To address this issue, we introduce group pooling and shared offset
fields to reduce the computational complexity, thereby significantly reducing the
extra FLOPs while maintaining performance. In addition, we further introduce a
shared attribute map to efficiently predict whether a point is in the foreground.

Group pooling. Group pooling is designed to effectively extract object features
and is used in the box classification branch (see Figure 3 top). Given n represen-
tative points, we equally divide the points into k groups, with each group having
n/k points (if k is not divisible by n, the last group will have fewer points than
the others to ensure a total of n points). Then, we aggregate the feature of each
point within a group by max-pooling to extract a group feature. Finally, a 1 x 1
convolution is computed over the concatenated group features from all groups.
In this way, the object features are represent by groups instead of points, re-
ducing the computational complexity from O(n) to O(k). The groups are driven
by the classification target and will learn different semantics for different groups
(though no clear geometric separation) to enhance classification power. We em-
pirically find that the number of groups do not need to be increased when the
points become denser, thus the computational complexity is not affected by us-
ing a larger set of points. In our implementation, we set k to 9 by default, which
works relatively well for classification.

Shared offset fields. The computational complexity of predicting the offsets for
the points is O(n?) in RepPoints, making the dense point set representation
unsuitable for real applications. Unlike in the classification branch, we need
the information of individual points for point location refinement. Hence, we
cannot directly apply the grouped features used in classification. Instead, we
empirically find that local point features provide enough information for point
refinement, in the same spirit as Curve-GCN [30] which uses local features for
contour refinement. To share feature computation among points, we propose
to first compute n shared offset field maps based on the image feature map.
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And then for the i-th representative point, its position is directly predicted via
bilinear interpolation at the corresponding location of the i-th offset field (see
Figure 3 middle). This reduces the computational complexity of the regression
from O(n?) to O(n). By using group pooling and shared offset fields, even if a
large number of points are used, the added FLOPs is still very small compared
to that of the entire network (see Sec. 4.3).

grouped feature

Shared attribute map. Predicting the fore- i F )

ground score of each point can be im- | ,.}:'.‘:.' I i —
plemented in manner similar to shared sl o I pr'ﬂ
offset fields by using a shared position- |-+ I

sensitive attribute map, first introduced in

R-FCN [11]. In the position-sensitive at- | | # Nl

tribute map, each channel has an explicit | #

positional meaning. Therefore, the fore- ' #
ground score of each representative point
can be interpolated on the channel cor-
responding to its location (see Figure 3
bottom).

bilinear
sample

3.4 Different sampling strategies

How to represent object segments effec-
tively is a core problem in visual percep- sample ||
tion. Contours and binary masks are two
typical representations widely used in pre-
vious works [18,7,45,33]. In Dense Rep-
Points, these representations can be sim-
ulated by different sampling strategies: a
binary mask by uniformly sampling grid
points over the bounding box of an ob-
ject, and a contour as all sampling points
along the object boundary. We call these
two sampling strategies grid sampling and boundary sampling, respectively, and
discuss them in this section. In addition, we introduce a new sampling strategy,
named distance transform sampling, which combines the advantages of both grid
sampling and boundary sampling.

Fig. 3. Illustration of efficient fea-
ture extraction for Dense RepPoints.
Top: group pooling operation. Mid-
dle: shared offset fields for each point
index. Bottom: shared attribute maps
for each relative position.

Boundary sampling (Contour). An instance segment can be defined as the inner
region of a closed object contour. Contour points is a compact object description
because of its 1-D nature (defined by a sequence of points). In our method,
the contour representation can be simulated through supervising the offsets of
representative points along the object boundary, with the score of points set to
1 by default.

Grid sampling (Binary Mask). A binary mask can be represented as a set of
uniformly sampled grid points over the bounding box of an object, and each
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sampled point has a binary score to represent its category, i.e. foreground or
background. This sampling strategy (representation) is widely used, such as in
Mask R-CNN [18] and Tensor Mask [7]. In Dense RepPoints, grid sampling can
be implemented by constraining the offsets of representative points as:

Az = a(—— - in—0.5), ic{l..n} (6)

— —0.5), Ay; =p(—
\/ﬁ )? Z/z B(\/>
where n is the number of sampling points, and « and 8 are two learnable pa-
rameters.

Distance transform sampling (Binary Boundary Mask). Boundary sampling and
grid sampling both have their advantages and applications. In general, boundary
sampling (contour) is more compact for object segment description, and grid
sampling is easier for learning, mainly because its additional attribute (fore-
ground score) avoids the need for precise point localization. To take advantage
of both sampling strategies, we introduce a new sampling method called distance
transform sampling. In this sampling strategy, points near the object boundary
are sampled more and other regions are sampled less. During the training phase,
the ground truth is sampled according to distance from the object boundary:

_ _9(D®)
PO =5 o) ™
D(p) _ mineEng - e||2 (8)
\/maxejeleg lez — €] - maxe e ’ey — e;|

where P(p) is the sampling probability of point p, D(p) is the normalized distance
from the object boundary of point p, £ is the boundary point set, and g is a
decreasing function. In our work, we use the Heaviside step function for g:

o(z) = {1 25 (9)

0 z>96

Here, we use § = 0.04 by default. Intuitively, points with a distance less than ¢
(close to the contour) have a uniform sampling probability, and points with a
distance greater than § (away from the contour) are not sampled.

3.5 Sampling supervision

The point classification loss L?), and the point localization loss L, . are used to

supervise the different segment representations during training. In our method,
L? is defined as a standard cross entropy loss function with softmax activation,
where a point located in the foreground is labeled as positive and otherwise its
label is negative.

For localization supervision, a point-to-point approach could be taken, where

each ground truth point is assigned an exact geometric meaning, e.g. using the
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polar assignment method in PolarMask [45]. Each ground truth with exact geo-
metric meaning also corresponds to a fixed indexed representative point in Dense

RepPoints, and the L2 distance is used as the point localization loss L} :

n
Lpoint(R7 Rl) = Z H(:Ewyz) - (x;ay;)HQ (10)
k=1

S

where (z;,v;) € R and (a},y;) € R’ represent the point in the predicted point
set and ground-truth point set, respectively.

However, assigning exact geometric meaning to each point is difficult and
may be semantically inaccurate for instance segmentation. Therefore, we pro-
pose set-to-set supervision, rather than supervise each individual point. The
point localization loss is measured by Chamfer distance [15,37] between the
supervision point set and the learned point set:

IR o
Lset(R7R/) = % ZHI]IH H(xlvyl) - (‘r_/ﬁy;)Hz + Zrniln H(xuyl) - (x;ay;)HQ
i=1 =1

where (z;,y;) € R and (2},y;) € R'. We evaluate these two forms of supervision
in Section 4.3.

3.6 Representative Points to Object Segment

Dense RepPoints represents an object seg-
ment in a sparse and non-grid form, and thus
an extra post-processing step is required to
transform the non-grid points into a binary
mask. In this section, we propose two ap-
proaches, Concave Hull [31] and Triangula-
tion, for this purpose.

. Concave Hull Triangulation
Concave Hull. An instance mask can be de-

fined as a concave hull of a set of foreground Fig.4. Post-Processing. Gener-
points (see Figure 4 left), which is used by ating image segments by Concave
many contour-based methods. In Dense Rep- Hull and Triangulation.

Points, boundary sampling naturally uses

this post-processing. We first use a threshold to binarize the predicted points
by their foreground scores, and then compute their concave hull to obtain the
binary mask. In our approach, we empirically set a threshold of 0.5 by default.

Triangulation. Triangulation is commonly used in computer graphics to obtain
a mesh from a point set representation, and we introduce it to generate an
object segment. Specifically, we first apply Delaunay triangulation to partition
the space into triangles with vertices defined by the learned point set. Then, each
pixel in the space will fall inside a triangle and its point score is obtained by
linearly interpolating from the triangle vertices in the Barycentric coordinates
(Figure 4 right). Finally, a threshold is used to binarize the interpolated score
map to obtain the binary mask.
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4 Experiments

Fig. 5. Visualization of points and instance masks by DTS. Top:The learned points
(225 points) is mainly distributed around the mask boundary. Bottom: The foreground
masks generated by triangulation post-processing on COCO test-dev images with
ResNet-50 backbone under '3x’ training schedule.

4.1 Datasets

We present experimental results for instance segmentation and object detection
on the COCO02017 benchmark [29], which contains 118k images for training, 5k
images for validation (val) and 20k images for testing (test-dev). The standard
mean average precision (mAP) is used to measure accuracy. We conduct an
ablation study on the validation set, and compare with other state-of-the-art
methods on the test-dev set.

4.2 Implementation Details

We follow the training settings of RepPoints [47]. Horizontal image flipping aug-
mentation, group normalization [44] and focal loss [28] are used during training.
If not specified, ResNet-50 [19] with FPN [27] is used as the default backbone
in the ablation study, and weights are initialized from the ImageNet [12] pre-
trained model. Distance transform sampling with set-to-set supervision is used
as the default training setting, and triangulation is chosen as the default post-
processing. For predicting attribute scores, we follow SOLO [42] by using seven
3 x 3 convs in the attribute score head, and the feature map of P3 is used to fuse
with feature maps of other levels through addition operation, which is inspired
by the conversion FPN used in TensorMask [7],

The models are trained on 8 GPUs with 2 images per GPU for 12 epochs
(I1x settings). In SGD training, the learning rate is initialized to 0.01 and then
divided by 10 at epochs 8 and 11. The weight decay and momentum parameters
are set to 10~* and 0.9, respectively. In inference, we follow SOLO [42] to refine
the classification score by using the mask prediction, and we use NMS with loU
threshold of 0.5, following RetinaNet [28].

4.3 Ablation Study

Components for greater efficiency. We validate group pooling (GP) and
shared offset fields (SOF) by adding them to vanilla RepPoints [47] and eval-
uating the performance on object detection. Results are shown in Table 1. We
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G FLOPS mAP
Base [+ GP[+SOF |Base[+ GP[+ SOF
9 1211.04|208.03|202.05|38.1| 37.9 | 37.9
25(255.14|237.80(205.93|37.7 | 37.8 | 37.7
49(321.28|278.86(209.18|37.7| 37.6 | 37.5
81(409.46|331.03(212.60{37.5| 37.5 | 37.5

n

Table 1. Validating the proposed components for greater efficiency. With group pooling
(GP) and shared offset fields (SOF), the mAP constantly improve as the number of
points increase, while the FLOPS is nearly unaffected.

number of points| 9 [ 25 [ 81 [225[729
Contour  [19.7]23.9]26.0]25.2]24.1
Grid points | 5.0 [17.6]29.7[31.6|32.8
DTS 13.9]24.5[31.5[32.8[33.8

Table 2. Comparison of different mask representations.

present the results under different numbers of points: n = 9, 25,49, 81. By using
group pooling, FLOPs significantly decreases with increasing number of points
compared to vanilla RepPoints with similar mAP. By introducing shared offset
fields, while mAP is not affected, FLOPs is further reduced and nearly constant
with respect to n. Specifically, for n = 81, our efficient approach saves 197G
FLOPs in total. This demonstrates the effectiveness of our efficient approach
representation and makes the use of more representative points in instance seg-
mentation possible.

Different sampling strategies. We compare different strategies for sampling
object points. Since different sampling strategies perform differently under dif-
ferent post-processing, we compare them with the their best-performing post-
processing method for fair comparison. Therefore, we use triangulation (Fig-
ure 4 right) for distance transform sampling, bilinear interpolation (imresize)
for grid sampling, and concave hull (Figure 4 left) for boundary sampling. Please
see the Appendix for more details on the post-processing. Results are shown in
Table 2. Boundary sampling has the best performance with few points. When
n = 9, boundary sampling obtains 19.7 mAP, and grid sampling has only 5.0
mAP. Distance transform sampling has 13.9 mAP, which lies in the middle.
The reason is that boundary sampling only samples points on the boundary,
which is the most efficient way to represent object masks, so relatively good per-
formance can be achieved with fewer points. Both grid sampling and distance
transform sampling need to sample non-boundary points, so their efficiency is
lower than boundary sampling, but distance transform sampling samples more
points around the boundary than in other regions, thus it performs much better
than grid sampling.

When using more points, grid sampling and distance transform sampling per-
form better than boundary sampling. For n = 729, grid sampling and distance
transform sampling achieve 32.8 mAP and 33.8 mAP, respectively, while bound-
ary sampling only obtains 24.1 mAP. This is due to the limited representation
capability of boundary sampling since it only takes boundary points into con-
sideration. In addition, distance transform sampling outperforms grid sampling
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# of points [ 9 [ 2549 [ 81 [225
Concave-Hull| 9.7 [21.0]21.3|20.6| 23.4
Triangulation|13.9(24.5|29.6|31.5|32.8

Table 3. Comparison of triangulation and concave hull.

number of points‘ 9 ‘ 25 ‘ 81 ‘225‘ 729

point-to-point |10.7|20.7|27.8|31.3| 32.6
set-to-set 13.9]24.5|31.5|32.8/33.8

Table 4. Comparison of point-to-point and set-to-set supervision.

in all cases, which indicates that distance transform sampling is more efficient
than grid sampling while maintaining the same representation capability.
Concave Hull vs. Triangulation. Concave hull and triangulation both can
transform a point set to a binary mask. Here, we compare them using distance
transform sampling. Results are shown in Table 3. Triangulation outperforms
concave hull consistently with different numbers of points, indicating that trian-
gulation is more suitable for distance transform sampling (DTS). It is noted that
concave hull with DTS is worse than contour sampling, because DTS does not
strictly sample on the boundary but usually samples points near the boundary.
Besides, it also samples points farther from the boundary.

Different supervision strategies. Point-to-point is a common and intuitive
supervision strategy and it is widely used by other methods [45, 50, 33]. However,
this kind of supervision may prevent Dense RepPoints from learning better sam-
pling strategies, since it is restrictive and ignores the relationships among points.
This motivates the proposed set-to-set supervision in Section 3.5. We compare
the two forms of supervision using distance transform sampling. Results are
shown in Table 4. Set-to-set supervision consistently outperforms point-to-point
supervision, especially for a small number of points.

More representative points. Dense RepPoints can take advantage of more
points than vanilla RepPoint [47], and its computation cost does not change
as the number of points increases. Table 5 shows the performance of Dense
RepPoints on different numbers of points using distance transform sampling
and triangulation inference. In general, more points bring better performance,
but as the number of points increases, the improvement saturates.

Benefit of Dense RepPoints on detection. Instance segmentation bene-
fits object detection via multi-task learning as reported in Mask R-CNN [18].
Here, we examine whether Dense RepPoints can improve object detection perfor-
mance as well. Results are shown in Table 6. Surprisingly, Dense RepPoints not
only takes advantage of instance segmentation to strengthen object detection,
but also brings greater improvement when more points are used. Specifically,
when n = 81, Dense RepPoints improves detection mAP by 1.9 points. As a
comparison, Mask R-CNN improves by 0.9 points compared to Faster R-CNN.
This indicates that multi-task learning benefits more from better representation.
This suggests that Dense RepPoints models a finer geometric representation.
This novel application of explicit multi-task learning also verifies the necessity



Dense RepPoints 13

number of points‘ 81 ‘ 225 ‘ 441 ‘ 729
AP 31.532.8/33.3/33.8
AP@50 54.2|54.2|54.5|54.8
APQT5 32.7|34.4|135.2|135.9

Table 5. Results of Dense RepPoints on different numbers of points.

Dense RepPoints
n=0[n=05[n=19[n=s1] "o F-CNN
w.o. Inst|37.9| 37.7 | 37.5 | 37.5 36.4
w. Inst |38.1|38.7|39.2 | 39.4 37.3
improve (+0.2| +1.0 | +1.7 [4+1.9 +0.9

Table 6. Effects of dense supervision on detection.

of using a denser point set, and it demonstrates the effectiveness of our unified
representation.

Method Backbone epochs jitter AP APso APrs APs APy AP
Mask R-CNN [18] ResNet-101 12 35.7 58.0 37.8 15.5 38.1 52.4
Mask R-CNN [18] ResNeXt-101 12 37.1 60.0 39.4 16.9 39.9 53.5
TensorMask [7]  ResNet-101 72 v’ 371 59.3 394 174 39.1 51.6
SOLO [42] ResNet-101 72 v’ 37.8 59.5 40.4 16.4 40.6 54.2
ExtremeNet [50] HG-104 100 v 189 - - 104 20.4 28.3
PolarMask [45]  ResNet-101 24 v’ 32.1 53.7 33.1 14.7 33.8 45.3
Ours* ResNet-50 12 33.9 55.3 36.0 17.5 37.1 44.6
Ours ResNet-50 12 34.1 56.0 36.1 17.7 36.6 44.9
Ours ResNet-50 36 v’ 37.6 60.4 40.2 20.9 40.5 48.6
Ours ResNet-101 12 35.8 58.2 38.0 18.7 38.8 47.1
Ours ResNet-101 36 v’ 39.1 62.2 42.1 21.8 42.5 50.8
Ours ResNeXt-101 36 v’ 40.2 63.8 43.1 23.1 43.6 52.0
Ours ResNeXt-101-DCN 36 v’ 41.8 65.7 45.0 24.0 45.2 54.6

Table 7. Performance of instance segmentation on COCO [29] test-dev. Our
method significantly surpasses all other state-of-the-arts. ‘*’ indicates training without
ATSS [48] assigner and ’jitter’ indicates using scale-jitter during training.

4.4 Comparison with other SOTA methods

A comparison is conducted with other state-of-the-arts methods in object de-
tection and instance segmentation on the COCO test-dev set. We use 729
representative points by default, and trained by distance transform sampling
and set-to-set supervision. ATSS [48] is used as the label assignment strategy if
not specified. In the inference stage, the instance mask is generated by adopting
triangulation as post-processing.

We first compare with other state-of-the-art instance segmentation methods.
Results are shown in Table 7. With the same ResNet-101 backbone, our method
achieves 39.1 mAP with the 1x setting, outperforming all other methods. By fur-
ther integrating ResNeXt-101-DCN as a stronger backbone, our method reaches
41.8 mAP.

We then compare with other state-of-the-arts object detection methods. Re-
sults are shown in Table 8. With ResNet-101 as the backbone, our method
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Method Backbone epochs jitter AP APsg APr5s APs APy AP
Faster R-CNN/[27] ResNet-101 12 36.2 59.1 39.0 18.2 39.0 48.2
Mask R—CNN[lS] ResNet-101 12 38.2 60.3 41.7 20.1 41.1 50.2
Mask R—CNN[lS] ResNeXt-101 12 39.8 62.3 43.4 22.1 43.2 51.2
RetinaNet[28] ResNet-101 12 39.1 59.1 42.3 21.8 42.7 50.2
RepPoints[47] ResNet-101 12 41.0 62.9 44.3 23.6 44.1 51.7
ATSS[48] ResNeXt-101-DCN 24 v 47.7 66.5 51.9 29.7 50.8 59.4
CornerNet[25] HG-104 100 v’ 40.5 56.5 43.1 19.4 42.7 53.9
ExtremeNet[50] HG-104 100 v’ 40.1 55.3 43.2 20.3 43.2 53.1
CenterNet [49] HG-104 100 v’ 42.1 61.1 459 24.1 45.5 52.8
Ours* ResNet-50 12 39.4 58.9 42.6 22.2 43.0 49.6
Ours ResNet-50 12 40.1 59.7 43.3 22.8 42.8 50.4
Ours ResNet-50 36 v’ 43.9 64.0 47.6 26.7 46.7 54.1
Ours ResNet-101 12 42.1 62.0 45.6 24.0 45.1 52.9
Ours ResNet-101 36 v 456 65.7 49.7 27.7 48.9 56.6
Ours ResNeXt-101 36 v’ 47.0 67.3 51.1 29.3 50.1 58.0
Ours ResNeXt-101+DCN 36 v’ 48.9 69.2 53.4 30.5 51.9 61.2

Table 8. Object detection on COCO [29] test-dev. Our method significantly surpasses
all other state-of-the-arts. ‘*’ indicates training without ATSS [48] assigner and ’jitter’
indicates using scale-jitter during training.

achieves 42.1 mAP with the 1x setting, outperforming RepPoints [47] and Mask
R-CNN by 1.1 mAP and 3.9 mAP, respectively. With ResNeXt-101-DCN as a
stronger backbone, our method achieves 48.9 mAP, surpassing all other anchor-
free SOTA methods.

5 Conclusion

In this paper, we present Dense RepPoints, a dense attributed point set repre-
sentation for 2D objects. By introducing efficient feature extraction and employ-
ing dense supervision, this work takes a step towards learning a unified repre-
sentation for top-down object recognition pipelines, enabling explicit modeling
between different visual entities, e.g. coarse bounding boxes and fine instance
masks. Besides, we also propose a new point sampling method to describe masks,
shown to be effective in our experiments. Experimental results show that this
new dense 2D representation is not only applicable for predicting dense masks,
but also can help improve other tasks such as object detection via its novel
multi-granular object representation. We also analyze the upper bound for our
representation and plan to explore better score head designs and system-level
performance improvements particularly on large objects.
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