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Abstract. We introduce TV show Retrieval (TVR), a new multimodal
retrieval dataset. TVR requires systems to understand both videos and
their associated subtitle (dialogue) texts, making it more realistic. The
dataset contains 109K queries collected on 21.8K videos from 6 TV
shows of diverse genres, where each query is associated with a tight
temporal window. The queries are also labeled with query types that
indicate whether each of them is more related to video or subtitle or both,
allowing for in-depth analysis of the dataset and the methods that built
on top of it. Strict qualification and post-annotation verification tests
are applied to ensure the quality of the collected data. Additionally, we
present several baselines and a novel Cross-modal Moment Localization
(XML) network for multimodal moment retrieval tasks. The proposed
XML model uses a late fusion design with a novel Convolutional Start-
End detector (ConvSE), surpassing baselines by a large margin and with
better efficiency, providing a strong starting point for future work.1

1 Introduction

Enormous numbers of multimodal videos (with audio and/or text) are being
uploaded to the web every day. To enable users to search through these videos
and find relevant moments, an efficient and accurate method for retrieval of
video data is crucial. Recent works [13,8] introduced the task of Single Video
Moment Retrieval (SVMR), whose goal is to retrieve a moment from a single
video via a natural language query. Escorcia et al. [7] extended SVMR to Video
Corpus Moment Retrieval (VCMR), where a system is required to retrieve the
most relevant moments from a large video corpus instead of from a single video.
However, these works rely on a single modality (visual) as the context source for
retrieval, as existing moment retrieval datasets [13,25,8,19] are based on videos.
In practice, videos are often associated with other modalities such as audio or
text, e.g., subtitles for movie/TV-shows or audience discourse accompanying live
stream videos. These associated modalities could be equally important sources
for retrieving user-relevant moments. Fig. 1 shows a query example in the VCMR
task, in which both videos and subtitles are vital to the retrieval process.

1 TVR dataset and code are publicly available: https://tvr.cs.unc.edu/. We also
introduce TVC for multimodal captioning at https://tvr.cs.unc.edu/tvc.html.

https://tvr.cs.unc.edu/
https://tvr.cs.unc.edu/tvc.html


2 Jie Lei, Licheng Yu, Tamara L. Berg, Mohit Bansal

Query: Rachel explains to her dad on the phone why she can't marry her fiancé.
Query Type: video + subtitle

00:00:00,327  --> 00:00:04,320
Whitney: This is my fiancé, …

00:00:59,486 --> 00:01:02,046
Whitney: We'll do the paternity …

00:01:25,979 --> 00:01:28,573
Kutner: You're in good spirits …

…00:00:32,192 --> 00:00:34,626
House: Nine months later, …

……

…

00:00:03,897 --> 00:00:07,731
Ross: Somebody seems to be …

00:00:43,003 --> 00:00:45,597
Mr. Waltham: In a moment, …

00:00:56,950 --> 00:01:01,353
Joshua: I need a whole new …

…00:00:36,497 --> 00:00:38,761
Rachel: Okay, bye. Call me …

……

00:00:07,786 --> 00:00:13,156
Monica: Who wasn't invited ...

00:00:44,223 --> 00:00:52,929
Rachel: Daddy, I can't marry him…

00:00:58,771 --> 00:01:05,032
"If I let go of my hair, …"

…00:00:35,180 --> 00:00:37,774
"Tuna or egg salad! Decide!"

……

V
id
eo
1

V
id
eo
2

V
id
eo
3

Fig. 1: A TVR example in the VCMR task. Ground truth moment is shown in
green box. Colors in the query indicate whether the words are related to video
(blue) or subtitle (magenta) or both (black). To better retrieve relevant moments
from the video corpus, a system needs to comprehend both videos and subtitles

Hence, to study multimodal moment retrieval with both video and text con-
texts, we propose a new dataset - TV show Retrieval (TVR). Inspired by recent
works [30,18,20] that built multimodal datasets based on Movie/Cartoon/TV
shows, we select TV shows as our data resource as they typically involve rich
social interactions between actors, involving both activities and dialogues. During
data collection, we present annotators with videos and associated subtitles to
encourage them to write multimodal queries. A tight temporal timestamp is
labeled for each video-query pair. We do not use predefined fixed segments (as
in [13]) but choose to freely annotate the timestamps for more accurate localiza-
tion. Moreover, query types are collected for each query to indicate whether it
is more related to the video, the subtitle, or both, allowing deeper analyses of
systems. To ensure data quality, we set up strict qualification and post-annotation
quality verification tests. In total, we have collected 108,965 high-quality queries
on 21,793 videos from 6 TV shows, producing the largest dataset of this kind.
Compared to existing datasets [13,25,8,19], we show TVR has greater linguistic
diversity (Fig. 3) and involves more actions and people in its queries (Table 2).

With the TVR dataset, we extend the moment retrieval task to a more realis-
tic multimodal setup where both video and subtitle text need to be considered
(i.e., ‘Video-Subtitle Moment Retrieval’). In this paper, we focus on the corpus-
level task VCMR , as SVMR can be viewed as a simplified version of VCMR in
which the ground-truth video is given beforehand. Prior works [13,8,14,32,9,7]
explore the moment retrieval task as a ranking problem over a predefined set
of moment proposals. These proposals are usually generated using handcrafted
heuristics [13,14] or sliding windows [8,32,9,7] and are usually not temporally pre-
cise, leading to suboptimal performance. Furthermore, these methods may not be
easily scaled to long videos: the number of proposals often increase quadratically
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with video length, making computational costs infeasible. Recent methods [10,21]
adapt start-end span predictors [28,3] from the reading comprehension task to
moment retrieval, by early fusion of video and language (query) features, then
applying neural networks on the fused features to predict start-end probabilities.
It has been shown [10] that using span predictors outperforms several proposal-
based methods. Additionally, start-end predictors allow a hassle-free extension to
long videos, with only linearly increased computational cost. While [10] has shown
promising results in SVMR, it is not scalable to VCMR as it uses early fusion.
Consider retrieving N queries in a corpus of M videos. This requires running
several layers of LSTM [15] on M ·N early fused representations to generate the
probabilities, which is computationally expensive for large values of M and N .

To address these challenges, we propose Cross-modal Moment Localization
(XML), a late fusion approach for VCMR. In XML, videos (or subtitles) and
queries are encoded independently, thus only M+N neural network operations
are needed. Furthermore, videos can be pre-encoded and stored. At test time,
one only needs to encode new user queries, which greatly reduces user waiting
time. Late fusion then integrates video and query representations with highly
optimized matrix multiplication to generate 1D query-clip similarity scores over
the temporal dimension of the videos. To produce moment predictions from these
similarity scores, a naive approach is to rank the aforementioned sliding window
proposals with confidence scores computed as the average of the similarity scores
inside each proposal region. Alternatively, one can use TAG [37] to progressively
group top-scored clips. However, these methods rely on handcrafted rules and are
not trainable. Inspired by image edge detectors [29], we propose Convolutional
Start-End detector (ConvSE) that learns to detect start (up) and end (down)
edges in the similarity signals with two trainable 1D convolution filters. Using
the same backbone net, we show ConvSE has better performance than both
approaches. With late fusion and ConvSE, we further show XML outperforms
previous methods [13,7,10], and does this with better computational efficiency.

To summarize, our contributions are 2-fold: (i) We introduce TVR dataset, a
large-scale multimodal moment retrieval dataset with 109K high-quality queries
of great linguistic diversity.2 (ii) We propose XML, an efficient approach that
uses a late fusion design for the VCMR task. The core of XML is our novel
ConvSE module which learns to detect start-end edges in 1D similarity signals.
Comprehensive experiments and analyses show XML surpasses all presented
baselines by a large margin and runs with better efficiency.

2 Related Work

The goal of natural language-based moment retrieval is to retrieve relevant
moments from a single video [13,8] or from a large video corpus [7]. In the
following, we present a brief overview of the community efforts on these tasks
and make distinctions between existing works and ours.

2 We also collected a new multimodal captioning dataset with 262K captions, named
as TV show Caption (TVC) https://tvr.cs.unc.edu/tvc.html

https://tvr.cs.unc.edu/tvc.html
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Datasets. Several datasets have been proposed for the task, e.g., DiDeMo [13],
ActivityNet Captions [19], CharadesSTA [8], and TACoS [25], where queries can
be localized solely from video. TVR differs from them by requiring additional text
(subtitle) information in localizing the queries. Two types of data annotation have
been explored in previous works: (i) uniformly chunking videos into segments and
letting an annotator pick one (or more) and write an unambiguous description [13].
For example, moments in DiDeMo [13] are created from fixed 5-second segments.
However, such coarse temporal annotations are not well aligned with natural
moments. In TVR, temporal windows are freely selected to more accurately
capture important moments. (ii) converting a paragraph written for a whole
video into separate query sentences [25,8,19]. While it is natural for people to
use temporal connectives (e.g., ‘first’, ‘then’) and anaphora (e.g., pronouns) [27]
in a paragraph, these words make individual sentences less suitable as retrieval
queries. In comparison, the TVR annotation process encourages annotators to
write queries individually without requiring the context of a paragraph. Besides,
TVR also has a larger size and greater linguistic diversity, see Sec. 3.2.

Methods. Existing works [13,8,14,32,9,7] pose moment retrieval as ranking a
predefined set of moment proposals. These proposals are typically generated with
handcrafted rules [13,14] or sliding windows [8,32,9,7]. Typically, such proposals
are not temporally precise and are not scalable to long videos due to high
computational cost. [8,32,9] alleviate the first with a regression branch that
offsets the proposals. However, they are still restricted by the coarseness of the
initial proposals. Inspired by span predictors in reading comprehension [28,3]
and action localization [22], we use start-end predictors to predict start-end
probabilities from early fused query-video representations. Though these methods
can be more flexibly applied to long videos and have shown promising performance
on single video moment retrieval, the time cost of early fusion becomes unbearable
when dealing with the corpus level moment retrieval problem: they require early
fusing every possible query-video pair [7]. Proposal based approaches MCN [13]
and CAL [7] use a late fusion design, in which the video representations can
be pre-computed and stored, making the retrieval more efficient. The final
moment predictions are then made by ranking the Squared Euclidean Distances
between the proposals w.r.t. a given query. However, as they rely on predefined
proposals, MCN and CAL still suffer from the aforementioned drawbacks, leading
to less precise predictions and higher costs (especially for long videos). Recent
works [35,4,36] consider word-level early fusion with the videos, which can be
even more expensive. In contrast, XML uses a late fusion design with a novel
Convolutional Start-End (ConvSE) detector, which produces more accurate
moment predictions while reducing the computational cost.

3 Dataset

Our TVR dataset is built on 21,793 videos from 6 long-running TV shows across
3 genres (sitcom, medical, crime), provided by TVQA [20]. Videos are paired



TVR: A Large-Scale Dataset for Video-Subtitle Moment Retrieval 5

with subtitles and are on average 76.2 seconds in length. In the following, we
describe how we collected TVR and provide a detailed analysis of the data.

3.1 Data Collection

We used Amazon Mechanical Turk (AMT) for TVR data collection. Each AMT
worker was asked to write a query using information from the video and/or subtitle,
then mark the start and end timestamps to define a moment that matches the
written query. This query-moment pair is required to be a unique match within
the given video, i.e., the query should be a referring expression [17,13] that
uniquely localizes the moment. We additionally ask workers to select a query type
from three types: video-only - queries relevant to the visual content only, sub-only
- queries relevant to the subtitles only, and video+sub - queries that involve both.
In our pilot study, we found workers preferred to write sub-only queries. A similar
phenomenon was observed in TVQA [20], where people can achieve 72.88% QA
accuracy by reading the subtitles only. Therefore, to ensure that we collect a
balance of queries requiring one or both modalities, we split the data annotation
into two rounds - visual round and textual round. For the visual round, we
encourage workers to write queries related to the visual content, including both
video-only and video+sub queries. For the textual round, we encourage sub-only
and video+sub queries. We ensure data quality with the following strategies:3

Qualification Test. We designed a set of 12 multiple-choice questions as our
qualification test and only let workers who correctly answer at least 9 questions
participate in our annotation task, ensuring that workers understand our task
requirements well. In total, 1,055 workers participated in the test, with a pass
rate of 67%. Adding this qualification test greatly improved data quality.

Automatic Check. During collection, we used an automatic tool checking that
all required annotations (query, timestamps, etc) have been performed and each
query contains at least 8 words and is not copied from the subtitle.

Manual Check. Additional manual check of the collected data was done in house
throughout the collection process. Those disqualified queries were re-annotated
and workers with disqualified queries were removed from our worker list.

Post-Annotation Verification. To verify the quality of the collected data, we
performed a post-annotation verification experiment. We set up another AMT
task where workers were required to rate the quality of the collected query-
moment pairs based on relevance, is the query-moment pair a unique-match, etc.
The rating was done in a likert-scale manner with 5 options: strongly agree, agree,
neutral, disagree and strongly disagree. Results show that 92% of the pairs have a
rating of at least neutral. We further analyzed the group of queries that were rated
as strongly disagree, and found that 80% of them were still of acceptable quality:
e.g., slightly mismatched timestamps (≤1 sec.). This verification was conducted
on 3,600 query-moment pairs. Details are presented in the supplementary file.

3 We present a pipeline figure of our data collection procedure in the supplementary.
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Table 1: Comparison of TVR with existing moment retrieval datasets. Q stands
for query. Q context indicate which modality the queries are related. Free st-ed
indicates whether the timestamps are freely annotated. Individual Q means the
queries are collected as individual sentences, rather than sentences in paragraphs

Dataset Domain #Q/#videos
Vocab. Avg. Avg. len. (s) Q context Free Q type Individual
size Q len. moment/video video text st-ed anno. Q

TACoS [25] Cooking 16.2K / 0.1K 2K 10.5 5.9 / 287 X - X - -
DiDeMo [13] Flickr 41.2K / 10.6K 7.6K 8.0 6.5 / 29.3 X - - - X
ActivityNet Captions [19] Activity 72K / 15K 12.5K 14.8 36.2 / 117.6 X - X - -
CharadesSTA [8] Activity 16.1K / 6.7K 1.3K 7.2 8.1 / 30.6 X - X - -

TVR TV show 109K / 21.8K 57.1K 13.4 9.1 / 76.2 X X X X X

Fig. 2: Distributions of moment (left) and query (right) lengths. Compared
to existing moment retrieval datasets [25,13,19,8], TVR has relatively shorter
moments (normalized) and longer queries. Best viewed digitally with zoom

Fig. 3: Left : #unique 4-gram as a function of #queries. Right : CDF of queries
ordered by frequency, to obtain this plot, we sampled 10K queries from each
dataset, we consider two queries to be the same if they exact match, after
tokenization and lemmatization, following [34]. Compared to existing moment
retrieval datasets [25,13,19,8], TVR has greater diversity, i.e., it has more unique
4-grams and almost every TVR query is unique. Best viewed digitally with zoom

3.2 Data Analysis and Comparison

Table 1 shows an overview of TVR and its comparisons with existing moment re-
trieval datasets [25,8,19,13]. TVR contains 109K human annotated query-moment
pairs on 21.8K videos, making it the largest of its kind. Moments have an average
length of 9.1 seconds, and are annotated with tight start and end timestamps,
enabling training and evaluating on more precise localization. Compared to
existing datasets, TVR has relatively shorter (video-length normalized) moments
and longer queries (Fig. 2). It also has greater linguistic diversity (Fig. 3): it
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Table 2: Percentage of queries that have multiple actions or involve multiple
people. Statistics is based on 100 manually labeled queries from each dataset. We
also show query examples, with unique person mentions underlined and actions
in bold. Compared to existing datasets, TVR queries typically have more people
and actions and require both video and sub (subtitle) context

Dataset
#actions #people

Query examples (query type)≥2 (%) ≥2 (%)

TACoS [25] 20 0
She rinses the peeled carrots off in the sink. (video)
The person removes roots and outer leaves and rewashes the leek. (video)

CharadesSTA [8] 6 12
A person is eating food slowly. (video)

A person is opening the door to a bedroom. (video)

ActivityNet
44 44

He then grabs a metal mask and positions himself correctly on the floor. (video)
Caption [19] The same man comes back and lifts the weight over his head again. (video)

DiDeMo [13] 6 10
A dog shakes its body. (video)
A lady in a cowboy hat claps and jumps excitedly. (video)

TVR 67 66
Bert leans down and gives Amy a hug who is standing next to Penny. (video)

Taub argues with the patient that fighting in Hockey undermines the sport. (sub)

Chandler points at Joey while describing a woman who wants to date him. (video+sub)

has more unique 4-grams and almost every query is unique, making the textual
understanding of TVR more challenging. As TVR is collected on TV shows,
query-moment matching often involves understanding rich interactions between
characters. Table 2 shows a comparison of the percentages of queries that involve
more than one action or person across different datasets. 66% of TVR queries
involve at least two people and 67% involve at least two actions, both of which are
significantly higher than those of other datasets. This makes TVR an interesting
testbed for studying multimodal interactions between people. Additionally, each
TVR query is labeled with a query type, indicating whether this query is based
on video, subtitle or both, which can be used for deeper analyses of the systems.

4 Cross-modal Moment Localization (XML)

In VCMR, the goal is to retrieve a moment from a large video corpus V={vi}ni=1

given a query qj . Each video vi is represented as a list of consecutive short
clips, i.e., vi=[ci,1, ci,2, ..., ci,l]. In TVR, each short clip is also associated with
temporally aligned subtitle sentences. The retrieved moment is denoted as
vi[tst:ted]=[ci,tst , ci,tst+1, ..., ci,ted ]. To address VCMR, we propose a hierarchical
Cross-modal Moment Localization (XML) network. XML performs video retrieval
(VR) in its shallower layers and more fine-grained moment retrieval in its deeper
layers. It uses a late fusion design with a novel Convolutional Start-End (ConvSE)
detector, making the moment predictions efficient and accurate.

4.1 XML Backbone Network

Input Representations. To represent videos, we consider both appearance and
motion features. For appearance, we extract 2048D ResNet-152 [12] features at
3FPS and max-pool the features every 1.5 seconds to get a clip-level feature.
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Fig. 4: Cross-modal Moment Localization (XML) model overview. Self =Self
Encoder, Cross=Cross Encoder. We describe XML Backbone in Sec. 4.1, ConvSE
module in Sec. 4.2 and show XML’s training and inference procedure in Sec. 4.3

For motion, we extract 1024D I3D [2] features every 1.5 seconds. The ResNet-
152 model is pre-trained on ImageNet [5] for image recognition, and the I3D
model is pre-trained on Kinetics-600 [16] for action recognition. The final video
representation is the concatenation of the two features after L2-normalization,
denoted as Ev ∈ Rl×3072, where l is video length (#clips). We extract con-
textualized text features using a 12-layer RoBERTa [23]. Specifically, we first
fine-tune RoBERTa using the queries and subtitle sentences in TVR train-split
with MLM objective [6], then fix the parameters to extract contextualized token
embeddings from its second-to-last layer [21]. For queries, we directly use the
extracted token embeddings, denoted as Eq ∈ Rlq×768, where lq is query length
(#words). For subtitles, we first extract token-level embeddings, then max-pool
them every 1.5 seconds to get a 768D clip-level feature vector. We use a 768D
zero vector if encountering no subtitle. The final subtitle embedding is denoted as
Es ∈ Rl×768. The extracted features are projected into a low-dimensional space
via a linear layer with ReLU [11]. We then add learned positional encoding [6] to
the projected features. Without ambiguity, we reuse the symbols by denoting the
processed features as Ev ∈ Rl×d, Es ∈ Rl×d, Eq ∈ Rlq×d, where d is hidden size.

Query Encoding. As TVR queries can be related to either video or subtitle, we
adopt a modular design to dynamically decompose the query into two modularized
vectors. Specifically, the query feature is encoded using a Self-Encoder, consisting
of a self-attention [31] layer and a linear layer, with a residual [12] connection
followed by layer normalization [1]. We denote the encoded query as Hq ∈ Rlq×d.
Then, we apply two trainable modular weight vectors wm ∈ Rd, m ∈ {v, s} to
compute the attention scores of each query word w.r.t. the video (v) or subtitle

(s). The scores are used to aggregate the information of Hq={hq
r }

lq
r=1 to generate
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modularized query vectors qm ∈ Rd [33]:

amr =
exp(wT

mhq
r)∑lq

k=1 exp(wT
mhq

k)
, qm =

lq∑
r=1

amr hq
r , where m ∈ {v, s}. (1)

Context Encoding. Given the video and subtitle features Ev, Es, we use two
Self-Encoders to compute their single-modal contextualized features Hv

0 ∈ Rl×d

and Hs
0 ∈ Rl×d. Then, we encode their cross-modal representations via Cross-

Encoder. which takes as input the self-modality and cross-modality features, and
encodes the two via cross-attention [31] followed by a linear layer, a residual
connection, a layer normalization, and another Self-Encoder. We denote the final
video and subtitle representations as Hv

1 ∈ Rl×d and Hs
1 ∈ Rl×d, respectively.

4.2 Convolutional Start-End Detector

Given Hv
1 , H

s
1 and qv,qs, we compute query-clip similarity scores Squery-clip ∈ Rl:

Squery-clip =
1

2
(Hv

1qv +Hs
1qs). (2)

To produce moment predictions from Squery-clip, one could rank sliding window
proposals with confidence scores computed as the average of scores in each
proposal region, or use TAG [37] to progressively group top-scored regions.
However, both methods require handcrafted rules and are not trainable. Inspired
by edge detectors in image processing [29], we propose Convolutional Start-End
detector (ConvSE) with two 1D convolution filters to learn to detect start (up)
and end (down) edges in the score curves. Clips inside a semantically close span
will have higher similarity to the query than those outside, naturally forming
detectable edges around the span. Fig. 4 (right) and Fig. 7 show examples of the
learned ConvSE filters applied to the similarity curves. Specifically, we use two
trainable filters (no bias) to generate the start (st) and end (ed) scores:

Sst = Conv1Dst(Squery-clip), Sed = Conv1Ded(Squery-clip). (3)

The scores are normalized with softmax to output the probabilities Pst, Ped ∈ Rl.
In Sec. 5.3, we show ConvSE outperforms the baselines and is also interpretable.

4.3 Training and Inference

Video Retrieval. Given the modularized queries qv,qs and the encoded contexts
Hv

0 , H
s
0 , we compute the video-level retrieval (VR) score as:

svr =
1

2

∑
m∈{v,s}

max(
Hm

0

‖Hm
0 ‖

qm

‖qm‖
). (4)

This essentially computes the cosine similarity between each clip and query and
picks the maximum. The final VR score is the average of the scores from the two
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modalities. During training, we sample two negative pairs (qi, vj) and (qz, vi) for
each positive pair of (qi, vi) to calculate a combined hinge loss as [33]:

Lvr =
1

n

∑
i

[max(0, ∆+ svr(vj |qi)− svr(vi|qi))

+ max(0, ∆+ svr(vi|qz)− svr(vi|qi))]. (5)

Single Video Moment Retrieval. Given the start, end probabilities Pst, Ped,
we define single video moment retrieval loss as:

Lsvmr = − 1

n

∑
i

[log(Pi,st(t
i
st)) + log(Pi,ed(tied))], (6)

where tist and tied are the ground-truth indices. At inference, predictions can be
generated from the probabilities in linear time using dynamic programming [28].
The confidence score of a predicted moment [t

′

st, t
′

ed] is computed as:

ssvmr(t
′

st, t
′

ed) = Pst(t
′

st)Ped(t
′

ed), t
′

st ≤ t
′

ed. (7)

To use length prior, we add an additional constraint Lmin ≤ t
′

ed− t
′

st + 1 ≤ Lmax.
For TVR, we set Lmin=2 and Lmax=16 for clip length 1.5 seconds.

Video Corpus Moment Retrieval. Our final training loss combines both:
Lvcmr = Lvr + λLsvmr, where the hyperparameter λ is set as 0.01. At inference,
we compute the VCMR score with the following aggregation function:

svcmr(vj , tst, ted|qi) = ssvmr(tst, ted|vj , qi)exp(αsvr(vj |qi)), (8)

where svcmr(vj , tst, ted|qi) is the retrieval score of moment vj [tst:ted] w.r.t. the
query qi. The exponential term and the hyperparameter α are used to balance
the importance of the two scores. A higher α encourages more moments from
top retrieved videos. Empirically, we find α=20 works well. At inference, for
each query, we first retrieve the top 100 videos based on svr, then rank all the
moments in the 100 videos by svcmr to give the final predictions.

5 Experiments

5.1 Data, Metrics and Implementation Details

Data. TVR contains 109K queries from 21.8K videos. We split TVR into 80%
train, 10% val, 5% test-public and 5% test-private splits such that videos and
their associated queries appear in only one split. test-public will be used for a
public leaderboard, test-private is reserved for future challenges.

Metrics. Following [7,8], we use average recall at K (R@K) over all queries as
our metric. A prediction is correct if: (i) predicted video matches the ground
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Table 3: Baseline comparison on TVR test-public set, VCMR task. Model refer-
ences: MCN [13], CAL [7], MEE [24], ExCL [10]

Model w/ video w/ sub.
IoU=0.5 IoU=0.7 Runtime ↓

R@1 R@5 R@10 R@100 R@1 R@5 R@10 R@100 (seconds)

Chance - - 0.00 0.02 0.04 0.33 0.00 0.00 0.00 0.07
Proposal based Methods
MCN X X 0.02 0.15 0.24 2.20 0.00 0.07 0.09 1.03 -
CAL X X 0.09 0.31 0.57 3.42 0.04 0.15 0.26 1.89 -
Retrieval + Re-ranking
MEE+MCN X X 0.92 3.69 5.58 17.91 0.42 1.89 2.98 10.84 66.8
MEE+CAL X X 0.97 3.75 5.80 18.66 0.39 1.69 2.98 11.52 161.5
MEE+ExCL X X 0.92 2.53 3.60 6.01 0.33 1.19 1.73 2.87 1307.2

XML X X 7.25 16.24 21.65 44.44 3.25 8.71 12.49 29.51 25.5

truth; (ii) predicted span has high overlap with the ground truth where temporal
intersection over union (IoU) is used to measure overlap.

Implementation Details. All baseline comparisons are configured to use the
same hidden size as XML. We train the baselines following the original papers.
We use the same features for all the models. To support retrieval using subtitle for
the baselines, we add a separate subtitle stream and average the final predictions
from both streams. Non-maximum suppression is not used as we do not observe
consistent performance gain on the val set.

5.2 Baselines Comparison

In this section, we compare XML with baselines on TVR test-public set (5,445
queries and 1,089 videos). We report the runtime for top-performing methods,
averaged across 3 runs on an RTX 2080Ti GPU. The time spent on data load-
ing, pre-processing, backend model (i.e., ResNet-152, I3D, RoBERTa) feature
extraction, etc, is ignored since they should be similar for all methods. We mainly
focus on the VCMR task here. In the supplementary file, we include the following
experiments: (1) model performance on single video moment retrieval and video
retrieval tasks; (2) computation and storage cost comparison in a 1M videos
corpus; (3) Temporal Endpoint Feature (TEF) [13] model results; (4) feature
and model ablation studies; (5) VCMR results on DiDeMo [13] dataset, etc.

Proposal based Methods. MCN [13] and CAL [7] pose the moment retrieval
task as a ranking problem in which all moment proposal candidates are ranked
based on their squared Euclidean Distance with the queries. For VCMR, they
require directly ranking all the proposals (95K in the following experiments) in
the video corpus for each query, which can be costly and difficulty. In contrast,
XML uses a hierarchical design that performs video retrieval in its shallow layers
and moment retrieval on the retrieved videos in its deeper layers. In Table 3,
XML is showing to have significantly higher performance than MCN and CAL.

Retrieval+Re-ranking Methods. We also compare to methods under the
retrieval+re-ranking setting [7] where we first retrieve a set of candidate videos
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Fig. 5: Performance breakdown of XML models that use only video, subtitle, or
both as inputs, by different query types (with percentage of queries shown in
brackets). The performance is evaluated on TVR val set for VCMR

using a given method and then re-rank the moment predictions in the candidate
videos using another method. Specifically, we first use MEE [24] to retrieve 100
videos for each query as candidates. Then, we use MCN and CAL to rank all of the
proposals in the candidate videos. ExCL [10] is an early fusion method designed
for SVMR, with a start-end predictor. We adapt it to VCMR by combining
MEE video-level scores with ExCL moment-level scores, using Eq. 8. The results
are shown in Table 3. Compared to their purely proposal based counterparts
(i.e., MCN and CAL), both MEE+MCN and MEE+CAL achieve significant
performance gain, showing the benefit of reducing the number of proposals needed
to rank (by reducing the number of videos). However, they are still far below XML
as they use very coarse-grained, predefined proposals. In Sec. 5.3, we show our
start-end detector performs consistently better than predefined proposals [7,37]
under our XML framework. Compared to MEE+ExCL, XML achieves 9.85×
performance gain (3.25 vs. 0.33, R@1 IoU=0.7) and 51.3× speedup (25.5s vs.
1307.2s). In the supplementary file, we show that this speedup can be even more
significant (287×) when retrieving on a larger scale video corpus (1M videos) with
pre-encoded video representations. This huge speedup shows the effectiveness of
XML’s late fusion design over ExCL’s early fusion design.

5.3 Model Analysis

Video vs. Subtitle. In Fig. 5, we compare to XML variants that use only video
or subtitle. We observe that the full video+subtitle model has better overall
performance than single modality models (video and subtitle), demonstrating
that both modalities are useful. We also see that a model trained on one modality
does not perform well on the queries tagged by another modality, e.g., the video
model performs much worse on sub-only queries compared to the subtitle model.

ConvSE: Comparison and Analysis. To produce moment predictions from
the query-clip similarity signals, we proposed ConvSE that learns to detect start
(up) and end (down) edges in the 1D similarity signals. To show its effectiveness,
we compare ConvSE with two baselines under our XML backbone network: (1)
sliding window, where we rank proposals generated by multi-scale sliding windows,
with proposal confidence scores calculated as the average of scores inside each
proposal region. On average, it produces 87 proposals per video. The proposals
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Comparison of moment generation methods Comparison of ConvSE filters with different kernel size

Fig. 6: ConvSE Analysis. Left : comparison of moment generation methods. Right :
comparison of ConvSE filters with different kernel sizes (k)

Query-Clip Similarity

Conv1Dst = [-0.1001, -0.1675, 0.3975, 0.5076, 0.2873]
<latexit sha1_base64="j7X5UVMw9MbRrXr88mszURBHojc="></latexit>

Conv1Ded = [ 0.6163, 0.2625, -0.0469, -0.1200, -0.0478]
<latexit sha1_base64="cacmkhPUSpb5UoA2T5A3ZWnhW8A="></latexit>

Filter Response

Start-End Probability

Learned ConvSE filter weights:

Start

GT

GT

End

Fig. 7: Examples of learned ConvSE filters applying on query-clip similarity scores.
Ground truth span is indicated by the two arrows labeled by GT. Note the two
filters output stronger responses on the up (Start) and down (End) edges

used here are the same as the ones used for MCN and CAL in our previous
experiments; (2) TAG [37] that progressively groups top-scored clips with the
classical watershed algorithm [26]. Since these two methods do not produce
start-end probabilities, we cannot train the model with the objective in Eq. 6.
Thus, we directly optimize the query-clip similarity scores in Eq.2 with Binary
Cross Entropy loss: we assign a label of 1 if the clip falls into the ground-truth
region, 0 otherwise. While both sliding window and TAG approaches rely on
handcrafted rules, ConvSE learns from data. We show in Fig. 6 (left), under
the same XML backbone network, ConvSE has consistent better performance
across all IoU thresholds on both VCMR and SVMR tasks.

In Fig. 6 (right), we vary the kernel size (k) of ConvSE filters. While the
performance is reasonable when k=3, 5 or 7, we observe a significant performance
drop at k=1. In this case, the filters essentially degrade to scaling factors on the
scores. This comparison demonstrates that neighboring information is important.
Fig. 7 shows examples of using the learned convolution filters: the filters
output stronger responses to the up (Start) and down (End) edges of the score
curves and thus detect them. Interestingly, the learned weights Conv1Dst and
Conv1Ded in Fig. 7 are similar to the edge detectors in image processing [29].
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Barney: But still, you think, this is different. 
Barney: The platinum rule doesn't apply to me. And that's step 2.

Barney: He is our Neil Armstrong. Spacesuit up, Ted, 
Barney: 'cause you're going to the moon.

Barney: But still, you think, this is different. 
Barney: The platinum rule doesn't apply to me. And that's step 2.

Rachel: Three-pound lobster? 
Joey: You know what? Bring her both. And I'll have the same.

Rachel: Three-pound lobster? 
Joey: You know what? Bring her both. And I'll have the same.

Not that I don't enjoy talking about high school... because I do. 
Maybe we can talk about something else.

Fig. 8: XML prediction examples for VCMR, on TVR val set. We show top-3
retrieved moments for each query. Top row shows modular attention scores for
query words. Left column shows a correct prediction, right column shows a failure.
Text inside dashed boxes is the subtitles associated with the predicted moments.
Orange box shows the predictions, green bar shows the ground truth

Qualitative Analysis. Fig. 8 shows XML example predictions on the TVR val
set. In the top row, we also show the query word attention scores for video and
subtitle, respectively. Fig. 8 (left) shows a correct prediction. The top-2 moments
are from the same video and are both correct. The third moment is retrieved
from a different video. While incorrect, it is still relevant as it also happens in
a ‘restaurant’. Fig. 8 (right) shows a failure. It is worth noting that the false
moments are very close to the correct prediction with minor differences (‘on the
shoulder’ vs. ‘around the shoulder’). Besides, it is also interesting to see which
words are important for video or subtitle. For example, the words ‘waitress’,
‘restaurant’, ‘menu’ and ‘shoulder’ get the most weight for video; while the words
‘Rachel’, ‘menu’, ‘Barney’, ‘Ted’ have higher attention scores for subtitle.

6 Conclusion

In this work, we present TVR, a large-scale dataset designed for multimodal
moment retrieval tasks. Detailed analyses show TVR is of high quality and is
more challenging than previous datasets. We also propose Cross-modal Moment
Localization (XML), an efficient model suitable for the VCMR task.

Acknowledgements: We thank the reviewers for their helpful feedback. This re-
search is supported by NSF Award #1562098, DARPA MCS Grant #N66001-19-2-
4031, DARPA KAIROS Grant #FA8750-19-2-1004, ARO-YIP Award #W911NF-
18-1-0336, and Google Focused Research Award.



TVR: A Large-Scale Dataset for Video-Subtitle Moment Retrieval 15

References

1. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 (2016)

2. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the
kinetics dataset. In: CVPR (2017)

3. Chen, D., Fisch, A., Weston, J., Bordes, A.: Reading wikipedia to answer open-
domain questions. In: ACL (2017)

4. Chen, J., Chen, X., Ma, L., Jie, Z., Chua, T.S.: Temporally grounding natural
sentence in video. In: EMNLP (2018)

5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR (2009)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep
bidirectional transformers for language understanding. In: NAACL (2019)

7. Escorcia, V., Soldan, M., Sivic, J., Ghanem, B., Russell, B.: Temporal localization of
moments in video collections with natural language. arXiv preprint arXiv:1907.12763
(2019)

8. Gao, J., Sun, C., Yang, Z., Nevatia, R.: Tall: Temporal activity localization via
language query. In: ICCV (2017)

9. Ge, R., Gao, J., Chen, K., Nevatia, R.: Mac: Mining activity concepts for language-
based temporal localization. In: WACV (2019)

10. Ghosh, S., Agarwal, A., Parekh, Z., Hauptmann, A.: Excl: Extractive clip localiza-
tion using natural language descriptions. In: NAACL (2019)

11. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In:
AISTATS (2011)

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

13. Hendricks, L.A., Wang, O., Shechtman, E., Sivic, J., Darrell, T., Russell, B.:
Localizing moments in video with natural language. In: ICCV (2017)

14. Hendricks, L.A., Wang, O., Shechtman, E., Sivic, J., Darrell, T., Russell, B.:
Localizing moments in video with temporal language. In: EMNLP (2018)

15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
(1997)

16. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S.,
Viola, F., Green, T., Back, T., Natsev, P., et al.: The kinetics human action video
dataset. arXiv preprint arXiv:1705.06950 (2017)

17. Kazemzadeh, S., Ordonez, V., Matten, M., Berg, T.: Referitgame: Referring to
objects in photographs of natural scenes. In: EMNLP (2014)

18. Kim, K.M., Heo, M.O., Choi, S.H., Zhang, B.T.: Deepstory: Video story qa by deep
embedded memory networks. In: IJCAI (2017)

19. Krishna, R., Hata, K., Ren, F., Fei-Fei, L., Niebles, J.C.: Dense-captioning events
in videos. In: ICCV (2017)

20. Lei, J., Yu, L., Bansal, M., Berg, T.L.: Tvqa: Localized, compositional video question
answering. In: EMNLP (2018)

21. Lei, J., Yu, L., Berg, T.L., Bansal, M.: Tvqa+: Spatio-temporal grounding for video
question answering. In: ACL (2020)

22. Lin, T., Zhao, X., Su, H., Wang, C., Yang, M.: Bsn: Boundary sensitive network
for temporal action proposal generation. In: ECCV (2018)

23. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
Zettlemoyer, L., Stoyanov, V.: Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692 (2019)



16 Jie Lei, Licheng Yu, Tamara L. Berg, Mohit Bansal

24. Miech, A., Laptev, I., Sivic, J.: Learning a text-video embedding from incomplete
and heterogeneous data. arXiv preprint arXiv:1804.02516 (2018)

25. Regneri, M., Rohrbach, M., Wetzel, D., Thater, S., Schiele, B., Pinkal, M.: Grounding
action descriptions in videos. TACL (2013)

26. Roerdink, J.B., Meijster, A.: The watershed transform: Definitions, algorithms and
parallelization strategies. Fundamenta informaticae (2000)

27. Rohrbach, A., Rohrbach, M., Qiu, W., Friedrich, A., Pinkal, M., Schiele, B.: Coherent
multi-sentence video description with variable level of detail. In: GCPR (2014)

28. Seo, M., Kembhavi, A., Farhadi, A., Hajishirzi, H.: Bidirectional attention flow for
machine comprehension. In: ICLR (2017)

29. Szeliski, R.: Computer vision: algorithms and applications. Springer Science &
Business Media (2010)

30. Tapaswi, M., Zhu, Y., Stiefelhagen, R., Torralba, A., Urtasun, R., Fidler, S.:
Movieqa: Understanding stories in movies through question-answering. In: CVPR
(2016)

31. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: NeurIPS (2017)

32. Xu, H., He, K., Plummer, B.A., Sigal, L., Sclaroff, S., Saenko, K.: Multilevel
language and vision integration for text-to-clip retrieval. In: AAAI (2019)

33. Yu, L., Lin, Z., Shen, X., Yang, J., Lu, X., Bansal, M., Berg, T.L.: Mattnet: Modular
attention network for referring expression comprehension. In: CVPR (2018)

34. Zellers, R., Bisk, Y., Farhadi, A., Choi, Y.: From recognition to cognition: Visual
commonsense reasoning. In: CVPR (2019)

35. Zhang, D., Dai, X., Wang, X., fang Wang, Y., Davis, L.S.: Man: Moment alignment
network for natural language moment retrieval via iterative graph adjustment. In:
CVPR (2018)

36. Zhang, Z., Lin, Z., Zhao, Z., Xiao, Z.: Cross-modal interaction networks for query-
based moment retrieval in videos. In: SIGIR (2019)

37. Zhao, Y., Xiong, Y., Wang, L., Wu, Z., Tang, X., Lin, D.: Temporal action detection
with structured segment networks. In: ICCV (2017)


	TVR: A Large-Scale Dataset for Video-Subtitle Moment Retrieval

