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Abstract. Compositional visual question answering requires reasoning
over both semantic and geometry object relations. We propose a novel
tiered reasoning method that dynamically selects object level candidates
based on language representations and generates robust pairwise rela-
tions within the selected candidate objects. The proposed tiered relation
reasoning method can be compatible with the majority of the existing
visual reasoning frameworks, leading to significant performance improve-
ment with very little extra computational cost. Moreover, we propose a
policy network that decides the appropriate reasoning steps based on
question complexity and current reasoning status. In experiments, our
model achieves state-of-the-art performance on two VQA datasets.
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1 Introduction

Visual Question Answering [3,10,15,17] is the task of answering a natural lan-
guage question based on the content of an image. To precisely answer visual
questions, the VQA models should be able to understand the language, the im-
age and build a cross-modal mapping between the lingual and visual contents.

Current state-of-the-art VQA methods can be divided into two categories.
The works from the first category [1,24,19] mainly focus on learning a multi-
modal joint representation of language and vision. The visual features, which
are usually extracted from pre-trained networks, are combined with the lan-
guage features through multiple self-attention and co-attention [21,7] modules.
Although these methods are proven to work well on VQA [3] tasks, they usually
don’t generalize well on the compositional reasoning tasks [15] due to their lack
of relation reasoning abilities. For example, given a question of “What is the color
of the food on the plate to the right of the girl? ”, the VQA model needs to first
understand the mapping between language representation and visual features,
and then reason over the relations between each pair of objects to decide the
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Fig. 1. The idea of tiered relation reasoning. In roots, there are many possible objects
for answering questions. Based on the attention map of root, the objects can be clas-
sified as relevant or irrelevant objects. In leaf, pairwise relations are only generated
between relevant objects.

final answer. Hence, methods based on simple self-attention and co-attention are
insufficient in performing relation reasoning. On the other hand, the methods
from the second category mainly focus on designing neural modules [2,23] that
can perform more diverse reasoning tasks. These methods perform extremely
well on simulated datasets like CLEVR [17]. However, the design of reasoning
modules is tricky and heavily relies on human efforts. Hence, they are not widely
adopted in real-world datasets [3,15] that contain far more object classes and
possible reasoning actions.

The idea of reasoning over relations has been drawn in some of the previ-
ous works. In [26] the relations are generated for each pair of regions and then
combined with language representations. In [4] dense pairwise relations are gen-
erated for multi-modal embeddings. Other works [34] also propose to generate
relations based on geometry information e.g. generate relations for geometry
close objects only. The dense object relations are usually noisy and computation
consuming. Imagine the case that there are one hundred visual objects. There
will be ten thousand possible pairwise relations. In fact, one sentence will not
cover more than six objects. It brings in much difficulty to find relevant ones
from all ten thousand relations. The geometry sparse relations are built on a
strong assumption that relations are only valid for neighbor objects, which is
not always true.

In this work, we propose a tiered relation reasoning method that dynamically
selects object level candidates based on language representation and generates
tidy object relations within the selected candidates objects only. The basic idea
of tiered relation reasoning is illustrated in Fig. 1. We denote our structure as a
tiered structure, because the reasoning is from coarse objects to fine candidate
objects. In root, we have many objects grouped, and in leaf, the objects are
split into relevant and irrelevant objects. The irrelevant objects could be elimi-
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nated from further processing. The tiered selection not only makes the network
computational efficient but also improves relation reasoning performance.

Our proposed TRRNet(Tiered Relation Reasoning Network) consists of a
series of TRR units. For each TRR unit, there are four basic components: root
attention, root to leaf attention passing, leaf attention and a final message pass-
ing module to interact with the next TRR unit. The root attention is an object
level attention attending to different visual features based on language represen-
tation. The functionality of this component could be achieved by many modern
approaches [1,19,7]. After root attention, the network carries out root to leaf
attention passing that selects the most significant visual components and builds
pairwise relations. This is achieved by multi-head hard attentions. After that, the
leaf attention module learns to reason on relations based on language features.
Finally, the information from relation reasoning is passed to the next stage of
reasoning through a message passing module. The mappings of language-objects,
language-relations are purely supervised by final training loss, without seeking
additional strong supervisions such as scene graph annotations [31] and func-
tional programs.

Natural language questions are various and often require multiple reasoning
steps [27]. Short and simple questions can be solved easily with one or two
reasoning steps. For long and complex questions, it may take more steps to solve
them. The proposed TRRNet is able to generate a series of reasoning outputs. On
top of that, we design a policy network that decides the appropriate reasoning
steps based on questions and current reasoning outputs. The policy network not
only boosts final accuracy, but also improves overall processing speed.

In summary, our contributions are:

– We propose a novel tiered attention network for relation reasoning. The TRR
network consists of a series of TRR units. Each TRR unit can be decomposed
into four basic components: a root attention to model object level impor-
tance, a root to leaf attention passing module to select candidate objects
based on root attention and generate pairwise relations, a leaf attention to
model relation level importance and finally a message passing module for
information communication between reasoning units.

– We propose a policy network that chooses the best reasoning steps based on
natural language question and reasoning outputs.

– We achieve state-of-the-art performance on GQA dataset and competitive
results on CLEVR datasets and VQAv2 dataset without functional program
supervision.

2 Related Works

In this section, we categorize VQA tasks that do not require compositional rea-
soning skills as visual question answering [3] and VQA tasks that require multiple
reasoning skills as visual reasoning [17,15].
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2.1 Visual Question Answering

The improvement in visual question answering has mainly been done on two
parts, namely better features and better attentions. Early VQA methods use
pre-trained VGG or ResNet to extract visual features. The bottom-up and top-
down network [1] proposed to extract visual features from an object detector [9].
The bottom-up features significantly improve VQA performance.

Better attentions also contribute a lot to improve VQA performance. Works
in [20,37,32] further extended traditional attention methods for better visual
groundings. Co-attention [29,21,36,24] performs attention based on a fused rep-
resentation on image features and language features respectively. BAN [19] net-
work further improved computation efficiency of co-attention through bilinear
attention. Motivated by NLP works [28], self-attention is also widely adopted to
improve VQA performance [7,35]. In these works, self-attention is used to gen-
erate intra-modality attention maps and a summation of the original features.

It is worth noticing that conventional VQA methods lack the ability of rela-
tion reasoning. Co-attention mechanism models correspondence between words
and image regions. Relations between objects are largely missing. Self-attention
models intra-modality importance, while it could not cover both semantic and
spatial relations. Compared with transformer based methods which encode re-
lations implicitly, our model encodes explicit relations directly, making it easier
for the models to perform reasoning.

2.2 Visual Reasoning in VQA

Early visual reasoning works [26] generate dense relations for each pair of pix-
els. The dense relations are then combined with language features for language
guided reasoning. State of the art reasoning methods are dominated by neu-
ral module networks [2]. In neural module networks, language representation is
parsed into a series of logical steps. For each logical step, a different neural mod-
ule for performance corresponding actions is designed. In [18,12,23], the questions
are parsed into functional programs and specific executing engines are designed
for the functional programs. The neural module approach [33] could achieve al-
most perfect performance on simulated datasets [17]. However, for real-world
datasets [3,15], it’s almost impossible to design specific modules for each type of
reasoning due to the questions’ high complexity.

In this work, we propose our TRRNet for relation reasoning. The model is
purely trained with answer supervision. Strong functional program supervision
is not used for training.

3 Our Approach

3.1 Overview

The task of VQA is described as follows: Given an image I and a question Q
grounded on I, the purpose of VQA is to select the best answer from a set of all
possible answers. The VQA task is usually defined as a classification problem.



TRRNet: Tiered Relation Reasoning for Compositional VQA 5

Fig. 2 shows a detailed illustration of our method. Following the standard
VQA practice, the image is first processed with an object detector to extract n
region features V ∈ Rn×dv and n bounding boxes B ∈ Rn×db , where the ith re-
gional feature and box feature is denoted as vi ∈ Rdv and bi ∈ Rdb . For language
processing, we adopt Bert [6] word embeddings and input the embedding vector
to a GRU [5] to better adapt the embeddings to VQA task. This step gets us a
set of language embedding features E ∈ Rm×de where m represents the number
of words in one sentence. The proposed approach TRRNet consists of a series
of TRR units. One TRR unit can be decomposed into four basic components,
namely root attention (object level attention), root to leaf attention passing, leaf
attention (relation level attention) and message passing module to pass message
to the next TRR unit. Root attention is an object level attention, which learns
attention weights for objects and generates a merged feature. Root to leaf at-
tention passing module processes the object level attention map and produce
pairwise relations. Based on the pairwise relations and language, leaf attention
attends to different relations. Message passing module summarizes relation level
attention maps and combines them with object level features, which will then
be propagated to the next stage.

3.2 Root Attention

Given a set of image features V ∈ Rn×dv and bounding box features B ∈ Rn×db
extracted from Faster R-CNN and a set of question features from GRU E ∈
Rm×de , the root attention has two roles.

The first role is to generate an attention map for object level visual features
based on language representations:

αobject = softmax(Net(V,B,E)), (1)

where “Net” denotes any possible networks that can generate object level atten-
tions.

The second role of root attention is to generate a fused visual feature:

Oroot = αobjectV T , (2)

where Oroot denotes the output on root stage.

There are multiple choices for root attentions. Actually, most modern VQA
methods that contain object level attention can be used as our root attention,
such as Bottom-Up [1], DCN [24], BAN [19], Inter-intra [7]. In this work, we try
both a simple attention method as used in Bottom-Up Attention [1] and a more
complicated and advanced method as proposed in BAN [19].

This setting guarantees the flexibility of our work. Besides using one network
as root attention, it’s even possible to use several networks as the root attention
and average the final attention maps to form a more robust object level features.
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3.3 Root to Leaf Attention Passing

The root to leaf attention passing further processes the object level attention
map from the root attention to produce pairwise relations. Note that the object
level attention map might have multi-heads. We use multi-head hard attention
to select relevant object candidates.

The idea of hard attention was first proposed in [30], where only the most
related areas are selected for image captioning. When the image features are
selected in a “hard” way, the network becomes undifferentiable. In [30] RE-
INFORCE is used to find network parameters through sampling. In [22], hard
attention is used to select grid features to answer visual questions. In this paper,
we can format the hard attention problem in an easier and fully differentiable
way.

For multi-head hard attention passing, we only select “hard” objects that
are related to questions. Specifically, based on the attention maps from root at-
tention, we select only the top k related objects based on the attention weights.
After the visual features VHard are selected, we build pairwise relations by con-
catenating the features one-by-one and process them through a MLP to map
them to size dr. In experiment, we use dr = 256, a value smaller than original
visual feature dimension, because the relations usually contain less information
than the objects and using smaller feature size can help to reduce overfitting.
This step is represented as Relation in Equation 4. Formally, for each attention
head in root attention αobject, we perform:

VHard = Topk(α, V,K), (3)

R = Relation(VHard, B), (4)

where K is a hyper-parameter for controlling how many objects for generating
relations, B is the box features and R is the generated pairwise relations.

The refined object candidates also motivate us to generate triple-wise rela-
tions. For triple-wise relations, a set of relations Rtriple ∈ RK3×dr is generated
for candidate objects. Ideally, the triple-wise relations can help the network to
better understand long sentences with multiple objects. We show detailed abla-
tion studies in Sec. 4.2.

3.4 Leaf Attention

The leaf attention performs reasoning over object relations. Same as root at-
tention, the leaf attention also produces both an attention map and a feature
merged by relation features and language features. Given the relation features
R ∈ RK2×dr and the final question embedding e ∈ Rde , we first obtain a hidden
feature by fusing language and visual features and then the fused features are
further propagated through non-linear functions:

h = f(g(e) · k(R)), (5)
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Fig. 2. A detailed illustration of a one layer TRR network with hard attention. Given
an image and a natural question, the image is first processed with Faster R-CNN
for feature extraction. In the root attention module, the object features are merged
with language and an attention map of objects is generated. The root attention also
produces a merged object level feature. The attention passing module processes the
root attention map to select the most significant objects based on the attention map.
Then pairwise relations are constructed and combined with spatial features (bounding
boxes). The leaf attention performs attention on relations and generates relation level
features. Root features and leaf features are finally combined with language features
for predicting the final answer.

where g, k, and f are fully connected layers with activation function ReLU and
“·” operation represents element-wise multiplication. The h value is now regarded
as a mapping correspondence. Based on the correspondence, an attention map
can be calculated from h for each relation:

αrelation = softmax(h). (6)

Finally, a merged relation feature is generated by matrix multiplication:

Oleaf = αrelationRT . (7)

If R is a multi-head feature, the final leaf feature Oleaf is a concatenation of all
heads.

3.5 Message passing module for units interaction

To enable multi-stage reasoning, we propose a message passing module. In this
module, we fuse the attended relation features Oleaf and object level features
V through concatenation and a fully connected layer. The new visual feature is
generated by:

Vnew = f([Oleaf , V ]), (8)

where f is a linear function with activation.
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3.6 Multi-stage Reasoning and Policy Network

Compositional natural language questions require multi-stage reasoning. Easy
questions can be solved within two reasoning steps, while long and complex
questions may require more reasoning steps. The proposed TRRNet is able to
generate a series of reasoning outputs. For the tth TRR unit, the network takes
the bounding box feature B, the tth visual features Vt and the question embed-
ding E as input and output the root feature Oroott , the leaf feature Oleaft , and
the aggregated visual feature Vt+1:

Oroott , Oleaft , Vt+1 = TRRt(B, Vt, E). (9)

At the tth TRR unit, the policy network decides whether to proceed to the
next stage of reasoning. The design of policy network follows two assumptions.
First, complicated questions should be reasoned for more steps and second if the
attended features from the previous steps are already stable, the network should
stop.

We format the reasoning process as a sequential decision making process.
At time step t, the “State” st is the question embedding E, question length l,
current time step t and root feature Oroott−1 and Oroott . The reason why we choose
the root level features is because leaf features are calculated based on root, so
root features itself can represent the reasoning status. The “Action” at is a
binary action [1,0] where “1” denotes to proceed and “0” denotes not to proceed
to the next reasoning step. The “Reward” rt is the number of correct VQA
predictions of current batch. In order to minimize the total number of reasoning
steps, we also introduce a small scalar penalty term pt = 0.1 for each time the
policy network chooses to proceed. The “Policy” is a function π(at|st, θ). The
policy function decides the next action based on State st. The decision process
is regarded as a Markov Decision Process and can be trained with reinforcement
learning settings.

To be more specific about the policy network structure, we first calculate the
L2 distance of root features from the previous two time steps: d = L2(Oroott−1 , O

root
t ).

The distance and question embedding are then processed by two separate mlps
for final prediction:

d = L2(Oroott−1 , O
root
t ), (10)

z = MLP [MLP (d),MLP (E, t, l)], (11)

π(at|st, θ) = softmax(z). (12)

The policy network is trained with policy gradient method REINFORCE.
During training, we alternatively train the main network and the policy network.
We first train the main network and then fix the parameters of main network
and train the policy network. After that, we go back to train the main network
again. We set the maximum number of reasoning steps to be N = 3. Since at
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time step t = 1, the Oroot0 value is None, the policy network is only used after
t = 2. The loss of policy network is defined as: L = −Es∼π[r − p].

3.7 The Readout Layer

In readout layer, the final stage root features Oroot and leaf features Oleaf are
further combined and processed with a linear function to represent the final
visual features:

Oall = f([Oroott , Oleaft ]). (13)

Question embedding features are processed through a fully connected layer with
an activation function ReLU to represent the final language features:

Efinal = g(E). (14)

Finally, the question feature and visual features are combined via an element-
wise product for classification:

Answer = softmax(h(Oall · Efinal)), (15)

where h is a fully connected layer with an activation function.

4 Experiments

4.1 Experimental Setup

We use GQA [15] dataset for our experiments. The GQA dataset contains 22M
compositional questions and 140K images. Compared to VQA [3], GQA dataset
contains questions that require multiple reasoning skills. In our experiment, we
use pre-trained Faster-RCNN in [1] to extract region features of size 36× 2048.
We use pre-trained Bert word embedding and GRU to extract language features
of size 20×1024, where 20 is the length of questions. There are two training and
testing splits in GQA, one split “all-split” contains all images and the other split
“balanced-split” contains balanced-split with re-sampled answer distribution.
For ablation studies, all models are trained on the “balanced-split” and tested
on the “testdev” set. The final model is trained on the “all-split” and finetuned
on the “balanced-split”.

4.2 Ablation Study

We perform extensive ablation studies on the GQA “balanced-set”. The overall
results are shown in Table 1.

TRRNet VS. basic attention models We first investigate the improve-
ment of our proposed TRRNet over basic attention models. For each basic at-
tention model, we perform two experiments. First, we train the network alone on
“balanced-split” and second we use the model as the root attention component
in a one layer TRRNet with hyper-meter K = 6. All the models are trained
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with the same hyper-parameter settings. Evaluation is done on the “testdev”
dataset. The experiments are carried out on two attention methods, a simple
attention model used in Bottom-Up attention [1], a more advanced model used
in BAN [19]. Results show that when using weaker attention models, our TRR-
Net significantly outperforms the baseline by 6%. Even when the baseline model
is a strong and complicated attention model, our one layer TRRNet could im-
prove performance by 0.6%. For simplicity, all remaining ablation experiments
use Bottom-Up attention as root attention.

Component analysis We then study the influence of root to leaf attention
passing. The experiments are done in three folds: first, we build a simple baseline
relation module where the relations are generated for each pair of objects. Then
we compare the baseline model and root to leaf attention passing with different
K choices. Finally, we demonstrate the result of triple-wise relation attention.
By simply adding a relation module to Bottom-Up attention, the accuracy is
improved by 5%. Surprisingly, by choosing top 6 most significant objects, hard
attention with more than 36 times less computation could achieve 0.5% bet-
ter performance than the relation baseline. This observation further proves the
fundamental idea of our networks. Dense relations are usually noisy and using
only important objects could generate even better results. By increasing the K
value to 12, the model could achieve 0.2% improvement. We continue to generate
triple-wise relations for hard attentions. The attention features of triple-wise re-
lations are combined with pairwise features and object level features to generate
the final results. The triple-wise relations also help to improve accuracy by 0.2%
compared with pairwise relations. Due to the complexity of triple-wise relations,
it’s not used in our final models.

The Number of TRR units Also we investigate the effect of reasoning
steps i.e. the number of TRR units. We start from a 1 layer TRR network and
increase the length to 3 layers. We observe that a 2 layer TRRNet significantly
improves model performance by almost 1% compared with 1 layer reasoning
model. While adding more TRR units to above 3 layers does not help to further
improve the performance. With our proposed policy network, the accuracy could
be increased further by 0.3% compared with a simple 2 layers TRRNet.

Length of GRU embeddings Finally, we study the length of GRU em-
beddings. The feature dimension is increased from 512 to 2048. The network
achieves the highest accuracy at feature dimension 1024. Longer or shorter fea-
ture dimensions all reduce overall performance.

4.3 Experimental Results on GQA

Training Details. In final experiments, we use dual root attentions, one Bottom-
Up attention and one BAN attention to better capture object importance. Both
of the root attentions are appended with their own leaf attentions. For both leaf
attentions, we adopt attention passing with K = 6. The final root features and
leaf features are concatenated before processed by the classifier. For training,
we first use the “all-split” to train our model for 4 epochs with learning rate of
1× 10−4 and further fine-tune the trained model on the “balanced-split” with a
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Method Accuracy(%)

Bottom-Up [1] 50.20
TRR (Bottom-Up) 56.13
BAN [19] 55.82
TRR (BAN) 56.43

Bottom-Up + Relation 55.60
TRR Hard Attention (K=6) 56.13
TRR Hard Attention (K=12) 56.28
TRR Triple Attention (K=6) 56.29

TRR 1 layer 56.13
TRR 2 layers 57.00
TRR 3 layers 56.88
TRR Policy 57.32

Embedding 512 55.85
Embedding 1024 56.13
Embedding 2048 55.90

Table 1. Ablation experiments of TRRNet on the GQA balanced dataset. K stands
for the number of objects chosen for hard attention.

Method Binary Open Consistency Plausibility Validity Accuracy

Bottom-Up [1] 66.64 34.83 78.71 84.57 96.18 49.74
MAC [14] 71.23 38.91 81.59 84.48 96.16 54.06
BAN [19] 76.00 40.41 91.70 85.58 96.16 57.10
GRN [11] 74.93 41.24 87.41 84.68 96.14 57.04
LCGN [13] 73.77 42.33 84.68 84.81 96.48 57.07
TRRNet (Ours) 77.83 45.65 90.95 85.15 96.40 60.74

Table 2. Comparisons with state-of-the-art methods of GQA on the blind test2019
set. Our model achieves a state-of-the-art performance of 60.74% for a single model
without using functional programs and new image features.

learning rate of 5 × 10−5. A step by step result on the “testdev” split is shown
in Table 3.

Comparison with state-of-the-art of GQA. As illustrated in Table 2,
our single model achieves state-of-the-art performance on the GQA “test2019”
split without new image features and functional program. We notice that [16]
proposes to generate symbolic representation and new visual features with scene
graph annotations. To further improve performance, we also train Faster-CNN
models for feature extraction using the scene graph annotation provided. With
new visual features, our model could be further improved by 3% to 63.20%.
Moreover, we use model ensemble and the tiny evaluation trick mentioned in [8]
to further improve model performance. An ensemble version of model achieves
an accuracy of 74.03% , ranked the 2nd place on GQA 2019 leaderboard.
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Method Accuracy(%)

Dual Root trained on “balanced-split” 56.10
TRR Dual Root trained on “balanced-split” 57.86
TRR Dual Root trained on “all-split” 57.89
TRR Dual Root fine-tuned on “ balanced-split” (ours) 60.32

Table 3. Step-by-step results of the TRRNet Dual Root Attention on GQA “testdev”
split.

4.4 Experimental Results on VQAv2 and CLEVR

We also evaluate our proposed TRRNet on VQAv2 dataset and simulated visual
reasoning dataset CLEVR.

VQAv2 dataset. For VQAv2 dataset, we use root attention similar to the
network structure mentioned in [35] to encode visual and language features and
generate root level attentions. Due to the nature of VQAv2 dataset that it does
not contain questions that require compositional reasoning skills, we remove the
policy network and simply adopt a two layer TRRNet. Testing results are shown
in table 4. Our model achieves better results compared with models trained with
the same training data and same visual language features. It does extremely well
on yes or no questions.

CLEVR dataset. For CLEVR dataset, we use grid features generated from
pretrained Resnet, instead of region proposal features from Faster-RCNN. We
use [35] as root attention. Since the visual feature is grid feature, we increase
the K value to 36. Testing results are shown on table 5. Functional programs
work as a very strong supervision for visual reasoning. For a fair comparison,
our model is only compared with those methods using natural languages only.

Method
Test-dev Test-std

All Y/N Num Other All

Bottom-up [1] 65.32 81.82 44.21 56.05 65.67
DCN [24] 66.87 83.51 46.61 57.26 66.97
MFH [10] 68.76 84.27 49.56 59.89 -
BAN [19] 70.04 85.42 54.04 60.52 70.35
DFAF [7] 70.22 86.09 53.32 60.49 70.34
MCAN [35] 70.63 85.82 53.26 60.72 70.90
TRRNet (Ours) 70.80 87.27 51.89 61.02 71.20

Table 4. Single model performance on test-dev and test-standard splits of VQAv2
dataset.

4.5 Visualization

In this section, we show visualizations of the attention maps in our network.
Similar to ablation studies, we use Bottom-Up attention as the root attention.
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Fig. 3. Visualization of attention maps. For root attention, we plot all object regions
with attention score larger than 0.1. For leaf attention, we only display the most confi-
dent relation attended. The first two examples show the model’s ability to identifying
the right objects. Example 3 shows the network’s power of learning common sense:
the correlation of weather and sky. Example 4 demonstrates an example of three stage
reasoning.
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Method All Count Exist
Compare
Numbers

Query
Attribute

Compare
Attribute

Human [17] 92.6 86.7 96.6 86.5 95.0 96.0
CNN+LSTM+SA [17] 73.2 59.7 77.9 75.1 80.9 70.8
RN [26] 95.5 90.1 97.8 93.6 97.9 97.1
FiLM [25] 97.7 94.3 99.1 96.8 99.1 99.1
MAC [14] 98.9 97.1 99.5 99.1 99.5 99.5
TRRNet (Ours) 98.8 96.8 99.5 98.9 99.6 99.3

Table 5. Single model performance on CLEVR dataset.

Both root attention and leaf attention visualizations are shown in Fig. 3. The
images are chosen from the “testdev” set. Interestingly, the majority of the test
images are reasoned for two stages. For root attentions, we plot objects with
attention scores more than 0.1. For leaf attentions, we only show the relation
with the highest attention score.

The first example shows an easy question that contains only one relation.
In stage1, the root attention could already identify the most important area for
answering questions. The second example shows a difficult question that contains
more than one relations. Although the name “cake” is not directly displayed
in the question, the root attention could successfully focus on the object. The
third example is asking for abstraction. There is no clue from the words to guide
where the attention should look and no relations can be found from the sentence.
Visualizations show that the model learns to locate meaningful areas: the sky.
The final example shows an example of three stage reasoning.

5 Conclusion

In this work, we propose a tiered relation reasoning method that dynamically se-
lects object level candidates based on language representation and generates tidy
object relations within the selected candidates objects only. The tiered selection
not only makes the network computational efficient but also improves relation
reasoning performance. Moreover, we propose a policy network that decides the
appropriate reasoning steps based on question complexity and current reason-
ing status. In experiments, our model achieves state-of-the-art performance on
GQA dataset and competitive results on CLEVR datasets and VQAv2 dataset
without functional program supervision.
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