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Abstract. Data augmentation has been widely adopted for object de-
tection in 3D point clouds. However, all previous related efforts have
focused on manually designing specific data augmentation methods for
individual architectures. In this work, we present the first attempt to au-
tomate the design of data augmentation policies for 3D object detection.
We introduce the Progressive Population Based Augmentation (PPBA)
algorithm, which learns to optimize augmentation strategies by narrow-
ing down the search space and adopting the best parameters discovered
in previous iterations. On the KITTI 3D detection test set, PPBA im-
proves the StarNet detector by substantial margins on the moderate
difficulty category of cars, pedestrians, and cyclists, outperforming all
current state-of-the-art single-stage detection models. Additional exper-
iments on the Waymo Open Dataset indicate that PPBA continues to
effectively improve the StarNet and PointPillars detectors on a 20x larger
dataset compared to KITTI. The magnitude of the improvements may
be comparable to advances in 3D perception architectures and the gains
come without an incurred cost at inference time. In subsequent exper-
iments, we find that PPBA may be up to 10x more data efficient than
baseline 3D detection models without augmentation, highlighting that
3D detection models may achieve competitive accuracy with far fewer
labeled examples.

Keywords: Progressive population based augmentation, data augmen-
tation, point cloud, 3D object detection, data efficiency

1 Introduction

LiDAR is a prominent sensor for autonomous driving and robotics because it
provides detailed 3D information critical for perceiving and tracking real-world
objects [2, 29]. The 3D localization of objects within LiDAR point clouds rep-
resents one of the most important tasks in visual perception, and much effort
has focused on developing novel network architectures for point clouds [1, 33, 21,
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32, 37, 31, 16, 25]. Following the image classification literature, such modeling ef-
forts have employed manually designed data augmentation schemes for boosting
performance [1, 31, 16, 33, 22, 36, 25, 37].

In recent years, much work in the 2D image literature has demonstrated
that investing heavily into data augmentation may lead to gains comparable
to those obtained by advances in model architectures [4, 38, 20, 11, 5]. Despite
this, 3D detection models have yet to significantly leverage automated data
augmentation methods (but see [18]). Naively porting ideas that are effective
for images to point cloud data presents numerous challenges, as the the types of
augmentations appropriate for point clouds differ tremendously. Transformations
appropriate for point clouds are typically geometric-based and may contain a
large number of parameters. Thus, the search space proposed in [4, 38] may
not be naively reused for an automated search in point cloud augmentation
space. Finally, because the search space is far larger, employing a more efficient
search method becomes a practical necessity. Several works have attempted to
significantly accelerate the search for data augmentation strategies [20, 11, 5],
however it is unclear if such methods transfer successfully to point clouds.

In this work, we demonstrate that automated data augmentation significantly
improves the prediction accuracy of 3D object detection models. We introduce a
new search space for point cloud augmentations in 3D object detection. In this
search space, we find the performance distribution of augmentation policies is
quite diverse. To effectively discover good augmentation policies, we present an
evolutionary search algorithm termed Progressive Population Based Augmenta-
tion (PPBA). PPBA works by narrowing down the search space through suc-
cessive iterations of evolutionary search, and by adopting the best parameters
discovered in past iterations. We demonstrate that PPBA is effective at finding
good data augmentation strategies across datasets and detection architectures.
Additionally, we find that a model trained with PPBA may be up to 10x more
data efficient, implying reduced human labeling demands for point clouds.

Our main contributions can be summarized as follows: (1) We propose an
automated data augmentation technique for localization in 3D point clouds. (2)
We demonstrate that the proposed search method effectively improves point
cloud 3D detection models compared to random search with less computational
cost. (3) We demonstrate up to a 10x increase in data efficiency when employing
PPBA. (4) Beyond 3D detection, we also demonstrate that PPBA generalizes
to 2D image classification.

2 Related Work

Data augmentation has been an essential technique for boosting the performance
of 2D image classification and object detection models. Augmentation methods
typically include manually designed image transformations, to which the labels
remain invariant, or distortions of the information present in the images. For
example, elastic distortions, scale transformations, translations, and rotations
are beneficial on models trained on MNIST [26, 3, 30, 24]. Crops, image mirror-
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ing and color shifting / whitening [14] are commonly adopted on natural image
datasets like CIFAR-10 and ImageNet. Recently, cutout [6] and mixup [34] have
emerged as data augmentation methods that lead to good improvements in nat-
ural image datasets. For object detection in 2D images, image mirroring and
multi-scale training are popular distortions [10]. Dwibedi et al. add new objects
on training images by cut-and-paste [7].

While the augmentation operations mentioned above are designed by domain
experts, there are also automated approaches to designing data augmentation
strategies for 2D images. Early attempts include Smart Augmentation, which
uses a network to generate augmented data by merging two or more image
samples [17]. Ratner et al. use GANs to output sequences of data augmenta-
tion operations [23]. AutoAugment uses reinforcement learning to optimize data
augmentation strategies for classification [4] and object detection [38]. More re-
cently, improved search methods are able to find data augmentation strategies
more efficiently [5, 11, 20].

While all the mentioned work so far is on 2D image classification and object
detection, automated data augmentation methods have not been explored for 3D
object detection tasks to the best of our knowledge. Models trained on KITTI
use a wide variety of manually designed distortions. Due to the small size of the
KITTI training set, data augmentation has been shown to improve performance
significantly (common augmentations include horizontal flips, global scale dis-
tortions, and rotations) [1, 31, 33, 16, 25]. Yan et al. add new objects in training
point clouds by pasting points inside ground truth 3D bounding boxes [31]. De-
spite its effectiveness for KITTI models, data augmentation was not used on
some of the larger point cloud datasets [22, 36]. Very recently, an automated
data augmentation approach was studied for point cloud classification [18].

Historically, 2D vision research has focused on architectural modifications
to improve generalization. More recently, it was observed that improving data
augmentation strategies can lead to comparable gains to a typical architectural
advance [34, 8, 4, 38]. In this work, we demonstrate that a similar type of im-
provement can also be obtained by an effective automated data augmentation
strategy for 3D object detection over point clouds.

3 Methods

We formulate the problem of finding the right augmentation strategy as a special
case of hyperparameter schedule learning. The proposed method consists of two
components: a specialized data augmentation search space for point cloud inputs
and a search algorithm for the optimization of data augmentation parameters.
We describe these two components below.

3.1 Search Space for 3D Point Cloud Augmentation

In the proposed search space, an augmentation policy consists of N augmen-
tation operations. Additionally, each operation is associated with a probability
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Fig. 1: Visualization of the augmentation operations in the proposed
search space. An augmentation policy is defined by a list of distinct augmen-
tation operations and the corresponding augmentation parameters. Details of
these operations are in Table 7 and Table 8 in the Appendix.

and some specialized parameters. For example, the ground-truth augmentation
operation has parameters denoting the probability for sampling vehicles, pedes-
trians, cyclists, etc.; the global translation noise operation has parameters for
the distortion magnitude of the translation operation on x, y and z coordinates.
To reduce the size of the search space and increase the diversity of the training
data, these different operations are always applied according to some learned
probabilities in the same, pre-determined order to point clouds during training.

The basic augmentation operations in the proposed search space fall into
two main categories: global operations, which are applied to all points in a frame
(such as rotation along Z-axis, coordinate scaling, etc.), and local operations,
which are applied to points locally (such as dropping out points within a frus-
tum, pasting points within bounding boxes from other frames, etc.). Our list of
augmentation operations (see Fig. 1) consists of GroundTruthAugmentor, Ran-
domFlip, WorldScaling, GlobalTranslateNoise, FrustumDropout, FrustumNoise,
RandomRotation and RandomDropLaserPoints. In total, there are 8 augmenta-
tion operations and 29 operation parameters in the proposed search space.

3.2 Learning through Progressive Population Based Search

The proposed search process is maximizing a given metric Ω on a model θ by
optimizing a schedule of augmentation operation parameters λ = (λt)

T
t=1, where

t represents the number of iterative updates for the augmentation operation
parameters during model training. For point cloud detection tasks, we use mean
average precision (mAP) as the performance metric. The search process for the
best augmentation schedule λ∗ optimizes:

λ∗ = arg max
λ∈ΛT

Ω(θ) (1)
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During training, the objective function L (which is used for optimization of
the model θ given data and label pairs (X ,Y)) is usually different from the actual
performance metric Ω, since the optimization procedure (i.e. stochastic gradient
descent) requires a differentiable objective function. Therefore, at each iteration
t the model θ is optimizing:

θ∗
t = arg min

θ∈Θ
L(X ,Y, λt) (2)

During search, the training process of the model is split into N iterations. At
every iteration,M models with different λt are trained in parallel and are after-
wards evaluated with the metric Ω. Models trained in all previous iterations are
placed in a population P. In the initial iteration, all model parameters and aug-
mentation parameters are randomly initialized. After the first iteration, model
parameters are determined through an exploit phase - inheriting from a better
performing parent model by exploiting the rest of the population P. The exploit
phase is followed by an exploration phase, in which a subset of the augmentation
operations will be explored for optimization by mutating the corresponding aug-
mentation parameters in the parent model, while the remaining augmentation
parameters will be directly inherited from the parent model.

Similar to Population Based Training [12], the exploit phase will keep the
good models and replace the inferior models at the end of every iteration. In
contrast with Population Based Training, the proposed method focuses only on
a subset of the search space at each iteration. During the exploration phase, a
successor might focus on a different subset of the parameters than its predecessor.
In that case, the remaining parameters (parameters that the predecessor does not
focus on) are mutated based on the parameters of the corresponding operations
with the best overall performance. In Fig 2, we show an example of Progressive
Population Based Augmentation. The complete PPBA algorithm is described in
detail in Algorithm 1 in the Appendix.

3.3 Schedule Optimization with Historical Data

The search spaces for data augmentation are different between 2D images and
3D point clouds. For example, each operation in the AutoAugment [4] search
space for 2D images has a single parameter. Furthermore, any value of this
parameter within the predefined range leads to a reasonable image. For this
reason, even sampling random augmentation policies for 2D images leads to
some improvement in generalization [4, 5]. On the other hand, the augmentation
operations for 3D point clouds are much harder to optimize. Each operation
has several parameters, and a good range for these parameters is not known a
priori. For example, there are five parameters – theta width, phi width, distance,
keep prob and drop type – in the FrustumDropout operation. The analogous
operation for 2D images is cutout [6], which has only one parameter. Therefore
it is more challenging to discover optimal parameters for point cloud operations
with limited resources.



6 S. Cheng et al.

Fig. 2: An example of Progressive Population Based Augmentation.
Four augmentation operations (a1, a2, a3, a4) are applied to the input data
during training; their parameter set comprises the full search space. During pro-
gressive population based search, only two augmentation operations out of the
four are explored for optimization at every iteration. For example, at the be-
ginning of iteration t − 1, augmentation parameters of (a1, a2) are selected for
exploration for the blue model while augmentation parameters of (a3, a4) are
selected for exploration for the purple model. At the end of training in itera-
tion t − 1, an inferior model (the purple model) is exploited by a model with
higher performance (the blue model). Afterwards, a successor will inherit both
model parameters and augmentation parameters from the winner model - the
blue model. During the exploration phase, the selected augmentation operations
for exploration by the successor model are randomly sampled and become (a2,
a3). Since augmentation parameters of a3 have not been explored by the pre-
decessor (the blue model), corresponding augmentation parameters of the best
model (the green model), in which a3 has been selected for exploration, will be
adopted for exploration by the successor model.

In order to learn the parameters for individual operations effectively, PPBA
modifies only a small portion of the parameters in the search space at every
iteration, and the historical information from the previous iterations are reused
to optimize the augmentation schedule. By narrowing down the focus on certain
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subsets of the search space, it becomes easier to distinguish the inferior augmen-
tation parameters. To mitigate the slowing down of search speed caused by the
search space shrinkage at each training iteration, the best parameters of each
operation discovered in the past iterations are adopted by the successors, when
their focused subsets of the search space are different from their predecessors.

Fig. 3: Three types of scenarios for the subsets of the search space ex-
plored by the parent and the child models. 1) The subsets are the same. 2)
The subsets are partially shared. 3) The subsets are unshared. In both 1) and 2),
the overlapped augmentation parameters for exploration in the child model are
mutated based on the corresponding parameters in the parent model (updating
from light green to dark green). In both 2) and 3), the non-overlapped augmen-
tation parameters for exploration in the child model are mutated based on the
best augmentation parameters discovered in the past iterations (if available) or
random sampling (updating from blue to yellow/red).

In Fig 3, we show three types of scenarios for the subsets of the search space
explored by a successor and its predecessor. The details of the exploration phase
based on historical data are described in Algorithm 2 in the Appendix.

4 Experiments

In this section, we empirically investigate the performance of PPBA on predic-
tive accuracy, computational efficiency and data efficiency. We focus on single-
stage detection models due to their simplicity, speed advantages and widespread
adoption [31, 16, 22].

We first benchmark PPBA on the KITTI object detection benchmark [9] and
the Waymo Open Dataset [27] (Sections 4.1 and 4.2). Our results show PPBA
improves the baseline models and the improvement magnitude may be compa-
rable to advances in 3D perception architectures. Next, we compare PPBA with
random search and PBA [11] on the KITTI Dataset (Section 4.3) to demonstrate
PPBA’s effectiveness and efficiency. In addition, we study the data efficiency of
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PPBA on the Waymo Open Dataset (Section 4.4). Our experiments show that
PPBA can achieve competitive accuracy with far fewer labeled examples com-
pared with no augmentation. Finally, the PPBA algorithm was designed for, but
is not limited to, 3D object detection tasks. We study its ability to generalize to
2D image classification and present results in Section 4.5.

4.1 Surpassing Single-Stage Models on the KITTI Dataset

The KITTI Dataset [9] is generally recognized to be a small dataset for modern
methods, and thus, data augmentation is critical to the performance of models
trained on it [31, 16, 22]. We evaluate PPBA with StarNet [22] on the KITTI
test split in Table 1. PPBA improves the detection performance of StarNet sig-
nificantly, outperforming all current state-of-the-art single-stage point cloud de-
tection models on the moderate difficulty category.

Table 1: Performance comparison of single-stage point cloud detection models
on the KITTI test set using 3D evaluation. mAP is calculated with an IOU of
0.7, 0.5 and 0.5 for vehicles, cyclists and pedestrians, respectively

Method
Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

ContFuse [19] 83.68 68.78 61.67 - - - - - -
VoxelNet [37] 77.47 65.11 57.73 39.48 33.69 31.51 61.22 48.36 44.37
SECOND [31] 83.13 73.66 66.20 51.07 42.56 37.29 70.51 53.85 46.90
3D IoU Loss [35] 84.43 76.28 68.22 - - - - - -
PointPillars [16] 79.05 74.99 68.30 52.08 43.53 41.49 75.78 59.07 52.92

StarNet [22] 81.63 73.99 67.07 48.58 41.25 39.66 73.14 58.29 52.58
StarNet [22] + PPBA 84.16 77.65 71.21 52.65 44.08 41.54 79.42 61.99 55.34

During the PPBA search, 16 trials are trained to optimize the mAP for car
(30 iterations) and for pedestrian/cyclist (20 iterations), respectively. The same
training and inference settings3 as [22] are used, while all trials are trained on the
train split (3,712 samples) and validated on the validation split (3,769 samples).
We train the first iteration for 3,000 steps, and all subsequent iterations for 1,000
steps with batch size 64. The search is conducted in the search space described
in Section 3.1.

Manually designed augmentation policies are typically kept constant during
training. In contrast, stochasticity lies at the heart of the augmentation policies
in PPBA, i.e. each operation is applied stochastically and its parameters evolve
as the training progresses. We have found that simply using the final parameters
discovered by PPBA gets worse results than PPBA.

3 http://github.com/tensorflow/lingvo
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We use GroundTruthAugmentor to highlight the difference between the man-
ually designed and learned augmentation policies. While training a StarNet ve-
hicle detection model on KITTI with PPBA, the probability of applying the
operation decreases from 100% to 16% and the probability of pasting vehicles
reduces from 100% to 21%, while the probability of pasting pedestrians and cy-
clists increases from 0% to 28% and 8% respectively. This suggests that pasting
the object of interest in every frame during training, as in manual designed poli-
cies, is not an optimal strategy and introducing a diverse set of objects from
other classes is beneficial.

4.2 Automated Data Augmentation Benefits Large-Scale Data

The Waymo Open Dataset is a recently released, large-scale dataset for 3D object
detection in point clouds [27]. The dataset contains roughly 20x more scenes than
KITTI, and roughly 20x more human-annotated objects per scene. This dataset
presents an opportunity to ask whether data augmentations – being critical to
model performance on the KITTI dataset due to the small size of the dataset –
continue to provide a benefit in a large-scale training setting more reflective of
the self-driving conditions in the real world.

To address this question, we evaluate the proposed method on the Waymo
Open Dataset. In particular, we evaluate PPBA with StarNet [22] and PointPil-
lars [16] on the test split in Table 2 and Table 3 on both LEVEL 1 and LEVEL 2
difficulties at different ranges. Our results indicates that PPBA notably improves
the predictive accuracy of 3D detection across architectures, difficulty levels and
object classes. These results indicate that data augmentation remains an impor-
tant method for boosting model performance even in large-scale dataset settings.
Furthermore, the gains due to PPBA may be as large as changing the underlying
architecture, without any increase in inference cost.

Table 2: Performance comparison on the Waymo Open Dataset test set for vehicle
detection. Note that the results of PointPillars [16] on the Waymo Open Dataset
are reproduced by [27]

Method
Difficulty 3D mAP (IoU=0.7) 3D mAPH (IoU=0.7)

Level Overall 0-30m 30-50m 50m-Inf Overall 0-30m 30-50m 50m-Inf

StarNet [22] 1 61.5 82.2 56.6 32.2 61.0 81.7 56.0 31.8
StarNet [22] + PPBA 1 64.6 85.8 59.5 35.1 64.1 85.3 58.9 34.6
StarNet [22] 2 54.9 81.3 49.5 23.0 54.5 80.8 49.0 22.7
StarNet [22] + PPBA 2 56.2 82.8 54.0 26.8 55.8 82.3 53.5 26.4

PointPillars [16] 1 63.3 82.3 59.2 35.7 62.8 81.9 58.5 35.0
PointPillars [16] + PPBA 1 67.5 86.7 63.5 39.4 67.0 86.2 62.9 38.7
PointPillars [16] 2 55.6 81.2 52.9 27.2 55.1 80.8 52.3 26.7
PointPillars [16] + PPBA 2 59.6 85.6 57.6 30.0 59.1 85.1 57.0 29.5

When performing the search with PPBA, 16 trials are trained to optimize the
mAP for car and pedestrian, respectively. The list of augmentation operations
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Table 3: Performance comparison on the Waymo Open Dataset test set for pedes-
trian detection. Note that the results of PointPillars [16] on the Waymo Open
Dataset are reproduced by [27]

Method
Difficulty 3D mAP (IoU=0.5) 3D mAPH (IoU=0.5)

Level Overall 0-30m 30-50m 50m-Inf Overall 0-30m 30-50m 50m-Inf

StarNet [22] 1 67.8 76.0 66.5 55.3 59.9 67.8 59.2 47.0
StarNet [22] + PPBA 1 69.7 77.5 68.7 57.0 61.7 69.3 61.2 48.4
StarNet [22] 2 61.1 73.1 61.2 44.5 54.0 65.2 54.5 37.8
StarNet [22] + PPBA 2 63.0 74.8 63.2 46.5 55.8 66.8 56.2 39.4

PointPillars [16] 1 62.1 71.3 60.1 47.0 50.2 59.0 48.3 35.8
PointPillars [16] + PPBA 1 66.4 74.7 64.8 52.7 54.4 62.5 52.5 41.2
PointPillars [16] 2 55.9 68.6 55.2 37.9 45.1 56.7 44.3 28.8
PointPillars [16] + PPBA 2 60.1 72.2 59.7 42.8 49.2 60.4 48.2 33.4

described in Section 3.1, except for GroundTruthAugmentor and RandomFlip,
are used during search. In our experiments, we have found RandomFlip has a
negative impact on heading prediction for both car and pedestrian.

For both StarNet and PointPillars on the Waymo Open Dataset, the same
training and inference settings4 as [22] is used. All trials are trained on the full
train set and validated on the 10% validation split (4,109 samples). For StarNet,
we train the first iteration for 8,000 steps and the remaining iterations for 4,000
steps with batch size 128. The training steps for PointPillars are reduced by half
in each iteration with batch size 64. We perform the search for 25 iterations on
StarNet and for 20 iterations on PointPillars.

Even though StarNet and PointPillars are two distinct types of detection
models, we have observed similar patterns in the evolution of their augmenta-
tion schedules. For StarNet and PointPillars, the probability of FrustumDropout
is reduced from 100% to 23% and 56%, and the maximum rotation angle in Ran-
domRotation is reduced from 0.785 to 0.54 and 0.42. These examples indicate
that applying weaker data augmentation towards the end of training is beneficial.

4.3 Better Results with Less Computation

Above, we have verified the effectiveness of PPBA on improving 3D object de-
tection on the KITTI Dataset and the Waymo Open Dataset. In this section,
we analyze the computational cost of PPBA, and compare PPBA with random
search and PBA [11] on the KITTI test split.

All searches are performed with StarNet [22] and the search space described
in Section 3.1. For Random Search5, 1,000 distinct augmentation policies are
randomly sampled and trained. PBA is run with 16 total trials while training

4 http://github.com/tensorflow/lingvo
5 Our initial experiment on random search shows the performance distribution of

augmentation policies is spread on the KITTI validation split. In order to save com-
putation resources, the random search here is performed on a fine-grained search
space.
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the first iteration for 3,000 steps and the remaining iterations for 1,000 steps
with batch size 64.

The baseline StarNet is trained for 8 hours with a TPU v3-32 Pod [13, 15]
on vehicle detection and pedestrian/cyclist detection models. Random search
requires about 1, 000× 8 = 8, 000 TPU hours for training. In comparison, both
PBA and PPBA train with a much smaller cost of 8 × 16 = 128 TPU hours,
with an additional real-time computation overhead of waiting for the evaluation
result for 8×16 = 128 TPU hours. We observe that PPBA results in a more than
30x speedup compared to random search, while identifying better-performing
augmentation strategies. Furthermore, PPBA outperforms PBA by a substantial
margin with the same computational budget.

Table 4: Comparison of 3D mAP on StarNet on the KITTI test set across data
augmentation methods

Method TPU Hours
Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Manual design [22] 8 81.63 73.99 67.07 48.58 41.25 39.66 73.14 58.29 52.58
Random Search 8,000 81.89 74.94 67.39 52.78 44.71 41.12 73.71 59.92 54.09
PBA 256 83.16 75.02 69.72 41.28 34.48 32.24 76.8 59.43 52.77
PPBA 256 84.16 77.65 71.21 52.65 44.08 41.54 79.42 61.99 55.34

Fig. 4: 3D mAP of a population of 1,000 random augmentation policies for pedes-
trian and cyclist on the moderate difficulty on the KITTI validation split
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While searching the augmentation policies randomly for pedestrian/cyclist
detection, the majority of samples perform worse than the manual designed
augmentation strategy on the KITTI validation split (see Fig. 4). Unlike im-
age augmentation search spaces, where each operation has one parameter and
even random policies lead to some improvement in generalization, point cloud
augmentations are harder to optimize, with a larger number of parameters (e.g.
geometric distance, operation strength, distribution of categorical sampling, etc.)
and no good priors for the parameters’ ranges. Because of the complex search
space, it is challenging to discover good augmentation policies with random
search, especially for the cyclist category. We find that it is effective to fine tune
the parameter search space of each operation to improve the overall performance
of random search. However, the whole process is expensive and requires domain
expertise.

We observe that PBA is not effective at discovering better augmentation
policies, compared to random search or even to manual search, when the de-
tection category is sensitive to inferior augmentation parameters. In PBA, the
full search space is explored at every iteration, which is inefficient for search-
ing parameters in a high dimensional space. To mitigate the inefficiency, PPBA
progressively explores a subset of search space at every iteration, and the best
parameters discovered in past iterations are adopted in the exploration phase.
As in Table 4, PPBA shows much larger improvements on the car and cyclist
categories, demonstrating the effectiveness of the proposed strategy.

4.4 Automated Data Augmentation Improves Data Efficiency

In this section, we conduct experiments to determine how PPBA performs when
the dataset size grows. The experiments are performed with PointPillars on
subsets of the Waymo Open Dataset with the following number of training ex-
amples: 10%, 30%, 50%, by randomly sampling run segments and single frames
of sensor data, respectively. During training, the decay interval of the learning
rate is linearly decreased accordingly to the percentile of data sampled (e.g.,
reduce the decay interval of learning rate by 50% when sampling 50% of the
training examples), while the number of training epochs is set to be inversely
proportional to the percentile of data sampled. As it is commonly known that
smaller datasets need more regularization, we increase weight decay from 10−4

to 10−3, when training on 10% of the examples.
Compared to downsampling from single frames of sensor data, performance

degradation of PointPillars models is more severe when downsampling from run
segments. This phenomenon is due to the relative lack of diversity in the run
segments, which tend to contain the same set of distinct vehicles and pedestrians.
As in Table 5, Fig. 5 and Fig. 6, we compare the overall 3D detection mAP on
the Waymo Open Dataset validation set for all ground truth examples with
≥ 5 points and rated as LEVEL 1 difficulty for 3 sets of PointPillars models:
with no augmentation, random augmentation policy and PPBA. While random
augmentation policy can improve the PointPillars baselines and demonstrate the
effectiveness of the proposed search space, PPBA pushes the limit even further.
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Table 5: Compare 3D mAP of PointPillars with no augmentation, random aug-
mentation and PPBA on the Waymo Open Dataset validation set as the dataset
size grows

Method Sample Unit
10% 30% 50% 100%

Car Pedestrian Car Pedestrian Car Pedestrian Car Pedestrian

Baseline run segment 42.5 46.1 49.5 56.4 52.5 59.1 57.2 62.3
Random run segment 49.5 50.6 54.1 58.8 56.1 60.5 60.9 63.5
PPBA run segment 54.2 55.8 57.6 63.0 58.7 65.1 62.4 66.0

Baseline single frame 52.4 56.9 55.3 60.7 56.7 61.2 57.2 62.3
Random single frame 58.3 59.8 59.4 61.9 59.7 62.1 60.9 63.5
PPBA single frame 59.8 64.2 60.7 65.5 61.2 66.2 62.4 66.0

Fig. 5: Vehicle detection 3D mAP for PointPillars on Waymo Open Dataset
validation set with no augmentation, random augmentation and PPBA as the
dataset size changes

Fig. 6: Pedestrian detection 3D mAP for PointPillars on Waymo Open Dataset
validation set with no augmentation, random augmentation and PPBA as the
dataset size changes

PPBA is 10x more data efficient when sampling from single frames of sensor
data, and 3.3x more data efficient when sampling from run segments. As we
expected, the improvement from PPBA becomes larger when the dataset size is
reduced.
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4.5 Progressive Population Based Augmentation Generalizes on
Image Classification

So far our experiments have demonstrated that PPBA consistently improves over
alternatives for 3D object detection across datasets and architectures. However,
PPBA is a general algorithm, and in this section we validate its true versatility
by applying it to a common 2D image classification problem.

To search for augmentation policies, we use the same reduced subset of the
ImageNet training set with 120 classes and 6,000 samples as [4, 20]. During the
PPBA search, 16 trials are trained to optimize the Top-1 accuracy on the reduced
validation set for 8 iterations while 4 operations are selected for exploration at
every iteration. When replaying the learned augmentation schedule on the full
training set, the ResNet-50 model is trained for 180 epochs with a batch size
of 4096, a weight decay of 10−4 and a cosine decay learning rate schedule with
learning rate of 1.6. The results on the ImageNet validation set, shown in Table 6,
confirm that PPBA can be used as a highly efficient auto augmentation algorithm
for tasks other than 3D object detection.

Table 6: Comparison of Top-1 accuracy (%) and computational cost across aug-
mentation methods on the ImageNet validation set for ResNet-50. Note that the
baseline results with Inception-style Pre-processing is reproduced by [4]

Method Accuracy GPU Hours Hardware

Inception-style Pre-processing [28] 76.3 - -
AutoAugment [4] 77.6 15000 GPU P100
Fast AutoAugment [20] 77.6 450 GPU V100
PPBA 77.5 16 GPU V100

5 Conclusion

We have presented Progressive Population Based Augmentation, a novel auto-
mated augmentation algorithm for point clouds. PPBA optimizes the augmen-
tation schedule via narrowing down the search space and adopting the best pa-
rameters from past iterations. Compared with random search and PBA, PPBA
can more effectively and more efficiently discover good augmentation policies in
a rich search space for 3D object detection. Experimental results on the KITTI
dataset and the Waymo Open Dataset demonstrate that the proposed method
can significantly improve 3D object detection in terms of performance and data
efficiency. While we have also validated the effectiveness of PPBA on a com-
mon task such as image classification, exploring the potential applications of
the algorithm to more tasks and models remains an exciting direction of future
work.
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