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Abstract. Dropout has been widely adopted to regularize graph convo-
lutional networks (GCNs) by randomly zeroing entries of the node feature
vectors and obtains promising performance on various tasks. However,
the information of individually zeroed entries could still present in other
correlated entries by propagating (1) spatially between entries of differ-
ent node feature vectors and (2) depth-wisely between different entries
of each node feature vector, which essentially weakens the effectiveness
of dropout. This is mainly because in a GCN, neighboring node feature
vectors after linear transformations are aggregated to produce new node
feature vectors in the subsequent layer. To effectively regularize GCNs,
we devise DropCluster which first randomly zeros some seed entries and
then zeros entries that are spatially or depth-wisely correlated to those
seed entries. In this way, the information of the seed entries is thoroughly
removed and cannot flow to subsequent layers via the correlated entries.
We validate the effectiveness of the proposed DropCluster by comprehen-
sively comparing it with dropout and its representative variants, such as
SpatialDropout, Gaussian dropout and DropEdge, on skeleton-based ac-
tion recognition.
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1 Introduction

GCNs have gained state-of-the-art results on various tasks including node classi-
fication [14, 27], graph generation [33, 35], skeleton-based action recognition [32,
22], tracking [8, 31] and so on. GCNs are designed for extracting features from
graph structured data [14], and its general working mechanism is iteratively
applying linear transformation to each node feature vector and aggregation on
neighboring node feature vectors as the node features in the subsequent layer.
Despite the successes, regularization of GCNs is not yet sufficiently studied and
only started to receive attention recently [20].

Dropout [11] is currently a most widely adopted regularization in GCNs.
However, as dropout is not originally designed for GCNs, it lacks an in-depth
investigation on the information flow in GCNs, and thus its performance could
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Fig. 1. (a) is a feature map of 10 nodes and 5 channels. In (b), two random seed entries
are selected and marked by red arrows. (c) selects the entries spatially correlated to the
seed entries. (d) further selects the entries depth-wisely correlated to the selected entries
in (c). We assume that channel 2 and 4 are correlated, channel 1,3,5 are correlated,
and only show 1-hop spatial correlation

be limited in practice. Specifically, dropout regularizes a network by randomly
zeroing entries in a given feature map to remove part of the information. But in
GCNs, as linear transformation on each node feature vector and local aggrega-
tion on neighboring node feature vectors are iteratively applied, the information
is propagated both depth-wisely between different entries of each node feature
vector and spatially between different node feature vectors. Thus the information
of the individually zeroed entries by dropout could still present in other corre-
lated entries. Although different variants of dropout were proposed to improve
the regularization effectiveness, they mostly failed to consider the feature corre-
lation in GCNs. The improvements are made in other aspects like using adaptive
dropping rate [2], generalizing the random noise distribution from Bernoulli to
Gaussian [23], randomly deleting graph edges to regularize GCNs [20], and so on.
The only methods that consider feature correlation are several modified dropout
techniques for CNNs, but due to the tremendous difference in data structure,
these methods on Euclidean data are incapable of handling graph data. For
example, DropBlock [9] considered the spatial correlation in the CNN feature
maps and proposed to drop blocks of contiguous entries to remove information
more effectively. However, its defined ‘block’ cannot be straightforwardly applied
to graph data. Above all, there are no existing methods that could effectively
regularize GCNs by taking the feature correlation into consideration.

In this paper, we propose DropCluster to better regularize GCNs by consid-
ering the feature correlations. We first randomly sample seed entries from the
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given node feature vectors, and then concurrently drop the seed entries as well as
other entries with spatial or depth-wise correlation. As the information of a node
is propagated to its l-hop neighbors after the l-th GCN layer, we consider nodes
within l-hop neighborhood of a node as spatially correlated. The depth-wise cor-
relation between different feature channels is measured by the linear correlation
coefficient. By concurrently removing the spatially and depth-wisely correlated
entries, the dropped information is eliminated more effectively, and the network
gets more properly regularized. Also, as we select to drop entries within l-hop
neighborhood of the seed entries, the selected entries form clusters around the
seed entries, which is the reason our method is named DropCluster (Fig. 1).
To demonstrate the effectiveness of DropCluster, we comprehensively compare
it with dropout and other representative variants in experiments. Besides, our
method is implemented into different GCNs to demonstrate its generalization
capability. Moreover, we also implement it into networks with extended depths
to further show its effectiveness in regularizing deep GCNs. The experiments are
conducted on skeleton-based action recognition task on Northwestern-UCLA and
NTU-RGB+D datasets.

2 Related Work

GCNs GCNs are designed for extracting features from graph data. Two main
streams of GCNs include the spectral- and the spatial-based GCNs. The spectral-
based GCNs [3, 6, 14, 16] apply convolutional filters to graph spectrum with good
theoretical foundations, but the spatial-based GCNs are more preferred due to
efficiency, flexibility and generalization issues. Thus, we only focus on the spa-
tial GCNs in our work. The first spatial GCN was proposed in [17] and the
main operation is aggregating the neighboring information of each node to ob-
tain gradually refined node representations. Later, different variants began to
emerge [1, 27, 18, 10]. These variants mainly focus on two aspects, i.e. selecting
which nodes to include in convolution and how to aggregate the selected nodes.
Original GCN [14] selected 1-hop neighbors for the convolution and the recep-
tive field of each convolution is restricted to 1-hop neighborhood. [25] utilized
polynomials of functions of adjacency matrix as convolutional kernel thus the
multi-hop neighborhood is captured by high order polynomials. Besides select-
ing distant nodes to enlarge receptive field, [37, 10, 4] applied different sampling
strategies to neighboring nodes to reduce the computation burden. Works on
designing aggregation mainly focus on different ways to decide the aggregation
weights. [27] proposed to compute the weight between two nodes by inputting
the node features into a feed forward network. [24] designed a graph agreement
model to predict the probability of each edge correctly connecting two nodes,
which then helps aggregating nodes more properly.
Dropout & Variants Dropout was proposed in [11] to regularize fully con-
nected networks by randomly zeroing entries in the feature maps. Later on,
different variants began to emerge, including Gaussian dropout [23] that gener-
alized dropout by extending the Bernoulli distribution to Gaussian, DropEdge
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[20] that regularizes GCNs by randomly deleting edges, and so on [2, 34, 12,
13, 28]. However, although these methods successfully improved dropout, they
do not consider feature correlations thus their effectiveness is limited in GCNs,
which is shown in our experiments. Besides the techniques dropping informa-
tion randomly, there are also variants considering the spatial feature correlation,
which were specially adapted to regularize CNNs. [26] proposed SpatialDropout
to drop entire channels of a feature map, so that spatially correlated entries in the
dropped channels are removed together. [7] proposed Cutout to randomly mask
out square regions of the input. Inspired by Cutout, [9] proposed DropBlock to
drop contiguous regions of a feature map and gained significant improvement.
Among them, SpatialDropout [26] can be applied in GCNs and is shown in
our experiments. While the other two cannot be applied to graph data as the
‘block’ on Euclidean data cannot be straightforwardly defined on graph. More-
over, depth-wise correlation is not considered in these methods. In this work,
we propose a better regularization by considering feature correlations. Differ-
ent from the methods above, we do not only consider spatial correlation, but
also consider depth-wise correlation between channels. Moreover, our method is
customized for GCNs on graph structured data.

3 DropCluster

Our proposed DropCluster aims to better regularize GCNs by considering spa-
tial and depth-wise correlations when dropping entries. In this section, we first
present the preliminaries, and then describe our model from two aspects, includ-
ing addressing the spatial and depth-wise correlations. Finally, we discuss some
related methods.

3.1 Preliminaries

We give a general formulation for directed graphs, and generalization to undi-
rected graphs is straightforward with each undirected edge viewed as two directed
edges. Each graph is represented as G = (V,E), with V = {vi|i = 1...N} con-
sisting of all the N nodes and E = {eij} consisting of all the edges. Each node vi
has a feature vector xi ∈ Rd with d channels (depth of d), and the feature map
X ∈ RN×d is the concatenation of all feature vectors. Each edge eij denotes
a directed edge pointing from vi to vj . The edges are also represented by an
adjacency matrix A ∈ RN×N , with Aij ∈ {0, 1} denoting whether the edge eij
exists. Moreover, we d enote the adjacency matrix with added self-connections
as Ã = A+ IN , where IN ∈ RN×N is an identity matrix.

We denote a channel of a node feature vector as an entry. The j-th channel in
xi is then denoted as entry xji . Given G with N nodes and d-dimensional feature
vectors, its feature map X ∈ RN×d has N · d entries. In the following, depth-
wise correlation denotes the correlation between different channels of the feature
vectors. The neighboring nodes of a node vi is defined as NG = {vk|eik ∈ E}.
The l-hop neighbors of vi consist of the nodes with a distance of l from vi, and are
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denoted as N l
G(vi). The neighboring entries of an entry xji are entries in the same

channels of vi’s neighboring nodes, i.e. Ne(x
j
i ) = {xjk|vk ∈ NG(vi)}. And the l-

hop neighboring entries are similarly defined as N l
e(xji ) = {xjk|vk ∈ N l

G(vi)}.
DropCluster regularizes a network by multiplying the input feature map by

a dropping mask M element-wisely. A graph convolution operation with a drop-
ping mask M could be formulated as:

X(l+1) = σ(D̃−
1
2 ÃD̃−

1
2 (M �X(l))W (l)). (1)

Here, X(l) is the output feature map from the l-th graph convolutional layer.
D̃ ∈ RN×N is a diagonal matrix denoting the degree of each node with Dii =∑

j Ãij . The term W (l) is a trainable matrix that conduct linear transformation
on the node features at the l-th layer. σ is the activation function.

To generate the dropping mask M , the first step of DropCluster is select-
ing random seed entries. Specifically, we draw a matrix Mseed ∈ RN×d from a
Bernoulli distribution parameterized by pseed, i.e. Mij ∼ Bernoulli(pseed), where
the pseed will be explained in Sec. 3.4. Then we will find other entries that are
spatially or depth-wisely correlated to the seed entries to drop them concurrently.

3.2 Spatial Correlation

Spatial correlation comes from graph convolution. The information of each node
is propagated to its l-hop neighbors after the l-th convolutional layer, there-
fore dropping individual entries cannot stop information from flowing to the
subsequent layer. Thus, after the l-th layer, we propose to drop the seed en-
tries together with the entries within their l-hop neighborhood. These entries
form clusters centered at the seed entries with a radius of l, which is the reason
our method is called DropCluster. The initial mask Mseed denotes seed entries
with 1 and the others with 0, and we will update Mseed into mask Ms so that
both the seed entries and their neighbors within l-hop are denoted with 1. As
multiplying Mseed with Ã propagates the value of seed entries to their 1-hop
neighbors, multiplying Mseed with Ãl propagates the values to all entries within
l-hop neighborhood. Thus we construct Ms as:

Ms = H(Ãl ·Mseed), (2)

where the Heaviside step function H(·) returns 1 for positive input and 0 other-
wise, and is applied to binarize the obtained mask.

3.3 Depth-wise Correlation

In GCNs, a linear transformation (W (l) in Eq. 1) on node feature vectors always
follows the convolution operation. Thus, there also exists depth-wise correlation
between entries of different channels. In this part, we introduce how to drop the
depth-wisely correlated entries. We adopt the linear correlation coefficient as the
measurement of depth-wise correlation. Given the input feature map X ∈ RN×d
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with d channels, the i-th column Xi ∈ RN corresponds to the i-th channel of
the feature map. We first generate a correlation matrix Mcorr ∈ Rd×d 1 to store
the correlation coefficients between each pair of channels:

M ij
corr = corr(Xi, Xj), (3)

where M ij
corr is at row i and column j of Mcorr, denoting the correlation coef-

ficient between Xi and Xj . The correlation coefficient corr(a, b) between two
variables is a normalized version of their covariance, which is defined as:

corr(a, b) =
Cov(a, b)

σ(a) · σ(b)
, (4)

where Cov(a, b) is the covariance of two variables:

Cov(a, b) = E((a− ā) · (b− b̄)), (5)

and σ(·) is the standard variance of a variable:

σ(a) =
√
E[(a− ā)2]. (6)

Mcorr stores the correlation coefficients ranging from 0 to 1. For the following
usage, if the absolute value of the correlation coefficient between two channels
exceeds a threshold tc, we regard the two channels as correlated. Formally, we
derive another binary matrix Mc:

Mc = H(|Mcorr|−tc). (7)

The mask Ms stores the already selected entries to drop. With Mc, we update
Ms to further include entries depth-wisely correlated to the already selected ones.
The i-th row of Ms (Ms,i) indicates the selected channels of xi, and the j-th
column of Mc (M j

c ) indicates all the channels correlated to channel j. Thus the
inner product between Ms,i and M j

c takes a positive value if entry xji is depth-
wisely correlated to the already selected entries of xi and takes zero otherwise.
And the matrix multiplication between Ms and Mc is a parallelization of this
computation, which turns all the other entries depth-wisely correlated to the
already selected ones in Ms into positive. Above all, the update of mask Ms

with binarization is formulated as:

M c
s = H(Ms ·Mc). (8)

M c
s denotes all the entries to drop with 1, thus the final mask M mentioned

in Eq. 1 would be M = 1 −M c
s . The rescaling rate for training is omitted for

simplicity and is included in Algo. 1.
Linear correlation coefficient measures the linear correlation strength between

channels. With strong linear correlation, two channels are mutually predictable,
i.e. the presence of one feature indicates with high confidence the presence of the
other one. Thus, individually dropping an entry in one channel cannot efficiently
remove the semantic information, but concurrently dropping entries in other
strongly correlated channels can remove the information more completely.

1 Algorithm for parallelized computation of the correlation matrix is included in the
supplementary material
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Algorithm 1: Dropluster

Input: X(l) ∈ RN×d, A ∈ RN×N , rd, tc, layer index l
1 Compute correlation matrix Mcorr ∈ Rd×d;
2 Apply threshold to Mcorr: Mc = H(|Mcorr|−tc) ;

3 Average number of correlated channels: nc = SUM(Mc)
d

;

4 Average number of edges: ne = SUM(A)
N

;
5 Number of seed entries:
6 if l = 1 then

7 nseed = N×d×rd
(1+ne)×nc

;

8 else

9 nseed = N×d×rd

(1+ne+
∑l−1

i=1 ne×(ne−1)i−1)×nc
;

10 end
11 pseed = nseed

N×d
;

12 Initialize mask Mseed : M ij
seed ∼ Bernoulli(pseed) ;

13 Ã = A + IN ;

14 Spatial correlation: Ms = H(Ãl ·Mseed);
15 Channel correlation: Mc

s = H(Ms ·Mc);

16 Actual dropping rate: rad =
SUM(Mc

s )

N×d
;

17 Rescaling rate: rc = 1
1−ra

d
;

18 return (1−Mc
s ) ·X(l) · rc

3.4 Number of Seed Entries

When handling the spatial and depth-wise correlation, we propagate the values
of seed entries to neighboring and depth-wisely correlated entries. As the number
of neighboring and depth-wisely correlated entries varies from node to node, the
final number of chosen entries also varies. Thus a challenge is to choose a proper
number of seed entries (pseed) so that the final actual dropping rate is close to
what we set. Our solution is as follows: Given the dropping rate rd, the average
number of edges denoted as ne, the average number of correlated channels of
each channel is nc, the number of seed entries in the first layer should be:

nseed =
N × d× rd

(1 + ne)× nc
, (9)

while in the l-th (l > 1) layer they should be:

nseed =
N × d× rd

(1 + ne +
∑l

i=2 ne × (ne − 1)i−1)× nc
, (10)

and the pseed is derived as:

pseed =
nseed
N × d

. (11)

Due to the page limit, detailed computations of Eqs. 9 and 10 are included in
the supplementary materials.
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3.5 Discussions

This part analyzes the difference between DropCluster and several related meth-
ods including SpatialDropout [26], DropBlock [9], and DropEdge [20].

Fig. 2. (a): DropCluster and DropEdge on the given node features. For DropCluster,
we highlight the seed entry (marked by red arrow) and other spatially or depth-wisely
correlated entries. We assume the feature map is in the first GCN layer, thus only
1-hop neighboring entries are spatially correlated. For DropEdge, randomly deleted
edges are marked with red crosses. (b): DropBlock and SpatialDropout on the given
CNN feature map. The dropped entries are marked by red slashes

DropCluster vs. SpatialDropout Due to the convolution operation and spa-
tial correlation in natural images, entries in CNN feature maps are also spatially
correlated, which hampers the effectiveness of dropout. Thus, SpatialDropout
[26] proposed to randomly drop entire feature channels to concurrently remove
spatially correlated entries (Fig. 2 (b)). Given a feature map F ∈ Rnfeats×w×h,
SpatialDropout samples nfeats binary values, indicating whether to drop each
channel. Differently, we consider the l-hop neighboring entries as spatially corre-
lated in the l-th layer. Then the l-hop neighboring entries are removed together
with the seed entries (Fig. 2 (a)). Moreover, considering depth-wise correlation is
another great difference. Instead of randomly selecting channels, we drop entries
in channels depth-wisely correlated to the selected entries.

DropCluster vs. DropBlock DropBlock [9] focused on the spatial correlation
in CNN feature maps and drops blocks of contiguous entries. Given a feature
map, DropBlock drops entries in several randomly selected square regions of
size block size × block size (Fig. 2 (b)). DropBlock cannot regularize GCNs as
the square region cannot be defined on graphs. DropCluster deals with spatial
correlation by concurrently removing entries within l-hop neighborhood of the
random seed entries in the l-th layer. Compared to DropBlock, this not only
differs in that it could be used in GCNs, but is also more delicate in that the
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size of dropped region is increased with the number of layer, corresponding to the
increased receptive field in deeper layers. Moreover, DropCluster also removes
depth-wisely correlated entries, which is not considered in DropBlock.

DropCluster vs. DropEdge Similar to our work, DropEdge [20] is also spe-
cially for GCNs, but the approach is largely different. We aim to regularize
GCNs by removing part of the information contained in the node features, while
DropEdge proposed to randomly delete edges to sparsify the graph (Fig. 2 (a)).
Given an adjacency matrix A denoting |E| edges and the dropping rate as p,
the adjacency matrix after dropping is Adrop = A−A′, where A′ contains |E|·p
randomly picked edges. In our experiments, DropEdge is also a baseline.

4 Experiments

In this section, we first test different hyperparameters to investigate their influ-
ence. Then we conduct ablation studies to verify the effectiveness of different
parts of our model. After that, we compare our performance with other state-
of-the-art techniques. To further demonstrate the effectiveness of our method
in deep GCNs, we implement it to networks with increasing depths and com-
pare the performance with dropout [11]. Finally, we implement our method to
different network structures to show its generalization capability.

4.1 Datasets

Northwestern-UCLA [29] The Multiview 3D event dataset contains RGB,
depth and human skeleton data captured simultaneously by three Kinect cam-
eras. This dataset include 10 action categories: pick up with one hand, pick up
with two hands, drop trash, walk around, sit down, stand up, donning, doffing,
throw, carry. Each action is performed by 10 actors. This dataset contains data
taken from a variety of viewpoints. Following the setting in [15], samples ob-
tained from the first two cameras are used for training and samples from the
third camera are used for testing.

NTU-RGB+D [21] NTU-RGB+D contains 56,880 samples from 60 classes,
with modality of RGB videos, depth map sequences, 3D skeletal data, and in-
frared videos. Each human skeleton graph has 25 joints denoted by 3D coordi-
nates (X, Y, Z). Following the recommendation of [21], we split the dataset by
cross-subject (x-sub) and cross-view (x-view). In x-sub setting, 40,320 samples
generated by one group of people serve as training set, and the other 16,560
samples by the other group of people are used for testing. In x-view setting,
37,920 samples captured by one set of cameras are used for training, and 18,960
samples captured by the other set of cameras are used for testing.
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4.2 Implementation Details

On Northwestern-UCLA, we adopt ST-GCN [32] with modification as backbone
and denote it as ST-GCN-U. ST-GCN-U has 9 layers. The first 3 layers have
32 channels for output, and the following 2 layers have 64 channels for output.
The 6-th and 7-th have 128 channels for output, and the final 2 layers have 256
channels for output. DropCluster is implemented after each convolutional layer.
The optimizer is SGD, with starting learning rate of 0.01. The model is trained
for 100 epoch, and we decay the learning rate by 0.1 at epoch 20, 50, and 80.

On NTU-RGB+D, we adopt the original ST-GCN [32] with 9 layers as back-
bone. The first 3 layers have 64 channels for output, the following 3 layers have
128 channels for output, and the final 3 layers have 256 channels for output.
DropCluster follows every convolutional layer. The optimizer is SGD with start-
ing learning rate of 0.1. We train the model for 80 epochs, and decay the learning
rate by 0.1 after epoch 10 and 50.

In Sec. 4.6, the 2-layer net has 64 input and 128 output channels for the
1-st layer, and the 2-nd layer has 128 channels for input and 256 for output.
The 3-layer net has same first two layer structure as the 2-layer net, and the
3-rd layer has 256 channels for both input and output. The 4-layer net is built
by inserting a layer with 128 channels for both input and output between the
first two layers of the 3-layer net. For the 6-layer net, two identical layers with
64 channels for both input and output are inserted before the 1-st layer of the
4-layer net. Finally, the 11-layer net is based on the 9-layer net. The additional
10-th layer has 256 channels and 512 channels for input and output, and the
final layer has 512 channels for both input and output.

4.3 Hyperparameter Analysis

In this part, we implement DropCluster to ST-GCN-U on Northwestern-UCLA
with different dropping rate rd and correlation threshold tc. First we fix tc =
0.5 and implement different dropping rates with the results shown in Fig. 3.
The red curve in Fig. 3 shows DropCluster performance with different dropping
rates. We see that DropCluster works well with smaller rates and degrades when
the rate increases. To further investigate this phenomenon, we simultaneously
show performance of dropout. The behaviour of DropCluster and dropout are
similar in that the performance first increases with dropping rate and degrades
after reaching a peak with an optimal rate. As both DropCluster and dropout
regularize a network by eliminating part of the information, for any dropping
method, it is reasonable to expect an optimal dropping rate corresponding to
a proper amount of information eliminated. Thus, as DropCluster eliminates
semantic information more effectively, enough information is removed with a
small dropping rate. On the contrast, by zeroing entries in randomly, dropout
needs a higher rate to remove enough information. Thus we observe a smaller
optimal dropping rate for DropCluster and a higher one for dropout. Moreover,
even if a higher dropping rate could remove enough information, it may hurt
the data quality as there are too many hollows everywhere in the feature map.
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Fig. 3. Performance of DropCluster and
dropout with different dropping rates on
Northwestern-UCLA dataset

Fig. 4. Performance of DropCluster
with different correlation threshold on
Northwestern-UCLA dataset

Overall, DropCluster can eliminate enough information by zeroing a small part of
the data and thus protect the data quality elsewhere. While in contrast, dropout
needs higher dropping rate to achieve the same amount of information removal
but also hurt data quality, resulting in a lower peak accuracy even with optimal
dropping rate. Above, we set 0.1 as dropping rate for all experiments.

Then we vary tc from 0 to 1, as shown in Fig. 4. According to Fig. 4, neither
too small or too large threshold is promising, and 0.5 is approximately optimal.
The correlation threshold determines the strength of co-dropping entries depth-
wisely. Too high threshold causes some correlated channels unable to be also
concurrently dropped, while too small ones render weakly correlated channels
dropped concurrently. Above all, we set the threshold as 0.5 for all experiments.

4.4 Ablation Study

Table 1. Ablation study on
Northwestern-UCLA dataset
Method Top-1 Top-5
Without dropping 68.5% 97.2%
Dropout 70.5% 97.3%
Spatial Correlation 71.1% 99.1%
Depth-wise Correlation 70.8% 97.5%
Full DropCluster 72.2% 99.6%

Spatial and depth-wise correlations are
major concerns of our method. In this
part, we implement two models that con-
sider only spatial or depth-wise correla-
tion to separately study them. The exper-
iments are conducted on Northwestern-
UCLA with ST-GCN-U as backbone.

From Table 1, either considering sole
spatial or depth-wise correlation improves
the performance, but does not show
strong superiority over dropout. The full
DropCluster considering both correlation
yields much better results, implying that
both spatial and depth-wise correlations are significant in the GCN feature map
and should be concurrently considered.
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4.5 Comparisons with Other State-of-the-art Methods

In addition to dropout, in this part, we comprehensively compare DropCluster
with various other state-of-the-art dropout variants as stated below. Gaussian
dropout [23] generalized dropout by replacing the Bernoulli noise with Gaussian
noise, and achieved equal or better performance than dropout. SpatialDropout
[26] aimed at the spatial correlation in convolutional feature maps and ran-
domly dropped entire channels in the feature map. Attention-based dropout [5]
alternatively removes or highlights the most semantic areas with respect to a
self-attention map denoting the distribution of semantic information. Jumpout
[30] proposed modifications to dropout including monotone dropout rate, adapt-
ing dropout rate to number of activated neurons, and rescaling the output to
work with batch normalization. None of these methods are specially for GCNs.
DropEdge [20] randomly removes edges at each layer, aiming to alleviate the
over-fitting and over-smoothing problems by sparsifying the graph. We carefully
adjusted the hyperparameters to get the most out of them, and the results are
listed in Table 2 and Table 3.

Table 2. Comparisons with state-
of-the-art regularization methods on
Northwestern-UCLA
Methods Top-1 Top-5

Without dropping 68.5% 97.2%
Jumpout [30] 69.2% 97.0%
Attention-based dropout [5] 69.5% 97.1%
Gaussian dropout [23] 70.0% 97.0%
DropEdge [20] 70.3% 97.2%
Dropout [11] 70.5% 97.3%
SpatialDropout [26] 70.8% 97.4%

DropCluster 72.2% 99.6%

Table 3. Comparisons with state-of-
the-art regularization methods on NTU-
RGB+D dataset
Methods X-Sub X-View

Without dropping 80.6% 88.0%
Jumpout [30] 80.7% 87.9%
Attention-based dropout [5] 81.0% 88.1%
SpatialDropout [26] 81.2% 88.1%
DropEdge [20] 81.3% 88.4%
Dropout [11] 81.5% 88.3%
Gaussian dropout [23] 82.2% 88.4%

DropCluster 83.3% 88.9%

From Table 2 and 3, although most baselines are not specially designed for
GCNs, they show promising performance. But DropCluster still significantly out-
performs them. On Northwestern-UCLA, the performance is boosted by 3.7%
with DropCluster, while the highest improvement obtained by comparison meth-
ods is 2.3% by SpatialDropout. On NTU-RGB+D, our method gets 2.3% and
0.9% improvement compared to the model without any dropping on two proto-
cols, and the second highest improvement is 1.6% and 0.4% obtained by Gaussian
dropout. The performance of DropCluster on NTU-RGB+D is lower than that
on Northwestern-UCLA, which is mainly caused by volume difference of the
datasets. NTU-RGB+D is 30 times larger than Northwestern-UCLA, thus the
model is more prone to over-fitting on Northwestern-UCLA and would benefit
more from regularization. Among all baselines, SpatialDropout is related to our
method as it also considers spatial relationship between entries. It is similar to
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DropCluster without considering depth-wise correlation, corresponding to ‘Spa-
tial Correlation’ shown in Table 1. The performances of SpatialDropout and
‘Spatial Correlation’ are also similar with only 0.3% difference. The reason that
SpatialDropout performs slightly worse could be that it drops the entire channels
of the feature map, which causes severe information loss. On the contrast, for
each channel, we drop clusters of nodes within the l-hop neighborhood of seed
entries in the l-th layer, which flexibly removes only part of the information.

4.6 Implementation on Networks with Extended Depths

To further show DropCluster performs well in deep GCNs, we apply it to net-
works with increasing depths. We conduct experiments on NTU-RGB+D dataset
with cross-view protocol. The results are shown in Tab. 4.

Table 4. Implementations of our DropClus-
ter to networks with increasing depths
#layer #para w/o dropping Dropout Ours

2 0.37 ×106 81.1% 81.3% 81.4%
3 0.96 ×106 83.2% 83.3% 84.0%
4 1.11 ×106 86.4% 86.9% 87.7%
6 1.19 ×106 88.1% 88.4% 88.7%
9 1.96 ×106 88.1% 88.3% 88.9%
11 5.50 ×106 88.0% 88.6% 90.0%

Table 5. Implementation to
GECNN and SLHM
Model Regularizer X-Sub X-View

GECNN - 83.6% 89.1%
GECNN dropout 84.0% 89.4%
GECNN DropCluster 84.7% 90.4%

SLHM - 84.3% 89.2%
SLHM dropout 84.7% 89.7%
SLHM DropCluster 85.3% 90.7%

According to Tab. 4, the performance of the model without dropping first
increases rapidly with depth then slows down, and stops at depth of 6, Moreover,
the performance even gets lower when depth further increases. This phenomenon
is reasonable. At the first stage wherein the depth increases from 2 to 6, the
performance is boosted by the higher capacity of deeper networks. However,
higher capacity also renders the network more prone to over-fitting. From Tab.
4, we see the parameters of 11-layer net is more than twice of the amount of
9-layer net, causeing much higher probability of over-fitting. With dropout, this
is alleviated but a downwards trend still presents when depth increases from 6 to
9. With DropCluster, the improvement is amazing. It not only better regularizes
the shallower networks, but also outperforms dropout by 1.3% when the depth
is increased to 11. Above all, it is obvious that DropCluster is more effective at
regularizing deep networks to better exploit their expressive potential.

4.7 Further Implementations

In this part, we implement DropCluster to more networks to further demonstrate
its generalization capability. Specifically, we apply DropCluster to GECNN,
SLHM and GCN-NAS with two independent branch models and a full model.
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The experiments above are on GCNs that apply convolution on graph nodes.
In this part, we first apply our method to GECNN and SLHM [36], which are
different from the node-based GCN models in that the graph edges also partici-
pate in convolution. In GECNN, only edges are included in convolution, while in
SLHM, both edges and nodes participate. Despite the difference in the convolu-
tion computation, the correlation between features are similar. Thus our method
could be directly implemented, and the results are in Tab. 5.

From Tab. 5, DropCluster significantly improves both models. As we directly
adopt the hyperparameters of DropCluster from the previous sections, the gen-
eralization ability of DropCluster is strongly demonstrated.

GCN-NAS [19] is a recent model that adopted neural architecture search to
design GCN for skeleton-based action recognition. The obtained model has a
joint- and a bone-stream. We implement DropCluster to both streams as well as
the full model, and the results are shown in Tab. 6.

Table 6. Implementation to GCN-NAS on NTU-RGB+D dataset with cross-subject
protocol

Backbone model Stream Regularization Top-1 Top-5

GCN-NAS Joint - 87.5% 97.7%
GCN-NAS Joint DropCluster 88.0% 97.7%

GCN-NAS Bone - 87.5% 97.8%
GCN-NAS Bone DropCluster 88.1% 97.7%

GCN-NAS Joint & Bone - 89.4% 98.0%
GCN-NAS Joint & Bone DropCluster 89.9% 98.2%

From Tab. 6, we could see that the performance of GCN-NAS is significantly
improved with the regularization of our proposed DropCluster.

Above all, DropCluster demonstrates strong generalization capability and
could be easily implemented in different GCNs as an effective regularization
without hyperparameter adjustments.

5 Conclusion

In this paper, we propose DropCluster, an effective method to regularize GCNs
by considering spatial and depth-wise correlation between features. We imple-
ment it to deep GCNs with different structures on different datasets with com-
parisons to dropout and other variants. Moreover, we apply it to networks with
increasing depths to further demonstrate its capability to regularize deep GCNs.
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