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Abstract. Generating models to handle new visual tasks requires ad-
ditional datasets, which take considerable effort to create. We propose a
method of domain adaptation for merging multiple models with less ef-
fort than creating an additional dataset. This method merges pre-trained
models in different domains using glue layers and a generative model,
which feeds latent features to the glue layers to train them without an
additional dataset. We also propose a generative model that is created by
distilling knowledge from pre-trained models. This enables the dataset to
be reused to create latent features for training the glue layers. We apply
this method to object detection in a low-light situation. The YOLO-
in-the-Dark model comprises two models, Learning-to-See-in-the-Dark
model and YOLO. We present the proposed method and report the re-
sult of domain adaptation to detect objects from RAW short-exposure
low-light images. The YOLO-in-the-Dark model uses fewer computing
resources than the naive approach.

Keywords: Knowledge distillation, Domain adaptation, Object detec-
tion

1 Introduction

Performing visual tasks in a low-light situation is a difficult problem. Short-
exposure images to not have enough features for visual processing, and the
brightness enhancement of the image causes noise that affects visual tasks. In
contrast, long-exposure images also contain noise that affects visual tasks owing
to motion blur.

In previous work, image processing that handles extreme low-light photogra-
phy has been developed using an additional dataset (the See-in-the-Dark dataset)
[2]. This dataset contains RAW images captured under various exposure condi-
tions. This approach is a straightforward way to create models to perform visual
tasks in low-light conditions. However, creating a new dataset requires consider-
able effort. In particular, end-to-end training for models to perform visual tasks
requires many images with annotation.

Knowledge distillation is an excellent way to reuse models trained for other
visual tasks [5]. We propose a new method to generate models for performing
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new visual tasks without the need for an additional dataset. Similar approaches
known as unsupervised domain adaptation [1][15] have been proposed. Those
methods are effective for changing the domain of a single model (e.g., a classifier).
In contrast, our research focuses on merging other models trained on different
domains.

We apply the proposed method to achieve object detection in a low-light
situation. The well-known object detection model YOLO (You Only Look Once)
[10][11] uses public datasets PASCAL VOC and COCO [4][7], and Fig. 1 shows its
detection results for low-light images based on the See-in-the-Dark (SID) dataset.
Figure 1(a) is the result of a long-exposure (10 s) image, which is sufficient to
obtain good results. In contrast, Fig. 1(b) is the result of a short-exposure (100
ms) image that has been brightness enhanced so it the same as that of the
long-exposure image. The results of the short-exposure image are degraded.

(a) Long exposure (10s) (b) Short exposure (100ms),
with post processed

(c) Our result from the raw data of (b)

Fig. 1. Object detection in low-light situations. (a) Detection result of a long-exposure
(10 s) image. (b) Detection result of a short-exposure (100 ms) image. (c) Our detection
result of the RAW data of (b).

We use the Learning-to-See-in-the-Dark (SID) model to handle low-light pho-
tography [2]. It improves object detection in the case of short-exposure images.
Figure 1(c) shows the result of our method; it can detect objects from the RAW
data of the image in Fig. 1(b). Usually, such object detection requires end-to-end
training using a dataset containing RAW images with annotations. In contrast,
our proposal can import the knowledge of pre-trained models and apply them to
models for new visual tasks easily to improve performance. In the remainder of
this paper, we present the results of object detection using the proposed method,
and we analyze critical elements of the method and discuss directions for future
research.

2 Related Work

The lack of datasets in low-light situations has been discussed by researchers.
In this section, we review previous research on low-light datasets. Our proposal
uses the technique of knowledge distillation, and various methods related to
knowledge distillation have been extensively studied in the literature. Hence, we
also provide a short review of proposed approaches to knowledge distillation.
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Dark image dataset After [2] was presented, [8] discussed datasets for low-
light situations. The authors created the Exclusively Dark (ExDark) dataset for
research on low-light visual tasks. They found that noise is a notable compo-
nent in low-light images that affects training. Their results also indicate that
denoising improves the edge features of objects, but increases artifacts in the
image. The authors also compared features learned by Resnet-50 in bright and
low-light images. They initially believed that training data normalization and
the progression of data through the layers of a Convolutional Neural Network
(CNN) toward high-level abstraction should normalize the data and cause the
brightnesses of high- and low-light data to be disregarded because brightness is
not a crucial feature for the classification of objects. However, the results of the
evaluation indicate that the high- and low-light features are different in the t-
SNE embedding space. This result indicates that a model for low-light situations
should be trained by an appropriate dataset.

The ExDark low-light dataset is much smaller than the COCO dataset and is
too small to create training data for visual tasks in general. However, we refer to
this research to compare it with the approach of artificially making each image
in the COCO data dataset darker.

Inverse mapping Inverse mapping is a method for image-to-image translation
and its aim is to find a mapping between a source (A) and target (B). AEGAN
[9] is a well-known approach to obtaining an inverse generator using an AutoEn-
coder based on generative adversarial nets. Like AutoEncoder, AEGAN contains
an inverse generator (IG) and generator (G) and generates image x′ from orig-
inal image x in image domain A via latent space vector z′. The IG compresses
a generated image x into a latent space vector z′ and G reconstructs the z′ into
a new image x′. AEGAN minimizes the difference between generated image x
and reconstructed image x′. This structure produces latent space vector z′ to
represent image-to-image translation.

Invertible AutoEncoder (InvAuto) [14] is another method for image-to-image
translation. The translators FAB (A to B) and FBA (B to A) share InvAuto as
part of the encoder (E) and decoder (D). This method is used to convert between
the features corresponding to two different image domains (A and B). Encoder
E realizes an inversion of decoder D (and vice versa) and shares parameters with
D. This introduces a strong correlation between the two translators.

We use a concept similar to that of AEGAN to create a generative model,
as described in Section 3.2.

Hints for knowledge distillation The use of hint information in teacher
networks is a well-known approach in knowledge distillation. FitNet [12] is a
popular method that uses hint information for model compression. This method
chooses hidden layers in the teacher network as hint layers and chooses guided
layers in the student network corresponding to the hidden layers. The parameters
of the guided layers are optimized by a loss function (e.g., L2 loss) that measures
the difference between the outputs of the hint layers and guided layers.
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The optimization method for object detection proposed in [3] also uses hint
information; this method chooses hint and guided layers and defines the L2 loss
as an optimization target. It also refers to the prediction result (the classification
and bounding boxes of objects) of a teacher network as a soft target.

We use guided layers during the training, as described in Section 3.3.

3 Proposed model: YOLO in the Dark

3.1 Overview

Figure 2 shows an overview of our method, which merges two models trained in
different domains (A and B). The model for domain A predicts data Y a from
data X. The other model for domain B predicts data Z from data Y b. Data Y a
and Y b are assumed to be the same data type. For example, model A predicts
an RGB image from a RAW image, and the model B predict an object class
and location from the RGB image. After training both models A and B, this
method extracts model fragments with the boundaries of the latent features A
and B. The new model is composed of fragments of models A and B, which are
combined through a glue layer.

Domain A+B

Domain A Domain B

Latent feature A Latent feature B

Latent feature A Latent feature B

Data
X

Data
Ya

Data
Yb

Data
Z

Data
X

Data
Z

Domain A : train by RAW image with annotation based on RGB image

Domain B : train by RGB image with annotation (object label, bounding boxes)

Glue layer

Fig. 2. Our method of domain adaptation, which merges two models trained in different
domains A and B.

This glue layer helps transform latent feature A to latent feature B in each
model fragment. The SID model performs well on low-light images [2], so we
use the SID model for model A. We also use the object detection model YOLO
[10][11] for model B.

3.2 Generative model for domain adaptation

Training the glue layer requires additional data for domain A + B; however,
creating a dataset requires considerable effort. Our method defines a generative
model for training the glue layer using knowledge distillation.
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Fig. 3. Scheme for knowledge distillation. The red part G2e is the student model.

Figure 3 illustrates the scheme of knowledge distillation for the generative
model. The generative model outputs the latent features of A from data Y a,
as described in Fig. 2. The SID model is an encoder–decoder structure, so the
generative model is the inverse function of the decoder. In Fig. 3, encoder–
decoder G1e-G1d is a teacher model and train student model G2e by feeding
RAW and RGB image pair from the SID dataset and SID model G1e-G1d.

This training uses the loss between RGB data and “fake” RGB data recon-
structed via the G2e-G1d combination, expressed as follows:

LRGB = ‖RGBdata −RGBfake‖1 (1)

The training also uses another loss between the latent features LF from G2e
and latent features from G1e, as follows:

LLF =
∑
i

‖LF i
G2e − LF i

G1e‖1, (2)

where i is the index number of the layers starting from the outputs of each
encoder (G2e or G1e).

These two loss functions help define G2e as the inverse function of G1d, and
the total loss function is as follows:

Ltotal = LRGB + LLF . (3)

Figure 4 shows the structure of the glue layer for the latent features of the
SID encoder. Figure 4 (a) is the SID network structure. As explained in [2],
the SID network is based on U-net [13], which is composed of an encoder and
a decoder. The encoder extract features using convolution and pooling layers.
The pooling layer behaves as a low-pass filter for spatial frequency so that the
features contain different frequency information as a result of each pooling layer.
The SID Encoder has four levels of features corresponding to the pooling scales
1/1, 1/2, 1/4, and 1/8. Each layer in the encoder feeds the latent features to
the corresponding layers in the decoder. The glue layer must be sufficiently
expressive with respect to frequency information for the subsequent network
(i.e., the object detection network).
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RAW RGB

conv

+pool

(upsample)

+concat
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shortcut

RAW Latent
feature B
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+pool

shortcut

pool
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+batch_norm

Encoder(=G1e) Decoder(=G1d) Encoder(=G1e) Glue layer

(a) SID network structure (b) SID Encoder + Glue layer

Fig. 4. Structure of the glue layer. (a) SID network structure. (b) Glue layer structure
after the SID encoder.

Figure 5 shows the reconstructed RGB images using the latent features of
the SID encoder. Figure 5 (a) illustrates images reconstructed using all features.
The images have a Peak Signal-to-Noise Ratio (PSNR) of 31.81 and Structural
Similarity (SSIM) of 0.752 with respect to the original images. Figures 5 (b),
(c), and (d) are images reconstructed using fewer features, which removes high
spatial frequency information. The quality of these images is worse than that of
Fig. 5 (a). To detect objects, the detailed shape of the object must be identified,
so we decided to use all latent features for the glue layer.

(a) 1/1 + 1/2 + 1/4 + 1/8

(PSNR/SSIM=31.81/0.752)

(b) 1/2 + 1/4  + 1/8

(PSNR/SSIM=25.92/0.637)

(c) 1/4  + 1/8

(PSNR/SSIM=26.30/0.664)

(d) 1/8

(PSNR/SSIM=27.31/0.696)

Fig. 5. Reconstruction using latent features, with the quality metrics (PSNR/SSIM) to
original images. Reconstruct results using (a) 1/8-, 1/4-, 1/2-, and 1/1-scale features,
(b) 1/8-, 1/4-, and 1/2-scale features, (c) 1/8- and 1/4-scale features, and (d) 1/8-scale
features.

Figure 4 (b) shows the glue layer structure following the SID encoder. The
glue layer is composed of pooling, concatenation, convolution, and batch nor-
malization. The pooling and concatenate functions help gather latent features.
The convolution and batch normalization functions help convert a new latent
feature for domain B.
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The knowledge in the generative model is distilled, as described in Fig. 3,
according to the structure of the glue layer. Figure 6 shows the RGB images
reconstructed using the distilled knowledge. The RGB images from the G2e-
G1d combination in Fig. 6(b) and the RGB images generated by the SID model
in Fig. 6(a) seem similar. The SID-model generated RGB images have a PSNR
of 30.18 and SSIM of 0.917 with respect to the “fake” RGB images. These
values indicate good image similarity, so we conclude that the behavior of G2e
is sufficiently similar to that of the inverse function of G1d.

We also fine-tune the G2e to improve the transformation of latent feature
A to latent feature B in each model fragment. We focused on the result of the
classifier network in the YOLO model to optimize the generative model. Accord-
ing to [10], the YOLO model contains a classifier network at the beginning of
the network itself. This classifier network learns the feature map for processing
in the succeeding detection network so it should effectively optimize the gener-
ative model corresponding to the SID dataset. We use cosine similarity as the
finetuning loss LG2e−FT between the results of the classifier network via G2e
(LFG2e−cls) and the original YOLO (LFY OLO−cls) as follows:

LG2e−FT = cos(
−−−−−−−→
LFG2e−cls,

−−−−−−−−−→
LFY OLO−cls), (4)

where
−−−−−−−→
LFG2e−cls and

−−−−−−−−−→
LFY OLO−cls are vectors reshaped from the feature tensors

of the classifier networks. In addition, LFG2e−cls and LFY OLO−cls are described
in Fig. 7.

(a) RGB image generated by 

“Learning to See in the Dark”

(b) RGB image reconstructed from 

latent feature of Encoder (G2e)

Fig. 6. Reconstructed RGB images. (a) Image generated by the SID model, which is
equivalent to G1e-G1d. (b) Image generated by G2e-G1d.

3.3 Training environment

Figure 7 shows the training environment for the proposed YOLO-in-the-Dark
model A+B. Figure 7(a) shows a complete view of the environment, where the
dotted boundary shows the parts used for training the new model. The glue
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layer is the target of training, which uses the RGB data via the encoder G2e
generated by knowledge distillation. The training environment uses the original
YOLO model, which uses the same RGB data as G2e. We use the COCO dataset
[7] for training.

(b) Validation

(c) Prediction

Path to activate: RGB to Result

Path to activate: RAW to Result

COCO dataset RGB

YOLO in the Dark
w/o G1e

SID dataset RAW YOLO in the Dark
w/ G1e

Result
(boxes)

Result
(boxes)

(a) Training

COCO dataset

Domain A+B

boundary

for training

RGB

COCO dataset

RGB

Latent feature B’ (LFYOLO)

Original YOLO

Losses (LYOLO)

- Objectness
- Coordinate
- Class

See In the Dark
(SID) dataset

RAW

G2e
Encoder

COCO annotation
(hard target)

Loss (LYOLO-LF)

Glue layer

Latent feature B (LFglue)

YOLO in the Dark

Latent feature A

G1e from SID

LFG2e-cls

LFYOLO-cls

Fig. 7. Training environment of the YOLO-in-the-Dark model. (a) Complete view of
the environment. (b) Validation behavior using the RGB data for inference. (c) Pre-
diction behavior using the RAW data for inference.

During the training phase, the glue layer is optimized according to the loss
functions. The first loss function uses the annotation (object coordinates and
class) of the dataset, which is the same as in the original YOLO scheme [11].

The other loss function is based on a latent feature in the original YOLO
model, which is the L2 loss between latent feature B in the YOLO-in-the-Dark
model and the latent feature B′ in the original YOLO, expressed as follows:

LY OLO−LF = ‖LF glue − LFY OLO‖2. (5)

Loss LY OLO−LF works as a regularization term so that the total loss uses
the second loss with a coefficient as follows:

Ltotal = LY OLO + λLY OLO−LF , (6)

where LY OLO is the same as the loss function used in the original YOLO scheme
[11].

Figure 7(b) shows the dataflow during validation. The validation uses the
same path as training, which uses the RGB data and evaluates enough samples
from the dataset to confirm the glue layer is behaving correctly. Figure 7(c)
shows the dataflow during prediction. The prediction uses the other path, using
the RAW data via the encoder G1e transferred from the SID model. This stage
is for evaluating the proposed YOLO-in-the-Dark model, which will improve
object detection in short-exposure RAW images.
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4 Experiments

4.1 Object detection in RAW images

Figure 8 shows the object detection results for the SID dataset. Figure 8 (a)
is the result obtained by the original YOLO model, which used a brightness
enhanced RGB image. The brightness enhancement of the RGB image makes
it easier for the original YOLO model to detect objects. The original YOLO
model detects the objects in image a1 well. However, this model cannot detect
the objects in image a2. This is because the brightness enhancement adds noise
and affects the inference. Our proposed YOLO-in-the-Dark model detects the
objects in the RAW images directly. The detection results are shown in images b1
and b2. Images c1 and c2 are the baseline detection results in which the original
YOLO model uses the SID ground truth (long-exposure) image. In image b1,
the proposed model performs as well as the original YOLO model (image a1).
In addition, the proposed model can detect objects in image b2.

(a) Original YOLO model,

refer to post-processed

RGB image.

(b) Our work,

refer to RAW image.

(boxes on input image)

(c) Original YOLO Baseline,

refer to SID ground truth

(long-exposure) image.

[a1] [b1] [c1]

[a2] [b2] [c2]

Fig. 8. Detection results. (a) Results of the original YOLO model on a brightness
enhanced RGB image. (b) Results of our proposed model on a RAW image. (c) Baseline
detection results of the original YOLO model on a long-exposure image.

The SID dataset [2]contains both indoor and outdoor images, and the illumi-
nance at the camera in the indoor scenes is between 0.03 lux and 0.3 lux. Hence,
the results for image b2 indicate that the YOLO-in-the-Dark model can handle
scenes illuminated by less than 1 lux.

As explained in Section 1, the YOLO-in-the-Dark model uses the encoder in
SID at the front end to process RAW images. The new model creates a latent
feature using the SID encoder, which processes the low-light image and outputs
the results to the back end of the YOLO model via the glue layer. This improves
object detection performance in low-light situations.



10 Y. Sasagawa et al.

We also evaluated other images in the SID dataset. Figure 9 shows the pre-
diction results (F-measure) using the SID dataset categorized by the size of the
bounding boxes. We created annotation data for this evaluation by detecting
objects from reference images using the original YOLO model. The reference
images were captured under a long exposure so that the original YOLO could
detect the objects easily. We used these detection results as the ground truth for
this evaluation.

Figure 9 shows the results for the original YOLO model, which detected ob-
jects in brightness-enhanced RGB images. Figure 9 also shows the YOLO model
trained by the dark COCO dataset, in which the brightness was scaled to em-
ulate low-light situations. This trained YOLO performs worse than the original
YOLO model. Previous work [8] has found that noise is a notable component
in low-light images, and it hence affects training. The study [8] also found that
denoising improves the edge features of the objects but increases the artifacts.
SID [2] should hence be a good solution to this problem. In addition, Figure 9
shows the results for the YOLO-in-the-Dark model. The F-measure is better for
all sizes of bounding box than those of the first two models. The mAP (at an
Intersection over Union (IOU) threshold of 50%) improved by 2.1 times (0.26→
0.55) compared with the original YOLO model. The latent features defined in
Section 3.2 seem to be sufficient to detect any size of object, and the distillation
of knowledge by the generative model has been successful.

Finally, Figure 9 shows the results for the SID+YOLO model, which is a sim-
ple combination of SID and YOLO (the naive approach). Like the YOLO-in-the-
Dark model, the naive approach uses RAW images, but it generates an RGB im-
age using SID. The YOLO-in-the-Dark model reuses parameters of both SID and
YOLO so that it ideally should achieve the same performance as the SID+YOLO
model. Figure 9 instead indicates that the YOLO-in-the-Dark model has a per-
formance that is close but not equal to that of the SID+YOLO model. We
finetuned both the glue layer and the generative model to improve the transfor-
mation of latent feature A to latent feature B in each model fragment. Figure 9
also shows the results for the YOLO-in-the-Dark model without the finetuning.
We discuss this point in Section 4.2.

We also evaluated the detection performance in low-light situations. The SID
dataset does not cover various levels of illuminance, so we collected additional
indoor images that contain objects (e.g., cars, fruit, and animals). Each image
was captured using the same camera settings (f/5.6 and ISO-6400). Both the
original YOLO model and the proposed YOLO-in-the-Dark model can detect
objects at an illuminance of 0.055 lux with similar exposure times (case (a)).
In contrast, the original YOLO model requires a longer exposure time (810 ms)
when the illuminance is 0.013 lux (case (b)). The YOLO-in-the-Dark model
still detects objects even when the exposure time is shorter (810 → 333 ms).
The minimum exposure time indicates the sensitivity in low-light situations.
According to the result of case (b), the YOLO-in-the-Dark model can reduce
exposure time by a factor of 0.4; this means that the sensitivity is improved by
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Fig. 9. Prediction results (F-measure) using the SID dataset for the original YOLO
model, the YOLO model trained by dark COCO, the YOLO-in-the-Dark model, the
SID+YOLO model, and the YOLO-in-the-Dark model without finetuning the genera-
tive model.

2.4 times when compared with the sensitivity of the original YOLO model using
brightness-enhanced RGB images.

4.2 Ablation study

As explained in Section 3.2 and 3.3, the training environment of the YOLO-in-
the-Dark model uses the COCO dataset with the generative model trained by
the SID dataset. Our method supposes that the encoder G2e outputs the latent
feature A from the COCO dataset, which emulates the relationship between a
pair of RAW and RGB images in the SID dataset. In this section, we describe a
sequence of controlled experiments that evaluate the effect of different elements
in the training environment.

Input images Figure 10(a) shows the histograms of the average image in both
the COCO and SID datasets. Images in the SID dataset tend to have low pixel
levels; this is because of the low-light situations. The distribution of pixel levels
for the images in the COCO dataset differs from that of the SID dataset, and
this difference might affect encoder G2e.

We evaluate the training with different preprocessing parameters (gamma
correction) for the input images. Figure 10(b) shows the histograms of the aver-
age image in the COCO dataset with gamma correction. A large gamma leads to
low pixel levels, as in the SID dataset. Figure 11 reports the results for different
levels of gamma correction of 0.67, 1.25, and 1.5.

The histograms of the preprocessed COCO dataset show that gamma cor-
rection with a value of 1.25 or 1.5 causes the histogram to become close to the
histogram of the SID dataset. Hence, gamma correction of the training images
should improve the results of the model. When gamma is 0.67, Fig. 11 shows
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Fig. 10. Histograms of average dataset images. (a) Histograms for the average image
of each dataset and (b) histograms after each image has been gamma corrected.

that the mAP slightly degrades (0.37 → 0.36). When gamma is 1.25, the mAP
improves (0.37 → 0.40), and when 1.5, the mAP does not change.

These results show that gamma correction can mitigate the effects due to
differences in the datasets. However, the model is sensitive to the value of gamma,
and this leads to side effects. Our evaluation indicates that the gamma correction
requires fine adjustment corresponding to the histogram of pixel levels in the
dataset.
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Fig. 11. Detection results (mAP) corresponding to the level of gamma correction in
the training images.

Data augmentation Data augmentation is an effective way to improve the
generalization of the model [6]. We also evaluate the effect of the data augmen-
tation as well as gamma correction for input images.

Table 1 reports the case in which the data has been augmented by changing
brightness and contrast. This approach randomly changes the brightness and
contrast by 10% of the maximum pixel levels in each image. The mAP slightly
degrades (0.37→ 0.35) compared with the default condition (no augmentation).
According to previous reports, that found that the results are sensitive to the
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value of gamma, data augmentation may have a negative effect on this training.
The proposed method reuses the pre-trained model, which had been generalized
well. Hence, it needs generalization only for the glue layer. As a result, data
augmentation does not seem effective for this method.

Table 1. Results for data augmentation conditions (mAP).

Condition mAP@IOU=50

Default dataset processing
(No augumentation) 0.37

Contrast/brightness augmentation 0.35

Finetuning the generative model As described in Section 3.2, we finetune
the generative model to improve the training of the glue layer. We use the fine-
tuning loss function LG2e−FT between the results of the classifier network via
G2e (LFG2e−cls) and the original YOLO (LFY OLO−cls), as described in Fig. 7.
This finetuning optimizes G2e with respect to both features LFG2e−cls and
LFY OLO−cls so that the optimized G2e can output a better latent feature A.
This helps optimize the glue layer. Table 2 reports the LG2e−FT and mAP, cor-
responding to the cases (c) and (e) in Figure 9. The result shows that finetuning
the generative model substantially improves the mAP with a lower cosine simi-
larity.

Table 2. Results for G2e finetuning LG2e−FT and mAP under each condition.

Condition LG2e−FT mAP@IOU=50

Default dataset processing
(not finetuned) 0.21 0.37

G2e finetuned 0.15 0.55

Computing resources The other contribution of this method is that it reduces
the amount of computing resources required. Table 3 compares the resources
used by the proposed method and the SID+YOLO model (MAC operations)
to process an 832 × 832 RAW image created by resampling from the original
RAW image (4,240 × 2,832). Our method can omit the SID encoder by merging
models via latent features. The SID decoder is computationally costly (192.63
GMACs), so the glue layer reduces the total amount of computational resources
needed.
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Table 3. Comparison of the computing resources used by the proposed and naive
approaches (on a 832 × 832 RAW image).

Processing category
MAC operations [GMACs]
SID+YOLO Our work

SID Encoder 45.45 45.45
SID Decoder 192.63 N/A
Glue Layer N/A 36.68

YOLO 32.71 31.77

Total 270.79 113.90

5 Conclusion

We proposed a method of domain adaptation for merging multiple models that
is less effort than creating an additional dataset. This method merges models
pre-trained in different domains using glue layers and a generative model, which
outputs latent features to train the glue layers without the need for an addi-
tional dataset. We also propose a generative model that is created by knowledge
distillation from the pre-trained models. It also enables datasets to be reused to
create latent features for training the glue layers.

The proposed YOLO-in-the-Dark model, which is a combination of the YOLO
model and SID model, is able to detect objects in low-light situations. Our evalu-
ation result indicates that the YOLO-in-the-Dark model can work in scenes illu-
minated by less than 1 lux. The proposed model is also 2.4 times more sensitive
than the original YOLO model at 0.013 lux. Simply combining SID and YOLO
(the naive approach) also improves object detection in low-light situations, and
this naive approach demonstrates the ideal performance of the YOLO-in-the-
Dark model. The performance of our model still needs to be improved so it is
closer to this ideal. We also presented an evaluation of the YOLO-in-the-Dark
model under various conditions. Preprocessing training input images and fine-
tuning the generative model are effective in improving the optimization of the
glue layer.

The other contribution of this method is the reduction in computing re-
sources. In contrast to the naive approach, our method can omit the SID de-
coder by merging models via latent features. The SID decoder is computation-
ally expensive (192.63 GMACs), so the glue layer can reduce the total amount
of computational resources required.

In future work, we plan to apply this method to other tasks including multi-
modal tasks. We hope that this method can be applied to various models using
public datasets. It will extend the functionalities of models more efficiently.
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