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1 DMore Results

More evidence on the effectiveness of DR-KFS over pizel-wise MSFE loss. In
Figurel, we present additional qualitative comparisons of reconstruction using
“visual similarity loss vs. image distortion loss” and reconstruction from “sil-
houettes vs. shaded images”. Quantitative comparison are shown in Table 1.
Figure 1 and Table 1 underscore our claim that shaded images are friendlier
for the task of reconstruction and that using DR-KF'S pipeline results in better
reconstruction. This is also shown in the main paper (Figure 5 - Table 4).
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Fig. 1. Additional reconstructed models when the Shape Generator (SG) used in Sof-
tRas[4] is trained using silhouettes vs. shaded images corresponding to an input RGB
image. See Table 1 for the average similarity scores for the shapes shown above
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Features capturing perceptual differences. In Figure 2 and 3, we present more
results for lamps and chairs respectively, throwing light on the kind of image
features that can efficiently capture distinguishable perceptual differences on
the 2D projections of a 3D shape. A desired property of features making up
a visual similarity metric is that they should be able to robustly capture the
perceptual differences. Investigating this for the lamp shown in Figure 3, the stem
manipulation operation (fourth column) is visually more apparent than the stem
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2 Jin et al.

LFD|Shape Google
SG+DR-KFS (Silhouettes) 6468 7.66
SG+MSE (Shaded Images) 5089 6.35
SG+DR-KFS (Shaded Images)|4036 4.83

Table 1. More results on training a simple Shape Generator (SG) adopted in SoftRas
[4] with both DR-KF'S and per-pixel MSE loss. DR-KF'S, which performs image feature
matching, essentially incorporates visual similarity, while per-pixel MSE is merely an
image distortion loss on the image pixels. The reconstructed 3D models are shown in

Figure 1.

Reference Stem removal

Fig. 2. Manipulating the thickness of the
stem between the head and the bottom
of the lamp, including its deletion: Binary
images are shown on top and their cor-
responding Pol maps are on the bottom.
Image similarity scores w.r.t the reference
image for each operation using different
image-level features are tabulated in Ta-
ble 2.

Stem thinning Stem thickening

Reference Thinning legs Shortening Legs Leg Removal

Fig. 3. Manipulations on the chair legs,
including leg removal: Binary images are
shown on top and their corresponding Pol
maps are on the bottom. Image similarity
scores w.r.t the reference image for each
operation using different image-level fea-
tures are tabulated in Table 3.

Loss Thin stem|thick stem|Removal
MSE (1) 0.00731 0.0140| 0.0089
MSE

(LIFT feats) 0.0591 0.0899| 0.0892
MSE

(Pol Maps) 0.0014 0.0051| 0.0048
DR-KFS 0.00438 0.0128 0.015

Table 2. Image similarity scores for shape
manipulation operations shown in Figure 2
(in the same order), using MSE loss, on four
different image-level features: raw image pix-
els, image features using LIFT descriptors
[10], Pol maps and DR-KF'S feature descrip-
tors.

Loss Thin legs|Short legs|Removal
MSE (1) 0.371 0.322 0.185
MSE

(LIFT feats) 0.132 0.179| 0.183
MSE

(Pol Maps) 0.0129| 0.0489| 0.0144
DR-KFS 0.0171 0.0349| 0.0551

Table 3. Image similarity scores for the
image-level operations shown in Fig 3, using:
MSE loss on image pixels (I), image features
using LIFT descriptors[10], MSE loss on Pol
map pixels, and DR-KFS framework. Itali-
cized numbers (row-wise) indicate sensitivity
to the respective image-level operation.
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DR-KFS 3

thinning and thickening operations (second and third columns, respectively). If
we look at the rows of Table 2, we observe that only DR-KFS features produce
the largest similarity scores (the smaller the score, the more similar the two
images are; so a larger score indicates that the there is significant perceptual
difference between the two images) for this stem-deletion operation, as indicated
by the italicized numbers. This tells us that our pipeline is more efficient in
capturing perceptual object level manipulations (2D projection case here) than
incorporating pixel-wise MSE loss.

In addition, for the chair shown in Figure 3, the leg deletion operation (fourth
column) is more visually apparent than the other leg operations (thinning and
shortening, second and third columns, respectively). DR-KFS and LIFT features
capture this large perceptual difference (see Table 3, second and fourth rows)
over the other operations, while pixel-wise MSE is sensitive to manipulations
that are less visually apparent. It is to be noted that LIFT features may capture
the perceptual differences well (certainly not as efficiently as DR-KFS, as seen
in Figure 2-Table 2), but employing them into a pipeline like ours would make
the entire approach non-differentiable.

Additional reconstructed samples More results of reconstructions obtained using
AtlasNet [2], Matryoshka Network [6], Pixel2Mesh [9] and 3D-R2N2 [1] are shown
in Figure 4.

2 Perceptual Studies

For all the Perceptual Studies (PS) pointed out to in the main paper, we detail
the experimental settings, including the model pairs used in PS-1,PS-2. Fig-
ure 8,9,10, 11 and 12 show the reconstructed models used in PS-1 and Figure
13,14,15,16 and 17 show the reconstructed models used in PS-2. For details on
PS-1, PS-2, please refer to the main paper (Section 4.2).

User Interface In Figure 7, we show the user interface (UI) employed in PS-1
and PS-2. Turkers on AMT are forced to choose the best reconstructed model
(A or B) for the given input image.

3 Components of DR-KFS

3.1 Differentiable Renderer, SoftRas

In DR-KFS, we replace discrete rasterization and z-buffering with the soft-
rasterization and aggregation function introduced in SoftRas [4]. The input to
this differentiable renderer (softras) is a scaled (vertices scaled to [-1,1]) and
sphere-centered 3D model (sphere radius 5). Rendering viewpoints are obtained
by placing a virtual camera on the sphere. The elevation angles at which the
camera is placed are {0, %i, %7 37”, %”}, the azimuth angles are {0,7%, 7, %”,W}
and the direction of the light source is [0, 1, 0]. With this camera setup, we use a
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Fig. 4. An extended gallery (from the main paper) of results reconstructed when the
networks are trained using the original loss and the DRKFD loss. Reconstructed results
from representative networks such as AtlasNet (AN) [2], Matryoshka Net (MN) [6],
Pixel2Mesh (PM) [9] and 3D-R2N2 [1] are shown in this gallery of additional results.



DR-KFS 5

differentiable renderer as shown in Figure 5 to get the corresponding view images.
In doing so, we first take the model mesh M, a light source L and the camera
pose P as inputs, using which we calculate mesh normal N, image-coordinate
U and the view depth Z via mesh transformation Next, surface information S
is computed by the mesh normal N and the light input L. We then obtain a
probability map D for each mesh from the input U, through Soft Rasterization.
Finally, we aggregate all the probability maps together with surface information
S using an aggregation function to get the final rendered image I.

Transform in traditional renderer Soft Rasterization

77N\ Soft TN
! ,w“\ ° ,"‘
7 — Aggregation \0

:

Fig. 5. Pipeline of the differentiable renderer, SoftRas, used in DR-KFS

3.2 Keypoint detector and Pol maps

We use LIFT [10] and TILDE [8] to obtain Pol maps for every view-image of
the 3D model. A simplified pipeline of LIFT detector is show in Figure 6. LIFT
detector comnsists of a convolution layer together with a Generalized Hinging
Hyperplane (GHH) layer that implements piecewise linear activation function,
and a softargmax layer that extracts keypoints from the input view-image. In
GHH feature layer, we calculate the score map by:

N
Polyay = fver(I) = 3 00 max(Wonn @ I + by (1)

where fne:(I) is a non-linear function of the rendered view-image I, using a neu-
ral network Net, which is nothing but a CNN-based keypoint detector. N, M are
hyperparameters controlling the complexity of the piece-wise linear activation
function. 0 is +1 if n is odd, and -1 otherwise. The parameters of the network
Net to be learned are the convolution filter weights W,,,, and biases b,,,, and ®
denotes the convolution operation. Keypoints x can be retrieved from softargmax
by:

z = softargmax(Polyqp) (2)
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6 Jin et al.
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Fig. 6. Pipeline of simplified LIFT detector

where softargmaz is a function which computes the Center of Mass, with
weights being the output of a standard softmax function. softargmax can be
written as:

Zy €$p(BPOImap(y))y
>y exp(BPolmap(y))

where y’s are the pixel locations in Pol,,p, and S = 10 is a hyper-parameter
controlling the smoothness of the softargmax function. This function is a differ-
entiable version of non-maximum suppression. We finetune the pretrained LIFT
detector on our rendered view-images.

(3)

softargmax(Polmap) =

3.3 Continuous patch-feature extractor

With patches of size 32x32 (obtained using a sliding window technique on the
Pol maps) as input to the HardNet [5] module (see Figure 3 in the main paper),
128-D vectors are output from the DR-KFS feature extractor module for every
patch within an image. The network architecture for HardNet is detailed in Table
4.

input ‘kernal size‘stride‘padding activation layer‘ output
(1,32,32) image 3 1 1|BatchNorm + ReLU|(32,32,32)
(32,32,32) 3 1 1|BatchNorm + ReLU|(32,32,32)
(32,32,32) 3 2 1|BatchNorm + ReLU|(64,16,16)
(64,16,16) 3 1 1|BatchNorm + ReLU|(64,16,16)
(64,16,16) 3 2 1|BatchNorm + ReLU| (128,8,8)
(128,8,8) 3 1 1|BatchNorm + ReLU| (128,8,8)
(128,8,8) 8 1 1 BatchNorm| (128,1,1)

Table 4. Architectural details of HardNet used for patch based local feature extraction
from Pol maps.
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DR-KFS 7

3.4 Localized Feature Matching

For every patch Precon centered at (x,y) in the Pol maps corresponding to the
reconstructed model, we consider a set of neighboring patches in the GT Pol
maps, centered at (z 4,y £+ §), and find a patch that yields the minimum MSE
over the patch features (HardNet features). We do this for every patch in the
Pol maps corresponding to the reconstructed model.We then perform a weighted
addition of all such minimal loss values to get a similarity score as given below:

Simmcon = Z wi|Precon7¢ - Pgtk| (4)

where SiMmyecon is the overall similarity score, w; = average(Precon;) is the
average value of the pixels in the i*” patch in the Pol map corresponding to the
reconstructed model. Py, is the kth patch in the Pol map correponding to the
GT model (which has the least patch-feature MSE for Precon, )-

We essentially repeat the above procedure for the Pol maps corresponding
to the GT model and get a similarity score Simgr. Our final training loss is the
sum of SiMy,econ, and Simgr.

This two-way matching strategy helps our metric to be tolerant to small
visual changes, yet not compromising on the discriminative capability on a global

level. It also makes our approach pretty sensitive to part-deletion operations. See
?7

4 Implementation details of 3D reconstruction networks

In order to understand the quality of the reconstructed models using our metric,
we train AtlasNet [2], Matryoshka Net [6], OGN [7], Pixel2Mesh [9] and 3D-R2N2
[1], with the original loss and DR-KF'S loss, independently.

General training. During the training of AtlasNet [2] and Pixel2Mesh [9], recon-
structed point clouds are corresponded to meshes directly using a pre-defined
set of correspondences. Thus, we can straight away replace Chamfer Distance
with DR-KFS metric when training such networks. When training voxel-based
networks such as 3D-R2N2 [1], OGN [7] and Matryoshka Net [6], after obtaining
the predicted occupancy fields, we use a deep marching cube layer (DMCL) pro-
posed in [3] to convert an occupancy field to a mesh. The obtained mesh is refined
via backpropagation using the DR-KF'S loss. For such voxel-based networks, we
train them with 32*32*32 ShapeNet voxel data.

OGN. Specifically, for OGN, due to the indifferentiability of converting an octree
to a voxel, we only use one level of the octree and use a voxel of size 32*%32*32.
Thus, the octree-based models can be treated as a 32*32*32 voxel-based model
and can be trained accordingly. For a fair comparison of the results, we also train
the original OGN with a voxel input of size 32*¥32*32 and a one-level octree.

270
271
272
273
274
275
276
277
278
279
280

282



351
352

8 Jin et al.

Matryoshka Net. As for Matryoshka Network, we adopted the training strat-
egy in the original paper, encoding 32*32*32 voxel data with 6 shape layers
(zo,21,Y0, Y1, 20, 21)- In the original work, the network output voxels voxel are
determined by wvozel,,voxel,,vozel,, which are decoded from the aforemen-
tioned shape layers. Concretely,

vorel = voxel, Nvoxely Nvoxel, (5)

And each vozel,, vozel,, voxel, is calculated using the formulation given in 6,
as:

voxel, = (indices. > co) N (indices. < ¢1) (6)

where ¢ is z,y or z When training with DR-KFS loss, we feed the voxel prob-
ability to DMCL to decode the predicted shape into a voxel probability cube.
For every shape layer index (x, y or z), with the associated sub-layer levels (zq,
x1, Yo ete.), we model the voxel probability p, as a Normal distribution N(u, o),
where u = mean(zg, z1), 0 = 1. The final voxel probability p, is then calculated
as:

P = Dy * Dy * P2 (7)

Select an option
Image:input A 1

2
Al of the models below are reconstructed from this input image. Choose a model, by clicking on A(Model 4) or B(Model B), 8

that best represents the given image. Please ignore the color and texture of the models

Model A

Two views of Model A

Model B

Two views of Model B

B

Previous WIT_) - Showing Task 2 0f 46 Next T

Fig. 7. User interface for PS1, PS2
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Fig. 8. Models used in PS-1 — Reconstructed model using DR-KF'S loss is ModelA and
that using the original loss is ModelB. Note that in the actual perceptual study, the
order of the models is randomized, including their view-renderings.
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Fig. 9. Models used in PS-1 — Reconstructed model using DR-KF'S loss is ModelA and
that using the original loss is ModelB. Note that in the actual perceptual study, the
order of the models is randomized, including their view-renderings.
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input ModelA_view 1 ModelA_view 2 ModelB_view 1 ModelB_view 2

Fig. 10. Models used in PS-1 — Reconstructed model using DR-KFS loss is ModelA
and that using the original loss is ModelB. Note that in the actual perceptual study,
the order of the models is randomized, including their view-renderings.
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Fig.11. Models used in PS-1 — Reconstructed model using DR-KFS loss is ModelA
and that using the original loss is ModelB. Note that in the actual perceptual study,
the order of the models is randomized, including their view-renderings.
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Fig. 12. Models used in PS-1 — Reconstructed model using DR-KFS loss is ModelA
and that using the original loss is ModelB. Note that in the actual perceptual study,
the order of the models is randomized, including their view-renderings.
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Fig. 13. Models used in PS-2 — Reconstructed model using DR-KFS loss is ModelA
and that using the original loss is ModelB. Note that in the actual perceptual study,
the order of the models is randomized, including their view-renderings.
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Fig. 14. Models used in PS-2 — Reconstructed model using DR-KFS loss is ModelA
and that using the original loss is ModelB. Note that in the actual perceptual study,
the order of the models is randomized, including their view-renderings.
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Fig. 15. Models used in PS-2 — Reconstructed model using DR-KFS loss is ModelA
and that using the original loss is ModelB. Note that in the actual perceptual study,
the order of the models is randomized, including their view-renderings.
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Fig. 16. Models used in PS-2 — Reconstructed model using DR-KFS loss is ModelA
and that using the original loss is ModelB. Note that in the actual perceptual study,
the order of the models is randomized, including their view-renderings.

720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764



765
766
767
768
769
770
771
772
773
74
775
776
7
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800

802
803

805
806
807
808
809

18 Jin et al.

Input ModelA_view 1 ModelA_view 2 ModelB_view 1 ModelB_view 2

4
A 8
?
2
J

2
Y
A

¢
.
1
A
d

4
#
Y
A
I

Fig.17. Models used in PS-2 — Reconstructed model using DR-KFS loss is ModelA
and that using the original loss is ModelB. Note that in the actual perceptual study,
the order of the models is randomized, including their view-renderings.
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