
18 S. Cheng et al.

A Supplementary materials for “Improving 3D Object
Detection through Progressive Population Based
Augmentation”

Table 7: List of point cloud transformations in the search space for point cloud
3D object detection

Operation Name Description
GroundTruthAugmentor [31] Augment the bounding boxes from a ground truth data base (< 25

boxes per scene)
RandomFlip [33] Randomly flip all points along the Y axis.
WorldScaling [37] Apply global scaling to all ground truth boxes and all points.
RandomRotation [37] Apply random rotation to all ground truth boxes and all points.
GlobalTranslateNoise Apply global translating to all ground truth boxes and all points

along x/y/z axis.
FrustumDropout All points are first converted to spherical coordinates, and then a

point is randomly selected. All points in the frustum around that
point within a given phi, theta angle width and distance to the
original greater than a given value are dropped randomly.

FrustumNoise Randomly add noise to points within a frustum in a converted
spherical coordinates.

RandomDropout Randomly dropout all points.

Table 8: The range of augmentation parameters that can be searched by Pro-
gressive Population Based Augmentation algorithm for each operation
Operation Name Parameter Name Range

GroundTruthAugmentor

vehicle sampling probability [0, 1]
pedestrian sampling probability [0, 1]
cyclist sampling probability [0, 1]
other categories sampling probability [0, 1]

RandomFlip flip probability [0, 1]
WorldScaling scaling range [0.5, 1.5]
RandomRotation maximum rotation angle [0, π/4]

GlobalTranslateNoise
standard deviation of noise on x axis [0, 0.3]
standard deviation of noise on y axis [0, 0.3]
standard deviation of noise on z axis [0, 0.3]

FrustumDropout

theta angle width of the selected frustum [0, 0.4]
phi angle width of the selected frustum [0, 1.3]
distance to the selected point [0, 50]
the probability of dropping a point [0, 1]
drop type6 {’union’, ’intersection’}

FrustumNoise

theta angle width of the selected frustum [0, 0.4]
phi angle width of the selected frustum [0, 1.3]
distance to the selected point [0, 50]
maximum noise level [0, 1]
noise type7 {’union’, ’intersection’}

RandomDropout dropout probability [0, 1]

6
Drop points in either the union or intersection of phi width and theta width.

7
Add noise to either the union or intersection of phi width and theta width.

Progressive Population Based Augmentation 19

Algorithm 1 Progressive Population Based Augmentation

Input: data and label pairs (X ,Y)
Search Space: S = {opi : paramsi}ni=1

Set t = 0, num ops = 2, population P = {}, best params and metrics for each
operation historical op params = {}
while t 6= N do

for θti in {θt1, θt2, ..., θtM} (asynchronously in parallel) do
Initialize models and augmentation parameters in current iteration
if t == 0 then
op paramsti = Random.sample(S, num ops)
Initialize θti , λ

t
i, params of op paramsti

Update λt
i with op paramsti

else
Initialize θti with the weights of winnert−1

i

Update λt
i with λt−1

i and op paramsti
end if
Train and evaluate models, and update the population
Update θti according to formular (2)
Compute metric Ωt

i = Ω(θti)
Update historical op params with op paramsti and Ωt

i

P ← P ∪ {θti}
Replace inferior augmentation parameters with better ones
winnerti ← Compete(θti , Random.sample(P))
if winnerti 6= θti then
op paramst+1

i ← Mutate(winnerti ’s op params, historical op params)
else
op paramst+1

i ← op paramsti
end if

end for
t← t+ 1

end while

20 S. Cheng et al.

Algorithm 2 Exploration Based on Historical Data

Input: op params = {opi : paramsi}num ops
i=1 , best params and metric for each

operation historical op params
Search Space: S = {(opi, paramsi)}ni=1

Set exploration rate = 0.8, selected ops = [], new op params = {}
if Random(0, 1) < exploration rate then
selected ops = op params.Keys()

else
selected ops = Random.sample(S.Key(), num ops)

end if
for i in Range(num ops) do

Choose augmentation parameters, which successors will mutate
to generate new parameters
if selected ops[i] in op params.Keys() then
parent params = op params[selected ops[i]]

else if selected ops[i] in historical op params.Keys() then
parent params = historical op params[selected ops[i]]

else
Initialize parent params randomly

end if
new op params[selected ops[i]] = MutateParams(parent params)

end for

Progressive Population Based Augmentation 21

Acknowledgements

We would like to thank Peisheng Li, Chen Wu, Ming Ji, Weiyue Wang, Zhinan
Xu, James Guo, Shirley Chung, Yukai Liu, Pei Sun of Waymo and Ang Li of
DeepMind for helpful feedback and discussions. We also thank the larger Google
Brain team including Matthieu Devin, Zhifeng Chen, Wei Han and Brandon
Yang for their support and comments.

