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A Supplementary materials for “Improving 3D Object
Detection through Progressive Population Based
Augmentation”

Table 7: List of point cloud transformations in the search space for point cloud
3D object detection

Operation Name Description
GroundTruthAugmentor [31] Augment the bounding boxes from a ground truth data base (< 25

boxes per scene)
RandomFlip [33] Randomly flip all points along the Y axis.
WorldScaling [37] Apply global scaling to all ground truth boxes and all points.
RandomRotation [37] Apply random rotation to all ground truth boxes and all points.
GlobalTranslateNoise Apply global translating to all ground truth boxes and all points

along x/y/z axis.
FrustumDropout All points are first converted to spherical coordinates, and then a

point is randomly selected. All points in the frustum around that
point within a given phi, theta angle width and distance to the
original greater than a given value are dropped randomly.

FrustumNoise Randomly add noise to points within a frustum in a converted
spherical coordinates.

RandomDropout Randomly dropout all points.

Table 8: The range of augmentation parameters that can be searched by Pro-
gressive Population Based Augmentation algorithm for each operation
Operation Name Parameter Name Range

GroundTruthAugmentor

vehicle sampling probability [0, 1]
pedestrian sampling probability [0, 1]
cyclist sampling probability [0, 1]
other categories sampling probability [0, 1]

RandomFlip flip probability [0, 1]
WorldScaling scaling range [0.5, 1.5]
RandomRotation maximum rotation angle [0, π/4]

GlobalTranslateNoise
standard deviation of noise on x axis [0, 0.3]
standard deviation of noise on y axis [0, 0.3]
standard deviation of noise on z axis [0, 0.3]

FrustumDropout

theta angle width of the selected frustum [0, 0.4]
phi angle width of the selected frustum [0, 1.3]
distance to the selected point [0, 50]
the probability of dropping a point [0, 1]
drop type6 {’union’, ’intersection’}

FrustumNoise

theta angle width of the selected frustum [0, 0.4]
phi angle width of the selected frustum [0, 1.3]
distance to the selected point [0, 50]
maximum noise level [0, 1]
noise type7 {’union’, ’intersection’}

RandomDropout dropout probability [0, 1]

6
Drop points in either the union or intersection of phi width and theta width.

7
Add noise to either the union or intersection of phi width and theta width.
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Algorithm 1 Progressive Population Based Augmentation

Input: data and label pairs (X ,Y)
Search Space: S = {opi : paramsi}ni=1

Set t = 0, num ops = 2, population P = {}, best params and metrics for each
operation historical op params = {}
while t 6= N do

for θti in {θt1, θt2, ..., θtM} (asynchronously in parallel) do
# Initialize models and augmentation parameters in current iteration
if t == 0 then
op paramsti = Random.sample(S, num ops)
Initialize θti , λ

t
i, params of op paramsti

Update λt
i with op paramsti

else
Initialize θti with the weights of winnert−1

i

Update λt
i with λt−1

i and op paramsti
end if
# Train and evaluate models, and update the population
Update θti according to formular (2)
Compute metric Ωt

i = Ω(θti)
Update historical op params with op paramsti and Ωt

i

P ← P ∪ {θti}
# Replace inferior augmentation parameters with better ones
winnerti ← Compete(θti , Random.sample(P))
if winnerti 6= θti then
op paramst+1

i ← Mutate(winnerti ’s op params, historical op params)
else
op paramst+1

i ← op paramsti
end if

end for
t← t+ 1

end while
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Algorithm 2 Exploration Based on Historical Data

Input: op params = {opi : paramsi}num ops
i=1 , best params and metric for each

operation historical op params
Search Space: S = {(opi, paramsi)}ni=1

Set exploration rate = 0.8, selected ops = [], new op params = {}
if Random(0, 1) < exploration rate then
selected ops = op params.Keys()

else
selected ops = Random.sample(S.Key(), num ops)

end if
for i in Range(num ops) do

# Choose augmentation parameters, which successors will mutate
# to generate new parameters
if selected ops[i] in op params.Keys() then
parent params = op params[selected ops[i]]

else if selected ops[i] in historical op params.Keys() then
parent params = historical op params[selected ops[i]]

else
Initialize parent params randomly

end if
new op params[selected ops[i]] = MutateParams(parent params)

end for
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