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Fig. 1. Lifelong learning of image-conditioned generation. The goal of lifelong
learning is to build a model capable of adapting to tasks that are encountered se-
quentially. Traditional fine-tuning methods are susceptible to catastrophic forgetting:
when we add new tasks, the network forgets how to perform previous tasks (Figure 1
(b)). Storing a separate model for each task addresses catastrophic forgetting in an
inefficient way as each set of parameters is only useful for a single task (Figure 1 (c)).
Our Piggyback GAN achieves image-conditioned generation with high image quality
on par with separate models at a lower parameter cost by efficiently utilizing stored
parameters (Figure 1 (d)).

Abstract. Humans accumulate knowledge in a lifelong fashion. Modern
deep neural networks, on the other hand, are susceptible to catastrophic
forgetting: when adapted to perform new tasks, they often fail to pre-
serve their performance on previously learned tasks. Given a sequence of
tasks, a naive approach addressing catastrophic forgetting is to train a
separate standalone model for each task, which scales the total number
of parameters drastically without efficiently utilizing previous models. In
contrast, we propose a parameter efficient framework, Piggyback GAN,
which learns the current task by building a set of convolutional and de-
convolutional filters that are factorized into filters of the models trained
on previous tasks. For the current task, our model achieves high gen-
eration quality on par with a standalone model at a lower number of
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parameters. For previous tasks, our model can also preserve generation
quality since the filters for previous tasks are not altered. We validate
Piggyback GAN on various image-conditioned generation tasks across
different domains, and provide qualitative and quantitative results to
show that the proposed approach can address catastrophic forgetting
effectively and efficiently.

Keywords: Lifelong Learning, Generative Adversarial Networks.

1 Introduction

Humans are lifelong learners: in order to function effectively day-to-day, we ac-
quire and accumulate knowledge throughout our lives. The accumulated knowl-
edge makes us efficient and versatile when we encounter new tasks. In contrast
to human learning, modern neural network based learning algorithms usually
fail to remember knowledge acquired from previous tasks when adapting to a
new task (see Figure 1 (b)). In other words, it is difficult to generalize once a
model is trained on a task. This is the well-known phenomenon of catastrophic
forgetting [25]. Recent efforts [32, 20, 6, 2] have demonstrated how discriminative
models can continually learn a sequence of tasks. Despite the success of these
efforts for discriminative models, lifelong learning for generative models remains
a challenging and under-explored area.

Lifelong learning methods for discriminative models cannot be directly ap-
plied to generative models due to their intrinsic differences. First, it is well known
that in classification tasks, the intermediate convolutional layers in deep neural
networks are capable of providing generic features. These features can easily
be reused by other models with varying and different classification goals. For
generative models, the possibility of such reuse for new generative tasks has not
been previously explored, to the best of our knowledge. Second, different from
discriminative models, the output space of generative models is usually continu-
ous, making it more challenging for the model to maintain the generation quality
along the training of a sequence of tasks. Third, there could be conflicts between
tasks under the generative setting. For discriminative models, it rarely happens
that one image has different labels (appears in different tasks). However, for
generative models, it is quite common that we want to translate the same image
to different domains for different tasks [14, 11, 44, 8].

One of the naive approaches to address catastrophic forgetting for gener-
ative models is to train a model for each task separately (see Figure 1 (c)).
Unfortunately, this approach is not scalable in general: as new tasks are added,
the storage requirements grow drastically. More importantly, setting the trained
model aside without exploiting the benefit it can potentially provide facing a
new task would be an inefficient use of resources. Recent works [42, 37] have
shown promising results on lifelong learning for generative models, but it is also
revealed that image quality degradation and artifacts transfer from old to new
tasks are inevitable. Therefore, it is valuable to have a continual learning frame-
work designed that (1) is more parameter efficient, (2) preserves the generation
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quality of both current and previously learned tasks, and (3) can enable various
conditional generation tasks across different domains.

In this paper, we introduce a generic continual learning framework Piggy-
back GAN that can perform various conditional image generation tasks across
different domains (see Figure 1 (d)). The proposed approach addresses the catas-
trophic forgetting problem in generative continual learning models. Specifically,
Piggyback GAN maintains a filter bank, the filters in which come from convo-
lution and deconvolution layers of models trained on previous tasks. Facing a
new task, Piggyback GAN learns to perform this task by reusing the filters in
the filter bank by building a set of piggyback filters which are factorized into
filters from the filter bank. Piggyback GAN also maintains a small portion of
unconstrained filters for each task to ensure high-quality generation. Once the
new task is learned, the unconstrained filters are appended to the filter bank to
facilitate the training of subsequent tasks. Since the filters for the old task have
not been altered, Piggyback GAN is capable of keeping the exact knowledge of
previous tasks without forgetting any details.

To summarize, our contributions are as follows. We propose a continual learn-
ing framework for conditional image generation that is (1) efficient, learning to
perform a new task by “piggybacking” on models trained on previous tasks and
reusing the filters from previous models, (2) quality-preserving, maintaining the
generation quality of current task and ensuring no quality degradation for previ-
ous tasks while saving more parameters, and (3) generic, enabling various con-
ditional generation tasks across different domains. To the best of our knowledge,
we are the first to make these contributions for generative continual learning
models. We validate the effectiveness of our approach under two settings: (1)
paired image-conditioned generation, and (2) unpaired image-conditioned gen-
eration. Extensive qualitative and quantitative comparisons with state-of-the-art
models are carried out to illustrate the capability and efficiency of our proposed
framework to learn new generation tasks without the catastrophic forgetting of
previous tasks.

2 Related Work

Our work intersects two previously disjoint lines of research: lifelong learning of
generative models, and parameter-efficient network learning.

Lifelong learning of generative models. For discriminative tasks, e.g.
classification, many works have been proposed recently for solving the problem
of catastrophic forgetting. Knowledge distillation based approaches [32, 20, 4]
work by minimizing the discrepancy between the output of the old and new
network. Regularization-based approaches [19, 5, 2, 6, 22] regularize the network
parameters when learning new tasks. Task-based approaches [31, 3, 28] adopt
task-specific modules to learn each task.

For generative tasks, lifelong learning is an underexplored area and relatively
less work studies the problem of catastrophic forgetting. Continual generative
modeling was first introduced by Seff et al. [30], which incorporated the idea of
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Elastic Weight Consolidation (EWC) [19] into the lifelong learning for GANs.
The idea of memory replay, in which images generated from a model trained
on previous tasks are combined with the training images for the current task
to allow for training of multiple tasks, is well explored by Wu et al. [37] for
label-conditioned image generation. However, this approach is limited to label-
conditioned image generation and is not applicable for image-conditioned image
generation since no ground-truth conditional inputs of previous tasks are pro-
vided. EWC [19] has been adapted from classification tasks to generative tasks
of label-conditioned image generation [30, 37], but they present limited capabil-
ity in both remembering previous tasks and generating realistic images. Lifelong
GAN [42] is a generic knowledge-distillation based approach for conditioned
image generation in lifelong learning. However, the image quality of generated
images of previous tasks keeps decreasing when new tasks are learned. Moreover,
all approaches mentioned above fail in the scenario when there are conflicts in
the input-output space across tasks. To the best of our knowledge, Piggyback
GAN is the first method that can preserve the generation quality of previous
tasks, and enables various conditional generation tasks across different domains.

Parameter-efficient network learning. In recent years, there has been
increasing interest in better aligning the resource consumption of neural net-
works with the computational constraints of the platforms on which they will
be deployed [7, 36, 38]. One important avenue of active research is parameter
efficiency. Trained neural networks are typically highly over-parameterized [10].
There are many effective strategies for improving the parameter efficiency of
trained networks: for example, pruning algorithms learn to remove redundant
or less important parameters [12, 40], and quantization algorithms learn to rep-
resent parameters using fewer bits while maintaining task performance [15, 17,
43]. Parameter efficiency can also be encouraged during training via architec-
ture design [23, 29], sparsity inducing priors [33], resource re-allocation [26], or
knowledge distillation from a teacher network [34, 41]. Our work is orthogonal
to these methods, which may be applied on top of Piggyback GAN.

The focus of this work is parameter-efficient lifelong learning: we aim to lever-
age weight reuse and adaptation to improve parameter efficiency when extending
a trained network to new tasks, while avoiding the catastrophic forgetting of pre-
vious tasks. Several approaches have been explored for parameter-efficient life-
long learning in a discriminative setting. For example, progressive networks [28]
train a new network for each task and transfer knowledge from previous tasks
by learning lateral connections, a linear combination of layer activations from
previous tasks is computed and added to the inputs to the corresponding layer
of the new task. While our approach computes a linear combination of filters to
construct new filters and uses them the same as normal filters. Rebuffi et al. [27]
aims to train a universal vector that are shared among all domains providing
generic filters for all domains, and task-specific adapter modules are added to
adjust the trained network to new tasks. While we are working on solving a se-
quence of tasks, the filters trained for the initial task are hardly generic enough
for later tasks. Inspired by binary neural networks, Mallya et al. [24] introduced
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the piggyback masking method (which inspired the naming of Piggyback GAN).
This method learns a binary mask over the network parameters for each new
task. Tasks share the same backbone parameters but differ in the parameters
that are enabled. Multi-task attention networks [21] learn soft attention modules
for each new task. Task-specific features are obtained by scaling features with an
input-dependent soft attention mask. To the best of our knowledge, Piggyback
GAN is the first method for parameter-efficient lifelong learning in a generative
setting.

3 Method
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Fig. 2. Overview of Piggyback GAN. Piggyback GAN maintains a filter bank for
composing convolutional filters to be used for the next task. Given a new task, most
filters in the model are trained as piggyback filters that are factorized into filters in the
filter bank. The remaining small portion of filters are learned without constraints and
appended to the filter bank to benefit the training of subsequent tasks.

In this paper, we study the problem of lifelong learning for generative models.
The overall goal is to learn the model for a given sequence of generation tasks
{Ti}Ni=1 under the assumption that the learning process has access to only one
task at a time and training data for each task is accessible only once.

Assume that we have a learnt model M trained to perform the first task
T1. To proceed with the new task T2, one naive approach is to adapt the learnt
model M to the new task by fine-tuning its parameters. This approach suffers
from the problem of catastrophic forgetting of task T1. Another naive approach
is to learn a separate standalone model Mi for each new task Ti and store all
learnt models {Mi}Ni=1, which drastically scales up total number of parameters
without utilizing previous models.

The key idea of this paper is to build a parameter efficient lifelong generative
model by “piggybacking” on existing models and reusing the filters from models
trained on previous tasks while maintaining the generation quality to be similar
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to a single standalone model for all tasks. We achieve this by maintaining a filter
bank, and compose the filters for new tasks mostly by factorizing it into filters
in the filter bank, with a small portion of filters learnt without constraints. Once
the new task is learnt, the filter bank is expanded by adding those unconstrained
filters.

3.1 Piggyback Filter Learning

For lifelong learning of generative models, given an initial task T1 and an up-
coming new task T2, there could be cases where T1 and T2 share similar inputs
but different outputs, e.g. T1 is Photo → Monet Paintings and T2 is Photo →
Ukiyo-e Paintings. These conflicts in input-output space do not occur when each
task is trained separately. However, as already mentioned, learning a separate
model for each task and storing all learnt models is memory consuming and does
not utilize previous models.

For this scenario, the knowledge in the filters from the model trained for T1

could provide valuable information for the training of T2. For images from do-
mains that are less visually similar, it is well known that in discriminative tasks,
the generaliziblity of convolutional neural networks helps maintain its capability
in previously unseen domains [24, 27]. Such evidence suggests that despite the
difference in fine details, certain general patterns that convey semantics could
still be covered in previous filter space. Inspired by these observations, we pro-
pose to utilize previously trained filters to facilitate the training of new tasks.
In our experiments, we do find that previous filters make steady contribution to
learning new tasks regardless of the domain difference across tasks.

Consider a generator network G1 learnt for initial task T1 consisting of L
layers of filters {F ℓ

1}Lℓ=1 where ℓ denotes the index of layers. For the ℓth layer, let
the kernel size be sℓw×sℓh, number of input channels be cℓin and number of output
channels be cℓout. Then F ℓ

1 is reshaped from 4D into 2D of size sℓw × sℓh × cℓin by
cℓout, which we denote by R(F ℓ

1 ). For the upcoming task T2, we learn the filters
F ℓ
2 through factorization operation over filters of the corresponding layers in task

T1, namely

F ℓ
2 = R−1(R(F ℓ

1 )⊗W ℓ
2 ), (1)

where ⊗ denotes the standard matrix multiplication operation and R−1 de-
notes the inverse of reshape operation from 2D back to 4D. The derived fil-
ters F ℓ

2 is denoted as piggyback filters and the corresponding learnable weights
W ℓ

2 ∈ Rcℓout×cℓout is denoted as piggyback weight matrix. The resulting F ℓ
2 ∈

Rsℓw×sℓh×cℓin×cℓout is of the same size as F ℓ
1 . A bias term could be added to the

factorized filters to adjust the final output.
Therefore, by constructing factorized filters, the number of parameters re-

quired to be learnt for this layer is reduced from sℓw × sℓh × cℓin × cℓout to only
cℓout × cℓout.
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3.2 Unconstrained Filter Learning

Parameterizing a new task completely by making use of filters in the initial tasks,
though saving substantial storage, cannot capture the key differences between
tasks. The filters derived from previous tasks may only characterize certain at-
tributes and may not generalize well to the new task, resulting in poor quality of
generation details for the new model. Learning a small number of unconstrained
filters gives the model greater flexibility in adapting to the new task. Moreover,
learning these unconstrained filters could learn to generate patterns that do not
exist in previous tasks, thereby, increasing the power of the model and helping
the training of later tasks.

Specifically, for each layer in the generator, we allocate a small portion of
unconstrained filters which are learned freely without the constraint to be con-
structed from previous filters. With a total of cℓout filters in F ℓ

2 , consider the
proportion of unconstrained filters to be λ (0 < λ ≤ 1)3, then we have λcℓout
unconstrained filters and (1− λ)cℓout piggyback filters, and the size of piggyback
weight matrix W ℓ

2 has changed to cℓout× (1−λ)cℓout. Let the unconstrained filters
at the lth layer of the nth task Tn be Fu,ℓ

n , and piggyback filters at the lth layer
of the nth task Tn be F p,ℓ

n .
For task T1, all filters are unconstrained filters, namely

F ℓ
1 = Fu,ℓ

1 . (2)

For task T2, we re-define the filters in F 2
l to be the concatenations of uncon-

strained filters Fu,ℓ
2 and piggyback filters F p,ℓ

2 , namely F ℓ
2 is formulated as

F ℓ
2 = [Fu,ℓ

2 , F p,ℓ
2 ]

= [Fu,ℓ
2 ,R−1(R(Fu,ℓ

1 )⊗W ℓ
2 )],

(3)

where Fu,ℓ
2 ∈ Rsℓw×sℓh×cℓin×λcℓout , F p,ℓ

2 ∈ Rsℓw×sℓh×cℓin×(1−λ)cℓout and the resulting
F ℓ
2 ∈ Rsℓw×sℓh×cℓin×cℓout is of the same size as F ℓ

1 .

3.3 Expanding Filter Bank

The introduction of unconstrained filters learnt from task T2 brings extra storage
requirement and it would be a waste if we set it aside when learning the filters
for the upcoming new tasks. Therefore, instead of setting it aside, we construct
the piggyback filters for task T3 by making use of the unconstrained filters from
both T1 and T2.

We refer to the full set of unconstrained filters as the filter bank which will
be expanded every time new unconstrained filters are learnt for a new task.
Expanding the filter bank could encode more diverse patterns that were not
3 λcℓout could be rounded to the nearest integer. Or λ could be chosen to make λcℓout

an integer.
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captured or did not exist in previous tasks. By doing so, the model increases
the modality of the learned filters and provides more useful information for the
subsequent tasks.

When learning the task T3, the filter bank comprises filters corresponding to
the task T1 and T2 and is given by Fu,ℓ

1 and Fu,ℓ
2 , resulting in the size of the filter

bank sℓw×sℓh× cℓin× (1+λ)cℓout. Similarly, for task T3 consider the proportion of
unconstrained filters to be same as T2, i.e. λ, the size of piggyback weight matrix
W ℓ

3 would be (1+ λ)cℓout × (1− λ)cℓout. We construct F ℓ
3 as the concatenation of

unconstrained filters Fu,ℓ
3 and piggyback filters F p,ℓ

3 that are constructed from
all filters in the filter bank, namely F ℓ

3 is formulated as

F ℓ
3 = [Fu,ℓ

3 , F p,ℓ
3 ]

= [Fu,ℓ
3 ,R−1(R([Fu,ℓ

1 , Fu,ℓ
2 ])⊗W ℓ

3 ) ],
(4)

where Fu,ℓ
3 ∈ Rsℓw×sℓh×cℓin×λcℓout , F p,ℓ

3 ∈ Rsℓw×sℓh×cℓin×(1−λ)cℓout and the resulting
F ℓ
3 ∈ Rsℓw×sℓh×cℓin×cℓout is of the same size as F ℓ

1 and F ℓ
2 .

After task T3 is learnt, the filter bank is expanded as [Fu,ℓ
1 , Fu,ℓ

2 , Fu,ℓ
3 ], whose

size is sℓw × sℓh × cℓin × (1 + 2λ)cℓout.
To summarize, when learning task Tn, F ℓ

n could be written as

F ℓ
n = [Fu,ℓ

n , F p,ℓ
n ]

= [Fu,ℓ
n ,R−1(R([Fu,ℓ

1 , Fu,ℓ
2 , ..., Fu,ℓ

n−1])⊗W ℓ
n) ].

(5)

After task Tn is learnt, the filter bank is expanded as [Fu,ℓ
1 , Fu,ℓ

2 , ..., Fu,ℓ
n ],

whose size is sℓw × sℓh × cℓin × (1 + (n− 1)λ)cℓout, and the size of piggyback weight
matrix W ℓ

n+1 for task Tn+1 is (1+(n−1)λ)cℓout× (1−λ)cℓout. It should be noted
that the weights of filters in the filter bank remain fixed along the whole learning
process.

3.4 Learning Piggyback GAN
We explore two conditional generation scenarios in this paper: (1) paired image-
conditioned generation, in which training data contains M pairs of samples
{(ai, bi)}Mi=1, where {ai}Mi=1 represent conditional images, {bi}Mi=1 represent tar-
get images, and correspondence between ai and bi exists, namely for any condi-
tional image ai the corresponding target image bi is also provided; (2) unpaired
image-conditioned generation, in which training data contains images from two
domains A and B, namely images {ai}Ma

i=1 ∈ A and images {bi}Mb
i=1 ∈ B, and

correspondence between ai and bi does not exist, namely for any conditional
image ai the corresponding target image bi is not provided.

For both conditional generation scenarios, given a sequence of tasks and a
state-of-the-art GAN model, we construct the convolutional and deconvolutional
filters in the generator as described in Sec. 3.1, Sec. 3.2 and Sec. 3.3. The derived
filters is updated by the standard gradient descent algorithm and the overall Pig-
gyback GAN model is trained in the same way as any other existing generative
models by adopting the desired learning objective for each task.
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4 Experiments

We evaluate Piggyback GAN under two settings: (1) paired image-conditioned
generation, and (2) unpaired image-conditioned generation. We first conduct
an ablation study on the piggyback filters and unconstrained filters. We also
demonstrate the generalization ability of our model by having same T2 following
different T1. Finally, we compare our model with state-of-the-art approach [24]
proposed for discriminative models (i.e., classification models), which also shares
the idea of “piggybacking” on previously trained models by reusing the filters.
Different from our approach, [24] learns a binary mask applying on the filters of
a base network for each new task.
Training Details. All the sequential generation models are trained on images of
size 256×256. We use the Tensorflow [1] framework with Adam optimizer [18]. We
set the parameters λ = 1

4 for all experiments. For paired image-conditioned gen-
eration, we use UNet architecture [14] and the last layer is set to be task-specific
(a task-specific layer contains only unconstrained filters) for our approach and
all baselines. For unpaired image-conditioned generation, we adopt the architec-
ture [16, 44] which have shown impressive results for neural style transfer, and
last two layers are set to be task-specific for our approach and all baselines. For
both conditional generative scenarios, bias terms are used to adjust the output
after factorization.
Baseline Models. We compare Piggyback GAN to the following baseline mod-
els: (a) Full: The model is trained on single task, which could be treated as the
“upper bound” for all approaches. (b) 1

4Full and 1
2Full: The model is trained on

single task, and 1
4 or 1

2 number of filters used in baseline Full is used. (c) Pure
Factorization (PF): Model is trained with piggyback filters that are purely con-
structed from previously trained filters. (d) Sequential Fine-tuning (SFT): The
model is fine-tuned in a sequential manner, with parameters initialized from
the model trained/fine-tuned on the previous task. (e) [24]: a state-of-the-art
approach for discriminative model (i.e. classification model) which reuses the
filters by learning and applying a binary mask on the filters of a base network
for each new task.
Quantitative Metrics. In this work, we use two metrics Acc and Fréchet In-
ception Distance (FID) [13] to validate the quality of the generated data. Acc
is the accuracy of the classifier network trained on real images and evaluated on
generated images (higher Acc indicates better generation results). FID is an ex-
tensively used metric to compare the statistics of generated samples to samples
from a real dataset. We use this metric to quantitatively evaluate the quality of
generated images (lower FID indicates higher generation quality).

4.1 Paired Image-conditioned Generation

We first demonstrate the effectiveness of Piggyback GAN on 4 tasks of paired
image-conditioned generation, which are all image-to-image translations, on chal-
lenging domains and datasets with large variation across different modalities [9,
14, 35, 39]. The first task is semantic labels → street photos, the second task is
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maps → aerial photos, the third task is segmentations → facades, and the fourth
task is edges → handbag photos.
Ablation study on choice of λ. First we conduct an ablation study on the
choice of different values of λ. For each upcoming task, we explore a set of 5
values of λ: 0, 1

8 , 1
4 , 1

2 and 1. λ = 0 corresponds to the special case where all
filters are piggyback filters, and λ = 1 corresponds to the special case where all
filters are unconstrained filters. Figure 3 illustrates the FID for different λ. For
example, λ = 1

4 balances well the performance and number of parameters. While
parameter size scales almost linearly with λ, the improvement in performance
(lower FID is better) slows down gradually.

Fig. 3. FID for different λ. Ablation study of choice of different values of λ. For all
upcoming new tasks, the performance improves as λ increases. However, while param-
eter size scales almost linearly with λ, the improvement of performance slows down
gradually.

Ablation study on model components. We also conduct an ablation study
on the piggyback filters and unconstrained filters by comparing Piggyback GAN
with the baseline models Full, 1

4Full and Pure Factorization (PF) on Task 2
(maps → aerial photos) given the same model trained on Task 1 (semantic labels
→ street photos).

The quantitative evaluations of all approaches are summarized in Table 1.
The baseline 1

4Full produces the worst classification accuracy. Since the details
like building blocks are hardly visible, the classifier sometimes mistakes category
facades for category maps. The baseline PF generates images that contain more
details as compared to the images generated using 1

4Full. This suggests that
piggyback filters can provide valuable information of the patterns in the training
data. High FID scores for baselines 1

4Full and PF indicate that generation qual-
ities for both approaches are poor, and it is observed that the generated images
are blurry, resulting in lots of missing details, and also contain lots of artifacts
for both approaches. Our Piggyback GAN is parameter efficient and produces
images having similar quality as the Full model.
Generalization ability. To demonstrate the generalization ability of our model,
we learn the same T2: maps → aerial photos with three different initial tasks T1:
semantic labels → street photos, segmentations → facades, and edges → handbag
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Full 1
2
Full 1

4
Full PF Piggyback GAN

Acc 97.90 88.10 84.87 99.82 97.99
FID 156.23 189.08 285.71 303.90 171.04

Table 1. Model components. Ablation study of model components on paired image-
conditioned generation tasks. Different models are trained and evaluated on task 2,
FID and classification score on task 2 is reported.

photos to evaluate whether Piggyback GAN could generalize well. The quantita-
tive evaluation of all approaches are summarized in Table 2. The experimental
results indicate that Piggyback GAN performs stable. The consistent Acc and
FID scores indicate that the generated images on task T2 from all three initial
tasks T1 have similar high image quality.

T1

semantic labels
↓

street photos

segmentations
↓

facades

edges
↓

handbags
Acc 97.99 97.08 98.09
FID 171.04 174.67 166.20

Table 2. Generalizability. Given different models trained for different initial tasks T1,
same new task T2 is learnt. The consistent Acc and FID scores indicate that our model
generalize well and perform consistently well given different set of filter banks achieved
from different tasks.

Comparison with SOTA method and baselines. We compare Piggyback
GAN with the state-of-the-art approach [24], Sequential Fine-tuning (SFT) and
baseline Full. Baseline Full can be considered as the “upper bound” approach,
which provides the best performance that Piggyback GAN and [24] could achieve.
For both Piggyback GAN and sequential fine-tuning, the model of Task2 is
initialized from the same model trained on Task1. The same model also serves
as the backbone network for approach [24].

Generated images of each task for all approaches are shown in Figure 4 and
the quantitative evaluations of all approaches are summarized in Table 3. It
is clear that the sequentially fine-tuned model completely forgets the previous
task and can only generate incoherent edges2handbags-like (edges → handbag
photos)-like patterns. The classification accuracy suggests that state-of-the-art
approach [24] is able to adapt to the new task. However, it fails to capture
the fine details of the new task, thus resulting in large artifacts in the generated
images, especially for task 2 (maps → aerial photos) and task 4 (edges → handbag
photos). In contrast, Piggyback GAN learns the current generative task while
remembering the previous task and can better preserve the quality of generated



12 M. Zhai et al.

images while shrinking the number of parameters by reusing the filters from
previous tasks.

Piggyback GAN [24] SFT Full
Acc 89.80 88.09 24.92 91.10
FID 137.87 178.16 259.76 130.71

Table 3. Quantitative evaluation among different approaches for continual learning of
paired image-conditioned generation tasks. Different models are trained and evaluated
on tasks 1-4 based on the same model trained on task 1. The average FID score over
4 tasks is reported.

Fig. 4. Comparison among different approaches for continual learning of paired image-
conditioned generation tasks. Piggyback GAN can learn the current task without for-
getting the previous ones, and preserve the generation quality while shrinking the
number of parameters by “piggybacking” on an existing model.

For paired image generation, we also compare our approach with Lifelong
GAN [42] and Progressive Network (PN) [28]. The FID of PN over all tasks is
141.29. Lifelong GAN suffers from quality degradation: the FID on cityscapes
increases from 122.52 to 160.28 then to 221.07 as tasks are added, while Piggy-
back GAN ensures no quality degradation since the filters for previous tasks are
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not altered. These results show the effectiveness of combining the two types of
filters of Piggyback GAN.

4.2 Unpaired Image-conditioned Generation

We also apply Piggyback GAN to another challenging scenario: unpaired image-
conditioned generation domainA → domainB. The model is trained on unpaired
data, where correspondence between domain A and domain B does not exist,
namely for each image in domain A there is no corresponding ground-truth image
in domain B. We apply our model on 2 sequences of tasks: tasks of image-to-
image translation and tasks of style transfer.
Tasks of image-to-image translation. We convert the same 4 tasks from the
paired scenario to the unpaired scenario, and compared our approach with Full,
the state-of-the-art approach [24] and Sequential Fine-tuning (SFT). The results
are shown in Table 4. We observed that the Sequential Fine-tuning (SFT) can-
not remember previous tasks and suffers catastrophic forgetting. Our approach
produces images with high quality on par with Full model, while [24] is capable
of learning each new task, however the generation quality is poor.
Tasks of style transfer. Two tasks in a given sequence may share the same
input domain but have different output domains, e.g. T1 is Photo → Monet
Paintings and T2 is Photo → Ukiyo-e Paintings. While this is not a problem
when training each task separately, it does cause problems for lifelong learning.
We explore a sequence of tasks of unpaired image-conditioned generation as
described above. The first task is unpaired image-to-image translation of photos
→ Monet paintings, the second task is unpaired image-to-image translation of
photos → Ukiyo-e paintings.

We compare Piggyback GAN against the state-of-the-art approach [24], Se-
quential Fine-tuning (SFT) and baseline Full which serves as the “upper bound”
approach. For both Piggyback GAN and sequential fine-tuning, the model of
Task 2 is initialized from the same model trained on Task 1, which also serves
as the backbone network for approach [24] to allow for fair comparison.

The quantitative and qualitative evaluations for comparison among different
approaches are shown in Table 4 and Figure 5, respectively. The baseline SFT
completely forgets the previous Monet style and can only produce images in the
Ukiyo-e style. Both the state-of-the-art approach [24] and Piggyback GAN are
able to adapt to the new style. The classification accuracy and FID scores indi-
cate that Piggyback GAN can better preserve the quality of generated images,
and produce images with styles most closely resembling Ukiyo-e paintings.

5 Conclusion

We proposed Piggyback GAN for lifelong learning of generative networks, which
can handle various conditional generation tasks across different domains. Com-
pared to the naive approach of training a separate standalone model for each
task, our approach is parameter efficient since it learns to perform new tasks by
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Tasks 4 Image-to-image Translation Tasks
Methods Piggyback GAN [24] SFT Full

Acc 90.30 88.29 24.85 91.04
FID 113.89 149.51 262.37 109.46

Tasks 2 Style Transfer Tasks
Methods Piggyback GAN [24] SFT Full

Acc 77.97 70.58 50.00 78.97
FID 106.95 118.26 135.05 101.09

Table 4. Unpaired image conditioned generation tasks. Different models are trained
on all tasks based on the same model trained on task 1. The average score over all
tasks is reported.

Fig. 5. Comparison among different approaches for continual learning of unpaired style
transfer tasks. Piggyback GAN can preserve the generation quality the current task
most without forgetting the previous ones.

making use of the model trained on previous tasks and combining with a small
portion of unconstrained filters. At the same time, our model is able to maintain
image generation quality comparable to the single standalone model for each
task. Since the filters learned for previous tasks are preserved, our model is ca-
pable of preserving the exact generation quality of previous tasks. We validated
our approach on various image-conditioned generation tasks across different do-
mains, and the qualitative and quantitative results show our model addresses
catastrophic forgetting effectively and efficiently.
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