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Abstract. Recent studies have shown that, context aggregating infor-
mation from proposals in different frames can clearly enhance the per-
formance of video object detection. However, these approaches mainly
exploit the intra-proposal relation within single video, while ignoring the
intra-proposal relation among different videos, which can provide im-
portant discriminative cues for recognizing confusing objects. To address
the limitation, we propose a novel Inter-Video Proposal Relation module.
Based on a concise multi-level triplet selection scheme, this module can
learn effective object representations via modeling relations of hard pro-
posals among different videos. Moreover, we design a Hierarchical Video
Relation Network (HVR-Net), by integrating intra-video and inter-video
proposal relations in a hierarchical fashion. This design can progressively
exploit both intra and inter contexts to boost video object detection. We
examine our method on the large-scale video object detection benchmark,
i.e., ImageNet VID, where HVR-Net achieves the SOTA results. Codes
and models are available at https://github.com/youthHan/HVRNet.

Keywords: Video Object Detection, Inter-Video Proposal Relation, Multi-
Level Triplet Selection, Hierachical Video Relation Network

1 Introduction

Video object detection has emerged as a new challenge in computer vision [1,
5, 27, 28, 35, 41]. The traditional image object detectors [12, 22, 24, 25] often fail
in this task, due to the fact that objects in videos often contain motion blur,
sudden occlusion, rare pose, etc. Recent studies [5, 28] have shown that, model-
ing the relation of object proposal from different frames can effective aggregate
spatio-temporal context and yield better representation for detection task. These
approaches, however, only utilize the proposal-relations within the same video,
⋆ Equal contribution.
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Fig. 1. Motivation. Subplot (a): The intra-video proposal relation often captures what
Cat looks like and how it moves in this video. But it has little clue about object
variations among different videos. As a result, the detector mistakenly recognizes Cat
as Dog at the target frame t, even though it leverages spatio-temporal contexts from
other support frames t − s and t + e. Subplot (b): To tackle such problem, we design
a novel inter-video proposal relation module, which can adaptively mine hard object
proposals (i.e., proposal triplet) from highly-confused videos (i.e., video triplet), and
effectively learn and correct their relation to reduce object confusion among videos.

and still face the difficulty to distinguish the confusing objects which have similar
appearance and/or motion characteristics from different videos.

As shown in Fig. 1(a), the detector mistakenly recognizes Cat as Dog at
the target frame t, even though it leverages spatio-temporal contexts from other
support frames t− s and t+ e to enhance the proposal representation of current
frame. The main reason is that, such intra-video relation only describes what
this Cat looks like and how it moves in this video. It has little clue about
object relations or variations among different videos, e.g., in Fig. 1(b), Cat in
the target video looks similar to Dog in the support video, while it looks different
from Cat in the support video. In this case, the detector would get confused to
distinguish Cat from Dog, if it only focuses on each individual video but without
understanding object relations among different videos.

To address such difficulty, we design a novel Inter-Video Proposal Relation
method, which can effectively leverage inter-video proposal relation to learn
discriminative representations for video object detection. Specifically, we first
introduce a multi-level triplet selection scheme to select hard training propos-
als among confused videos. Since these proposal triplets are the key factors to
avoid confusion, we can exploit the relation on each of them to construct better
object features. Moreover, we propose a powerful Hierarchical Video Relation



Mining Inter-Video Proposal Relations for Video Object Detection 3

Network (HVR-Net), by integrating intra-video and inter-video proposal rela-
tion modules in a unified framework. In this case, it can progressively utilize
both intra-video and inter-video contextual dependencies to boost video object
detection. We investigate extensive experiments on the large-scale video object
detection benchmark, i.e., ImageNet VID. Our HVR-Net shows its superiority
with 83.8 mAP by ResNet101 and 85.4 mAP by ResNeXt101 32x4d.

2 Related Works

Object Detection in Still Images Object detection in still images [3, 8, 9, 14,
22, 24, 26] has recently achieved remarkable successes, with the fast development
of deep neural networks [13, 18, 29, 30, 36] and large-scale well-annotated datasets
[21, 27]. The existing approaches can be mainly categorized into two frameworks,
i.e., two-stage frameworks (such as RCNN [9], Fast-RCNN [8], Faster-RCNN [26])
and one-stage frameworks (such as YOLO [24], SSD [22], RetinaNet [20]). Two-
stage detectors often achieve a better detection accuracy, while one-stage detec-
tors often maintain computation efficiency. Recently, anchor-free detectors also
show the impressive performance [6, 19, 38, 39], inspired by key point detection.
However, these image-based detectors often fail in video object detection, since
they often ignore the challenging spatio-temporal characteristics in videos such
as motion blur, object occlusion, etc.

Object Detection in Videos To improve object detection in still images, the
previous works of video object detection often leverage temporal information,
by box-level association and feature aggregation. Box-level association mainly
designs the post-processing steps on image object detector, which can effectively
produce tubelet of objects in videos. Such approaches [7, 11, 16] have been widely-
used to boost performance. On the other hand, feature aggregation mainly takes
nearby frames as video context to enhance feature representation of current
frame [1, 5, 28, 35, 41]. In particular, recent studies have shown that, learning
proposal relations among different frames can alleviate difficulty in detecting
objects in videos [5, 28], via long-term dependency modeling [31, 33]. However,
these approaches mainly focus on intra-video relations of object proposals, while
neglecting object relations among different videos. As a result, they often fail to
detect objects which contain highly-confused appearance or motion characteris-
tics in videos. Alternatively, we design a novel HVR-Net, which can progressively
integrate intra-video and inter-video proposal relations, based on a concise multi-
level triplet selection scheme. This allows to effectively alleviate object confusion
among videos to boost detection performance.

3 Our HVR-Net

Overview. In this section, we systematically introduce our Hierachical Video
Relation Network (HVR-Net), which can boost video object detection by lever-
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Fig. 2. Our HVR-Net Framework. It can effectively boost video object detection, by
integrating intra-video and inter-video proposal relation progressively within a multi-
level triplet selection scheme. More explanations can be found in Section 3.

aging both intra-video and inter-video contexts within a multi-level triplet se-
lection scheme. The whole framework is shown in Fig. 2. First, we design a
video-level triplet selection module. For a target video, it can flexibly select two
confused videos from a set of support videos, i.e., the most dissimilar video in
the same category, the most similar video in the different categories, according
to their CNN features. As a result, we obtain a triplet of confused videos in
each training batch, which can guide our HVR-Net to model object confusion
among videos. Second, we introduce an intra-video proposal relation module.
For each video in the triplet, we feed its sampled frames (e.g., t− s, t and t+ e)
into RPN and ROI layers of Faster RCNN. This produces feature vectors of
object proposals for each frame. Subsequently, we aggregate proposals from sup-
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port frames (e.g., t − s, t + e) to enhance proposals in the target frame t. As
a result, each proposal feature in the target frame t integrates long-term de-
pendencies in the corresponding video, which can address intra-video problem
such as motion blur, occlusion, etc. Third, we develop a proposal-level triplet
selection module. Note that, the intra-video-enhanced proposals mainly contain
object semantics in each individual video, while ignoring object variations among
videos. To model such variations, we select hard proposal triplets from the video
triplet, according to the intra-video-enhanced features. Finally, we design an
inter-video proposal relation module. For each proposal triplet, it can aggregate
proposals from support videos to enhance proposals in the target video. In this
case, each proposal feature further leverages inter-video dependencies to tackle
object confusion among videos.

3.1 Video-Level Triplet Selection

To effectively alleviate inter-video confusions, we start finding a triplet of hard
videos for training. Specifically, we randomly sample K object categories from
training set, and randomly sample N videos per category. Hence, there are K×N
videos in a batch. Then, we randomly select one video as target video, and use
other (K×N −1) videos as a set of support videos. For each video, we randomly
sample one frame as target frame t, and sample other T − 1 frames as support
frames, e.g., frame t− s and frame t+ e in Fig. 2.

For each video, we feed its T frames individually into the CNN backbone
of Faster RCNN for feature extraction. As a result, the feature tensor of this
video is with size of H ×W × C × T , where H ×W and C are respectively the
spatial size and the number of feature channels. Then, we perform global average
pooling along spatial and temporal dimensions of this tensor, which produces a
C-dimension video representation. According to cosine similarity between video
representations, we find the video triplet

Vtriplet = {Vtarget,V+,V−}, (1)

where V+ is the most dissimilar support video in the class which Vtarget belongs
to, and V− is the most similar support video in the other classes.

3.2 Intra-Video Proposal Relation

After finding Vtriplet, we generate object proposals for each video in this triplet.
Specifically, we feed the sampled T frames of each video into RPN and ROI
layers of Faster RCNN, which produces M proposal features per frame.

Recent studies have shown that, spatio-temporal proposal aggregation among
different frames [5, 28] can boost video object detection. Hence, we next in-
troduce intra-video proposal relation module, which builds up proposal depen-
dencies between target frame and support frames in each video. Specifically,
we adapt a concise non-local-style relation module for Vv in the video triplet
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(v ∈ {target,+,−}),

αv
t,m = xv

t,m +
∑
i∈Ω

∑
j

g(xv
t,m,xv

i,j)× xv
i,j , (2)

where xv
t,m is the m-th proposal feature in the target frame t, xv

i,j is the j-th
proposal feature in the support frame i, and i belongs to the set of support frames
Ω (e.g., Ω = {t − s, t + e}). As shown in Eq. (2), we first compare similarity
between xv

t,m and xv
i,j , by a kernel function g(·, ·), e.g., Embedded Gaussian in

[33]. Then, we aggregate xv
t,m by weighted sum over all the proposal features of

support frames. As a result, αv
t,m is an enhance version of xv

t,m, which contains
video-level object semantics to tackle motion blur, object occlusion, etc.

3.3 Proposal-Level Triplet Selection

After intra-video relation module, αv
t,m in Eq. (2) can integrate spatio-temporal

object contexts from video Vv itself. However, it contains little clue to describe
object relation among confused videos. To discover such inter-video relation,
we propose to further select hard proposal triplets, from intra-video-enhanced
proposals in the video triplet Vtriplet. Specifically, we compare cosine similarity
between these proposals, according to their features in Eq. (2). For a proposal
Ptarget
t,m in the target video, we obtain its corresponding proposal triplet,

Ptriplet = {Ptarget
t,m ,P+,P−}, (3)

where P+ is the most dissimilar proposal in the same category, P− is the most
similar proposal in the other categories.

3.4 Inter-Video Proposal Relation

After finding all the proposal triplets, we model relation on each of them in order
to describe object variation among videos. To achieve this goal, we use a concise
non-local-style relation module for each proposal triplet,

βtarget
t,m = αtarget

t,m + f(αtarget
t,m ,α+)×α+ + f(αtarget

t,m ,α−)×α−, (4)

where f(·, ·) is a kernel function (e.g., Embedded Gaussian) for similarity com-
parison, α+ is the intra-video-enhanced feature of hard positive proposal P+,
and α− is the intra-video-enhanced feature of hard negative proposal P−. By
Eq. (4), we further aggregate the proposal Ptarget

t,m in the target video, with inter-
video object relationships. Finally, to effectively reduce object confusions when
performing detection, we introduce the follow loss for a target video,

L = Ldetection + γLrelation, (5)

where Ldetection = Lregression+Lclassification is the tradition detection loss (i.e.,
bbox regression and object classification) on the final proposal features βtarget

t,m
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Fig. 3. HVR-Net Architecture. We flexibly adapt the widely-used Faster RCNN archi-
tecture as our HVR-Net. More implementation details can be found in Section 4.1.

in the target frame. γ is a weight coefficient. Lrelation is a concise triplet-style
metric loss to regularize Eq. (4),

Lrelation = max(d(αtarget
t,m ,α−)− d(αtarget

t,m ,α+) + λ, 0). (6)

Via this loss, we emphasize a discriminative relation constraint when computing
βtarget
t,m in Eq. (4), i.e., d(αtarget

t,m ,α+) > d(αtarget
t,m ,α−)+λ, where d is Euclidean

distance. In this case, βtarget
t,m becomes more discriminative to alleviate inter-

video object confusion, by increasing relation between Ptarget
t,m and P+ as well as

decreasing relation between Ptarget
t,m and P−.

4 Experiments

We mainly evaluate our HVR-Net on the large-scale ImageNet VID dataset [18].
It consists of 3862 training videos (1,122,397 frames) and 555 validation videos
(176,126 frames), with bbox annotations across 30 object categories. Moreover,
we train our model on intersection of ImageNet VID and DET dataset [5, 28],
and report mean Average Precision (mAP) on validation set of VID.

4.1 Implementation Details

Architecture We flexibly adapt Faster RCNN to our HVR-Net with the fol-
lowing details. The architecture is shown in Fig. 3. We use ResNet-101 [13]
as backbone for ablation studies, and also report the results on ResNeXt-101-
32x4d [36] for SOTA comparison. We extract the feature of each sampled frame
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Table 1. Effectiveness of our HVR-Net.

Methods Intra-Video Inter-Video mAP(%)

Baseline: Faster-RCNN - - 73.2
Our HVR-Net ✓ - 80.6↑7.4
Our HVR-Net ✓ ✓ 83.2↑10.0

Table 2. Multi-Level Triplet Selection of Our HVR-Net.

Multi-Level Triplet Selection mAP(%)

Simple 81.0
Our 83.2

after the conv4 stage, in order to select video triplet in a training batch. Re-
gion Proposal Network (RPN) is used to generate proposals from each frame
of the selected video triplet, by using the feature maps after the conv4 stage.
We introduce three intra modules in Fig. 3. Before each of them, we add 1024-
dim fully-connected (FC) layer. Additionally, we use a skip connection between
intra(1) and intra(3), to increase learning flexibility. In this case, the intra(3)
module can use both initial and transformed proposals of support frames to
enhance proposals in the target frame.

We introduce one inter module which is added upon a 1024-dim FC layer.
Additionally, for both intra and inter modules, the kernel function is set as
Embedded Gaussian in [33], where each embedding transformation in this kernel
is a 1024-dim FC layer.

Training Details We implement our HVR-Net on Pytorch, by 8 GPUs of
1080Ti. In each training batch, we randomly sample K = 3 object categories
from training set, and randomly sample N = 3 videos per category. Hence, there
are 9 videos in a batch. Then, we randomly select one video as target video, and
use other 8 videos as the support video set. For each video, we randomly sample
3 frames, where the middle frame is used as target frame. More inplementation
details could be found in supplementary materials.

4.2 Ablation Studies

Effectiveness of HVR-Net We first compare our HVR-Net with the baseline
architecture, i.e., Faster RCNN. As shown in Table 1, our HVR-Net significantly
outperforms Faster RCNN, indicating its superiority in video object detection.
More importantly, HVR-Net with both intra-video and inter-video is better than
that with intra-video only (83.2 vs. 80.6). It demonstrates that, learning proposal
interactions inside each single video is not sufficient to describe category dif-
ferences among videos. When adding inter-video proposal relation module, our
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Table 3. Supervision in Our HVR-Net.

Detection Loss Relation Regularization mAP(%)

✓ - 80.0
✓ ✓ 83.2

Table 4. Number of Intra and Inter Modules in Our HVR-Net.

No. of Intra No. of Inter mAP(%)

2 1 81.8
3 1 83.2
3 2 82.1

Table 5. Number of Testing Frames in Our HVR-Net.

Testing Frames 5 11 17 21 31

mAP(%) 80.5 81.6 82.0 82.9 83.2

HVR-Net can flexibly select hard proposals from confused videos, and effectively
build up relations among these proposals to distinguish object confusions.

Multi-Level Triplet Selection Our HVR-Net is built upon a multi-level
triplet selection scheme, including video-level and proposal-level proposal selec-
tion. To demonstrate the effectiveness, we replace these two selection modules
with a simple approach, i.e., selecting random videos and using all proposals
in each video. In Table 2, when using the straightforward selection, the perfor-
mance of HVR-Net is getting worse. The main reason is that, blindly selected
videos and proposals do not guide our HVR-Net to focus on object confusion
in videos. Alternatively, when we add our video and proposal triplet selection,
HVR-Net can effectively leverage hard proposals of confused videos to learn and
correct inter-video object relations, in order to boost video object detection.

Supervision in HVR-Net As mentioned in Section 3.4, we introduce a re-
lation regularization in Eq. (6), in order to emphasize the correct relation con-
straint on inter-video relation module in Eq. (4). We investigate it in Table 3. As
expected, this regularization can boost HVR-Net by a large margin, by enhanc-
ing similarity between proposals in the same category, and reducing similarity
between proposals in the different categories.

Number of Intra and Inter Relation Modules We investigate the per-
formance of our HVR-Net, with different number of intra-video and inter-video
proposal modules. When changing the number of intra modules (or inter mod-
ules), we fix the number of inter modules (or intra modules). The results are
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Table 6. Comparison with the state-of-the-art methods on ImageNet VID (mAP).

Methods Backbone Post-processing Base detector mAP(%)

D&T[7] ResNet101 - R-FCN 75.8
MANet[32] ResNet101 - R-FCN 78.1
LWDN[15] ResNet101 - R-FCN 76.3
RDN[5] ResNet101 - Faster-RCNN 81.8
LongRange[28] ResNet101 - FPN 81.0
Deng [4] ResNet101 - R-FCN 79.3
PSLA [10] ResNet101+DCN - R-FCN 80.0
THP [40] ResNet101+DCN - R-FCN 78.6
STSN[1] ResNet101+DCN - R-FCN 78.9
Ours ResNet101 - Faster-RCNN 83.2
TCNN [17] DeepID+Craft[37, 23] Tublet Linking RCNN 73.8
STMN [35] ResNet101 Seq-NMS R-FCN 80.5
FGFA[41] Align. Incep.-ResNet Seq-NMS R-FCN 80.1
D&T(τ = 10)[7] ResNet101 Viterbi R-FCN 78.6
D&T(τ = 1)[7] ResNet101 Viterbi R-FCN 79.8
MANet[32] ResNet101 Seq-NMS R-FCN 80.3
ST-Lattice[2] ResNet101 Tublet-Rescore R-FCN 79.6
SELSA[34] ResNet101 Seq-NMS Faster-RCNN 82.5
Deng [4] ResNet101 Seq-NMS R-FCN 80.8
PSLA [10] ResNet101+DCN Seq-NMS R-FCN 81.4
STSN+[1] ResNet101+DCN Seq-NMS R-FCN 80.4
Ours ResNet101 Seq-NMS Faster-RCNN 83.8
D&T[7] ResNeXt101 Viterbi Faster-RCNN 81.6
D&T[7] Inception-v4 Viterbi R-FCN 82.1
LongRange[28] ResNeXt101-32×8d - FPN 83.1
RDN[5] ResNeXt101-64×4d - Faster-RCNN 83.2
RDN[5] ResNeXt101-64×4d Seq-NMS Faster-RCNN 84.5
SELSA[34] ResNeXt101-32×4d - Faster-RCNN 84.3
SELSA[34] ResNeXt101-32×4d Seq-NMS Faster-RCNN 83.7
Ours ResNeXt101-32×4d - Faster-RCNN 84.8
Ours ResNeXt101-32×4d Seq-NMS Faster-RCNN 85.5

shown in Table 4. As expected, when increasing the number of both modules,
the performance of HVR-Net is getting better and tends to become flat. Hence,
in our experiment, we set the number of intra modules as three, and set the
number of inter module as one.

Number of Testing Frames We investigate the performance of HVR-Net,
w.r.t., the number of sampled frames in a testing video. As expected, when
increasing the number of testing frames, the performance of HVR-Net is getting
better and tends to become stable. Hence, we choose the number of testing frames
as 31 in our experiment. Besides, we test HVR-Net by unloading inter-video
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Table 7. Comparison with state-of-the-art methods in mAP.

Methods Fast (mAP) Medium (mAP) Slow (mAP)

FGFA [41] 57.6 75.8 83.5
MANet [32] 56.7 76.8 86.9
Deng[4] 61.1 78.7 86.2
LongRange[28] 64.2 79.5 86.7
Ours 66.6 82.3 88.7

proposal relation module in the testing phase, which achieves the comparable
mAP.

4.3 SOTA Comparison

We compare our HVR-Net with a number of recent state-of-the-art approaches
on ImageNet VID validation set. As shown in Table 6 and Table 7, HVR-Net
achieves the best performance among various settings and object categories.

In Table 6, we first make comparison without any video-level post-processing
techniques. Under the same backbone, We significantly outperform the well-
known approaches such as FGFA [41] and MANet [32], which uses expensive
optical flow as guidance of feature aggregation. More importantly, our HVR-Net
outperform the recent approaches [5, 28] that mainly leverage proposal relations
among different frames for spatio-temporal context aggregation. This further
confirms the effectiveness of learning inter-video proposal relation. Second, we
equip HVR-Net with the widely-used post-processing approach Seq-NMS. Once
again, we outperform other state-of-the-art approaches under the same back-
bone. It shows that, our HVR-Net is compatible and complementary with post-
processing of video object detection, which can further boost performance.

Additionally, we follow FGFA [41] to evaluate detection performance on the
categories of slow, medium, and fast objects, where these three categories are
divided by their average IoU scores between objects across nearby frames, i.e.,
Slow (score>0.9), Medium (score∈[0.7,0.9]), Fast (Others). As shown in Table
7, our HVR-Net boost the detection performance on all these three categories,
showing the importance of inter-video proposal relation for confusion reduction.

4.4 Visualization

Detection Visualization We show the detection result of HVR-Net in Fig. 4.
Specifically, we compare two settings, i.e., baseline with only intra-video proposal
relation module, and HVR-Net with both intra-video and inter-video proposal
relation modules. As expected, when only using intra-video relation aggregation,
baseline fails to recognize the object in the video, e.g., a female lion in Subplot
(a) is mistakenly recognized as a horse with confidence larger than 0.9. The main
reason is that, intra-video relation mainly focuses on what the object looks like
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Fig. 4. Detection Visualization. For each video, the first row shows the baseline with
only intra-video proposal relation module. The second row shows HVR-Net with both
intra-video and inter-video proposal relation modules. Clearly, our inter-video can ef-
fectively guide HVR-Net to tackle object confusion in videos. For example, a female
lion in Subplot (a) looks quite similar to a horse, due to its color and its motion in
this video. As a result, the baseline mistakenly recognizes it as a horse, when only
using intra-video relation aggregation. By introducing inter-video proposal relation,
our HVR-Net successfully distinguish such object confusion in videos. Other subplots
also exhibit the similar result, i.e., it is necessary and important to learn inter-video
proposal relations to boost video object detection.
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Intra-Video Proposal Relation Only Our HVR-Net

domestic cat 

fox

sheep

dog
car

motorcycle

bus

(a)

(b)

motorcycle

dog

car

bus

domestic 
cat 

dog

car

motor-
cycle

bus

domestic 
cat 

fox

sheep

fox

fox
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car

Video

Fig. 5. Proposal Feature Visualization of Video triplet by t-SNE. With intra-video
relation only, proposals of confusing objects mistakenly stay together as a cluster (i.e.
domestic cats and foxes in (b), cars and motobikes in (a)). Our HVR-Net can learn
the discriminative cues and clarify those proposals of confusing objects. For each video
triplet, three target frames and their proposals are shown.

and how it moves in this video. For the video in Subplot (a), the appearance
and motion of this lion are quite similar to a horse, leading to high confusion.
Alternatively, when we introducing inter-video proposal relation module, HVR-
Net successfully distinguish such object confusion in videos. Hence, it is necessary
and important to learn inter-video proposal relations for video object detection.

Video and Proposal Feature Visualization in HVR-Net We visualize
the proposal features of target frames in video triplets with t-SNE in Fig. 5.
As expected, with inter-video proposal relation integrated, the proposal features
of confusing objects can be clarified, while baseline, with intra-video proposal
relations only, mistakenly clusters the proposals not belong to same category,
e.g., in Fig. 5 (b), proposals of domestic cat mistakenly stay with proposals of
fox together as a cluster, while our HVR-Net can learn a compact cluster (e.g.,
proposals of fox) and assign proposals of domestic cat correctly. The reason is
that the object confusion is clarified with inter-video proposal relation integrated,
leading to enlarged difference of confused proposals in feature embedding.
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Fig. 6. Comparison of mAP per Category. Top-5 improved most categories and top-5
declined most categories are shown in subplot (a) and (b) separately. For each category,
mAP is shown for baseline with only intra-video proposal relation module and our
HVR-Net.

Performance Analysis on Object Categories We show the accuracy (mAP)
comparison of 10 categories with our HVR-Net and baseline with intra-video
proposal relation only. Top-5 improved most categories and top-5 declined most
categories are shown in Fig. 6. The proposed inter-video proposal relation module
boosts performance a large margin in cattle, rabbit, lion and other mammal
categories. The reason is that objects in those categories usually share similar
motion and appearance characteristics. With the inter-video proposal relation
integrated, the object confusion is clarified, as illustrated in Fig. 4.

5 Conclusion

In this work, we propose to learn inter-video object relations for video object
detection. Based on a flexible multi-level triplet selection scheme, we develop a
Hierachical Video Relation Network (HVR-Net), which can effectively leverage
intra-video and inter-video relation in a unified manner, in order to progressively
tackle object confusions in videos. We perform extensive experiments on the
large-scale video object detection benchmark, i.e., ImageNet VID. The results
show that our HVR-Net is effective and important for video object detection.
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