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Abstract. Most of existing object detectors usually adopt a small train-
ing batch size (e.g. 16), which severely hinders the whole community
from exploring large-scale datasets due to the extremely long training
procedure. In this paper, we propose a versatile large batch optimiza-
tion framework for object detection, named LargeDet, which successfully
scales the batch size to larger than 1K for the first time. Specifically,
we present a novel Periodical Moments Decay LAMB (PMD-LAMB)
algorithm to effectively reduce the negative effects of the lagging his-
torical gradients. Additionally, the Synchronized Batch Normalization
(SyncBN) is utilized to help fast convergence. With LargeDet, we can not
only prominently shorten the training period, but also significantly im-
prove the detection accuracy of sparsely annotated large-scale datasets.
For instance, we can finish the training of ResNet50 FPN detector on
COCO within 12 minutes. Moreover, we achieve 12.2% mAP@0.5 abso-
lute improvement for ResNet50 FPN on Open Images by training with
batch size 640.

Keywords: Object detection, Large batch optimization, Periodical mo-
ments decay

1 Introduction

With the advent of Neural Networks, researchers have made great progress in
various domains, including computer vision [11], speech [1], natural language
processing [21] and so on. Among the many factors contributing to their success,
the available of massive data is definitely one of the most important one. It is
widely accepted that large-scale dataset helps the convolutional neural networks
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Fig. 1. The performance of ResNet50 FPN detector on COCO dataset when using
different training batch sizes. LSR means the Linear Scaling Rule (LSR). LargeDet is
the proposed framework. 1.4x indicates the training iterations is extended to 1.4 times.
The horizontal black dotted line is the performance of baseline with batch size 16

(CNN) generalize well. Consequently, there is a tendency that the size of dataset
is growing larger and larger.

Object detection, as a fundamental computer vision task, also benefits from
large-scale datasets. From PASCAL VOC [5] to MS COCO [14], the volume of
the dataset becomes larger in terms of the number of images and the diversity of
categories. Nowadays, datasets like Open Images [12] and Objects365 [20] come
in an unprecedented scale. However, previous classical object detectors such as
Faster R-CNN [19], Mask R-CNN [7] and RetinaNet [13] etc. usually adopt a rela-
tively small mini-batch (16, for example) to train. Such small batch size restrains
researchers from making full use of rapidly increased computational power. And
the unbearable long training procedure of large-scale datasets severely impedes
its development both in research and industry.

Nevertheless, it is not trivial to directly increase the batch size as large batch
size training always suffers from performance degradation [8]. A rule of thumb
for training neural network is the Linear Scaling Rule (LSR) [10], which sug-
gests that when the batch size becomes K times, the learning rate should also be
multiplied by K. However, since the LSR requests the learning rate to grow pro-
portional to the batch size, it has divergence issue when the batch size increases
to a certain value, e.g. 256. To tackle this issue, [23] proposed Layer-wise Adap-
tive Rate Scaling (LARS) algorithm to adjust each layer’s learning rate based on
the norm of its weights and the norm of its gradients. Another similar algorithm
is LAMB which is first proposed in [24] for the fast training of BERT [4]. Both
LARS and LAMB have the same design philosophy and yield good performance
in the large batch training for image classification.

Although researchers have achieved promising results on large batch training
for image classification, there are fewer works that concentrate on large batch
training for object detection. Since the emergence of those large-scale datasets
like Open Images and Objects365, the need to explore large batch training for
object detection has become more urgent than ever before. MegDet [17] suc-
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cessfully trains a detector with batch size 256 by using LSR and some other
measures like Warm-up and Cross-GPU Batch Normalization, but the explo-
ration to larger batch size still remains blank. What happens if the batch size
exceeds 256? Is there any chance to train a detector with an even larger batch
size?

In this paper, we systematically analyze the large batch optimization and
propose a large batch training framework called LargeDet for object detection.
To be specific, we first theoretically analyze the problems of LSR and give its
applicable range of training batch size. Then, motivated by LAMB [24], we pro-
pose a Periodical Moments Decay LAMB algorithm (PMD-LAMB), which can
further improve the performance under larger batch size setting. Additionally,
we combine the PMD-LAMB with SyncBN to improve the stability and gener-
alization of the network especially when the batch size is extremely large. As
showed in Figure 1, with the aid of LargeDet, we successfully scale the batch
size from 256 to 1056 with ResNet50 FPN detector on COCO dataset without
much accuracy loss, which is the first work to train an object detector using a
batch size larger than 1K. The experimental results demonstrate that the pro-
posed LargeDet not only speeds up the training cycle, but also achieves higher
accuracy on large-scale datasets, such as Open Images.

In summary, our contributions are three-fold:

1. We propose PMD-LAMB algorithm to effectively eliminate the optimiza-
tion difficulty of large batch size training, which significantly expands the
applicable range of LSR.

2. We present a simple yet effective large batch training framework, named
LargeDet, with which we can successfully scale the batch size up to 1056
without much accuracy drop.

3. LargeDet helps us to shrink the training time of ResNet50 FPN on COCO
to 12 minutes. Besides, it also helps us achieve 12.2% and 10.8% absolute
improvement with ResNet50 and ResNet101 FPN detector respectively on
Open Images V5 with much less training time.

2 Related Work

2.1 CNN-based Detectors

For object detection, current deep learning based approaches can be roughly di-
vided into two categories, single-stage and two-stage approaches. Classical two-
stage algorithms, including Faster R-CNN [19], R-FCN [2], Mask R-CNN [7],
Deformable Convolutional Networks [3], etc. all generate numerous but less ac-
curate proposals in the first stage, and then refine them in the second stage.
Single-stage approaches such as YOLO [18], SSD [15], RetinaNet [13], etc. work
in a more concise manner. They make predictions on the whole feature map
directly without proposal generating process, thus enjoying higher speed. Nowa-
days, some single-stage detectors, like ExtremeNet [25] and FCOS [22] can also
achieve competitive results as two-stage detectors.
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2.2 Large Batch Optimization

In the past few years, large batch size training for image classification has at-
tracted a lot of researchers’ attention. Linear Scaling Rule (LSR) has been consid-
ered as a rule of thumb for training CNNs, which guarantees roughly equivalent
accuracy when using different batch sizes to train. It is mathematically explained
in [17, 6] and widely applied in daily practice. By utilizing LSR and Warm-up
strategy, [6] is able to scale the batch size to 8192 for ResNet50. [23] proposes
Layer-wise Adaptive Rate Scaling (LARS) algorithm to successfully scale the
batch size for ResNet50 to 32768. The successor of LARS algorithm is LAMB,
which is first proposed in [24]. Both of LARS and LAMB all leverage the norm
of weights and the norm of gradients to adjust each layer’s learning rate. The
only difference lies in that LARS originates from the most commonly used SGD
algorithm, while LAMB is a variant of ADAM [9].

Different from the flourish in the research of large batch training for image
classification, there are few works which focus on the large batch training for
object detection. [17] analyzes the effect of Batch Normalization in object detec-
tion and provides a solution for large batch training. Specifically, they implement
Cross-GPU Batch Normalization to enable collecting sufficient statistics from
more samples, making it possible to train a detector with a large batch size. By
combining LSR, Cross-GPU Batch Normalization and Warm-up strategy, they
are able to train the Faster R-CNN detector with batch size 256. So far, the
object detection with larger batch size is still the terra incognita which deserves
to be further researched.

3 Method

In this section, we first analyze the problems of Linear Scaling Rule (LSR) for
detectors with large batch size. Then we introduce the proposed PMD-LAMB
algorithm. Last, we present the object detection framework LargeDet designed
for large batch training and propose three practical guidelines.

3.1 Problems of Linear Scaling Rule

MegDet [17] is the first successful attempt to train a detector using a large
batch size of 256. It mainly adopts the Linear Scaling Rule (LSR) [17, 6] to
obtain roughly equivalent accuracy when different batch sizes are adopted. In
addition, the Warm-up strategy and Cross-GPU Batch Normalization [17] are
further used to guarantee the early convergence of the model and make the
training more stable. However, the empirical limits of LSR guideline are not well
explored in [17] since the learning rate can not be scaled infinitely. Consequently,
it is a problem whether LSR is still suitable for a larger batch size.

Figure 2 shows the experimental results when LSR is applied to different
batch sizes. When the training batch size is less than or equal to 256, LSR can
maintain almost the same level of accuracy as the 16 mini-batch baseline (with a



Large Batch Optimization for Object Detection 5

batch  size  320

batch  size 512

diverge

Fig. 2. The performance of ResNet50 FPN detector on COCO dataset when we use
LSR. Half means we lower the learning rate to a half. The black dotted line represents
the network diverges and the accuracy is 0

learning rate of 0.02). Nevertheless, if the training batch size is larger than 256,
increasing the learning rate proportionally will lead to performance degradation
or even network divergence. The LSR no longer holds. When we compromise
to use a lower learning rate, e.g. 0.32 for batch size 512, the network will not
diverge, but the final accuracy drops dramatically (34.3 vs. 36.7). This is mainly
because a small learning rate leads to insufficient training, and the model can
not converge to an optimal value. Therefore, how to tackle the optimization
difficulty is the main issue with the larger batch size training.

3.2 Periodical Moments Decay LAMB

As the discussion in 3.1, the main issue which hinders us from using a larger batch
size is that the network diverges with a large learning rate. Previous optimization
algorithms usually set a global learning rate for the network which is shared by
all layers. In fact, the neural network is composed of a great many layers with
various feature channel numbers, feature map sizes and weight distributions.
This diversity endows each layer diverse tolerance to the learning rate. To make
it more intuitive, we calculate the ratio between each layer’s weight norm and
gradient norm of a ResNet50 FPN detector at iteration 10000. We observe that
there are significant differences in the ratios among different layers from Figure 3.
When the learning rate is too large, the layers which have less tolerance to the big
learning rate collapse at first, and then the whole network diverges. To tackle this
issue, [24] proposed LAMB to adaptively adjust each layer’s learning rate based
on the ratio of its weights’ norm and gradients’ norm. This algorithm endows
each layer a proper learning rate, thus making it possible to train a network
with a larger batch size. For LAMB, each update of the network parameters is
determined by the exponential moving averages of the gradient (mt) and the
squared gradient (vt). mt and vt are the estimate of the first and second order
moments of the gradients, respectively, as in Equation (1) and (2).

mt = β1mt−1 + (1 − β1)gt (1)
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Fig. 3. The ratio distribution of ResNet50 FPN detector at iteration 10000

vt = β2vt−1 + (1 − β2)g2t (2)

For large batch optimization, what we concern most is the fast convergence
of the algorithm. As the batch size grows larger, the training iterations reduce
proportionally. How to achieve expected accuracy in limited iterations is the
core. For LAMB, the exponential moving average incorporates the knowledge of
previously observed data, making the training process more stable. Nevertheless,
overindulging in previous gradients may be harmful for fast convergence. With
the iterative training, the network becomes more and more intelligent. Thus, the
generated gradients become more precise to reflect the correct optimizing direc-
tion. While the heavily dependence on previous knowledge limits the network’s
update towards the more accurate direction. Historical gradients will dominate
the training process and the network is prone to get trapped in saddle points.
To help the network jump out of the saddle points, we argue to appropriately
reduce the strong dependence of current update step on previously acquired
information.

Algorithm 1 Periodical Moments Decay LAMB

Require: network parameters x1 ∈ Rd, classification loss function Lcls, box regression
loss function Lreg, weight decay λ, learning rate η, hyper-parameters 0 < β1, β2 <
1, scaling factor α, ε > 0, cycle length T

1: Set m0 = 0, v0 = 0
2: for t = 1 to N do
3: Draw b samples St from P.
4: Compute gt = 1

|St|
∑
st∈St

(∇Lcls(xt, st) +∇Lreg(xt, st)).
5: ξ = cos(π

2
· t%T

T
)

6: mt = ξβ1mt−1 + (1− β1)gt
7: vt = ξβ2vt−1 + (1− β2)g2t
8: Compute update step rt = mt√

vt+ε

9: xt+1 = xt − η α||xt||
||rt+λxt|| (rt + λxt)

10: end for
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Fig. 4. An example of ξ-Iteration curve (T=200)

Therefore, we propose a novel periodical moments decay LAMB to reduce
the network’s heavy dependence on previous acquired knowledge. To be spe-
cific, coefficient ξ is introduced to control the dependence on the accumulated
moments. As formulated in Equation (4) and (5), ξ is multiplied to the ac-
cumulated first- and second-order moments. When ξ equals to one, previously
acquired knowledge is fully utilized to participate in current network parameter
update. A smaller ξ indicates that the accumulated moments influence less to
current update step. We perform such moments decay in a periodical way. The
whole training process is divided into several consecutive time windows with
cycle length T iterations. In each cycle, the coefficient ξ decays from 1 to 0, as
illustrated in Figure 4. Equation (3) formulates the computation of ξ, where t
indicates the current iteration. T is an introduced hyper-parameter of the cycle
length. The pseudo-code of PMD-LAMB is showed in Algorithm 1. To explore
the effect of PMD-LAMB, we train two ResNet50 FPN detectors with LAMB
and PMD-LAMB, respectively. They are both trained on COCO dataset with
batch size 1056. The loss curves are visualized in Figure 5. We can see that these
two loss curves tangle with each other at the initial training stage. While the
loss curve of PMD-LAMB has lower loss values when the training process levels
off. This phenomenon indicates that PMD-LAMB helps the network converge
faster and optimize to a better point with the same number of iterations, thus
yielding higher accuracy.

ξ = cos(
π

2
· t%T
T

) (3)

mt = ξβ1mt−1 + (1 − β1)gt (4)

vt = ξβ2vt−1 + (1 − β2)g2t (5)

There are two vital hyper-parameters in PMD-LAMB. Hyper-parameter T
controls the cycle length. If T is set to a small value, the relaxation of current
update step on previous moments is performed at a high frequency. Despite our
intuition is to reduce the dependence on previous gradients, directly abandoning
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Fig. 5. The loss curves of ResNet50 FPN trained with LAMB and PMD-LAMB, re-
spectively

the historical knowledge is inadvisable. A too small cycle length T leads to
fluctuated and unstable training process, thus should be avoided. Another is the
scale factor α. Since the ratio of network layer’s weight and gradient is usually
large, we need the scale factor α to rescale the actual learning rate for each layer
to a proper magnitude. Otherwise, the network will diverge.

3.3 LargeDet Framework and Guidelines

With the core of PMD-LAMB, we propose LargeDet for large batch training by
combining LSR and SyncBN. In object detection, it is a common practice to
adopt frozen BN which inherits the batch statistics from ImageNet pre-trained
models and doesn’t update the parameters during training. Frozen BN forces
the network’s convolutional parameters to adapt to the batch statistics inherited
from ImageNet. Such adaption usually requires a long training procedure, thus
is harmful for fast convergence. Out of this reason, we use SyncBN to allow
the network to collect its own data statistics during training. With the aid of
LargeDet, we successfully scale the batch size from 256 to 1056. We summary
our findings into the following three guidelines.

G1) LSR works well at a batch size smaller than 256, but is not suitable for a
larger batch size. An intrinsic problem of LSR lies in that the network will diverge
under a large learning rate. As LSR suggests, a large learning rate is essential to
keep accuracy when a large batch size is applied. While the divergence of network
is inevitable when the learning rate is higher than certain threshold. By carefully
tunning the warm-up hyper-parameters, one can reduce the risk of divergence
and make it work at a larger batch size. However, as the learning rate continues
to grow, the network diverges no matter how to change the configurations of
warm-up.

G2) SyncBN is beneficial for large batch optimization. As analyzed before,
frozen BN requires a long training procedure to force the network’s convolutional
parameters to adapt to the batch statistics inherited from ImageNet. For a larger
batch size, the training iterations is reduced proportionally, which gives the
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network less time to perform this adaption. Insufficient adaption leads to inferior
performance. SyncBN enables the network to collect accurate batch statistics
from the target dataset. Thus it is beneficial to achieve satisfactory performance
in less iterations.

G3) PMD-LAMB guarantees the convergence of detectors under large learn-
ing rate and paves the way for large batch optimization. PMD-LAMB dynami-
cally adjusts each layer’s learning rate based on the ratio of the weights’ norm
and the gradients’ norm. Such layer-wise learning rate successfully addresses the
divergence issue of LSR when large batch size is adopted. In addition to this,
PMD-LAMB reduces the strong dependence on previous gradients by cyclically
decaying the weight of accumulated first and second moments to reduce the
negative effect of historical gradients. PMD-LAMB helps the network generalize
well and achieves better performance compared to LAMB. In general, these two
features make it the key component of our framework.

In summary, LargeDet addresses the divergence issue of LSR and makes it
feasible to train detectors with a larger batch size. Consequently, it endows us the
ability to fully utilize the increasing computational power to reduce the training
time and provides a practical way to tackle with large-scale datasets.

4 Experiments

In this section, we conduct comprehensive experiments on MS COCO [14] to
validate the effectiveness of our proposed framework. With the aid of LargeDet,
we are able to shrink the training time of ResNet50 FPN detector on COCO
dataset to 12 minutes and finish the training of Mask R-CNN with ResNet50
backbone in 17 minutes with 160 NVIDIA Tesla V100 GPUs. Besides, we perform
experiments on large-scale dataset Open Images [12] as well. The results show
that LargeDet is well suited for such large-scale datasets and it outperforms
traditional small batch training both in training speed and accuracy.

All our experiments are conducted on the NVIDIA DGX2 server. In terms
of software, we use the NVIDIA-optimized maskrcnn-benchmark7 [16] to train
the detectors.

4.1 Experiments on COCO

We first perform experiments on the challenging MS COCO2017 benchmark. We
use the ∼118K training images to train the detector and the final performance is
reported on the 5000 validation images. For evaluation, we use standard COCO
metric mAP@0.5:0.95, which averages mAP over IoUs from 0.5 to 0.95. We use
the representative ResNet50 pre-trained on the ImageNet as the backbone and
adopt the Feature Pyramid Network (FPN) as the detection framework.

For batch size 16, we use a base learning rate 0.02, with the total training
iteration of 90000. We multiply the learning rate by factor 0.1 at iteration 60000,

7 https://github.com/mlperf/training_results_v0.6/tree/master/NVIDIA/

benchmarks/maskrcnn/implementations/pytorch
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and again at 80000. For larger batch size, the global learning rate is set according
to the LSR and the training iterations is reduced proportionally to keep the total
training epochs constant. For SGD, the hyper-parameters, like weight decay
and momentum, follow the default settings in [16]. For LAMB or PMD-LAMB
algorithm, we adopt the weight decay 0.0005, β1 0.9, β2 0.999 by default.

Large Batch Size Training with LSR We first explore the applicable range
of LSR. Specifically, we conduct experiments using different batch sizes with and
without SyncBN. When SyncBN is applied, we set the BN size to 32 as suggested
in [17]. The results are summarized in Table 4.1.

Table 1. The results of LSR with different batch sizes. Half means we lower the learning
rate to a half

Batch Size w.o. SyncBN w. SyncBN

16 36.7 36.6

32 36.6 36.4

64 36.6 36.6

128 36.5 36.5

256 failed 36.1
256 (half) 35.6 35.0

512 failed failed
512 (half) failed 34.3

For experiments without BN, we observe that when the batch size is smaller
than 128, the detector can achieve almost the same accuracy as small batch
size (16) training. When the batch size becomes larger, the network fails to
converge. SyncBN helps it converge at batch size 256, but still fails at batch size
512. Even if we can use a lower learning rate to make the network converge,
it yields severe performance drops. Although we follow the settings as [17], the
results we obtained is slightly different. We conjecture that the difference may
be caused by different implementation details of SyncBN. It is worth noticing
that when the batch size is larger than 64, the warm-up hyper-parameters need
to be carefully tuned to avoid divergence whether there is SyncBN or not. Above
experiments demonstrate that LSR can not handle a larger batch size. Thus it
is of great significance to explore larger training batch size.

Larger Batch Size Training with LargeDet As mentioned above, when the
batch size is not that large (below 256), the LSR still holds with the help of
SyncBN. However, it fails when the batch size becomes larger. To tackle this
issue, we conduct experiments using LargeDet with different batch sizes. Since
the performance with large batch size is our concern, we start our experiments
from batch size 128.
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Table 2. Comparisons of training with different batch sizes and methods

Batch Size GPUs Method mAP

16 8 SGD 36.7

128 64
LAMB 36.0

PMD-LAMB 36.7

256 64
LAMB 36.2

PMD-LAMB 36.7

512 64
LAMB 35.5

PMD-LAMB 36.5
PMD-LAMB (1.4x) 36.9

640 64
LAMB 35.6

PMD-LAMB 36.2
PMD-LAMB (1.4x) 36.7

1056 96
LAMB 34.8

PMD-LAMB 35.3
PMD-LAMB (1.4x) 36.1

We summary the main results in Table 4.1. The result of batch size 16 is
the baseline. From the experimental results, we have the following observations.
First, our proposed PMD-LAMB algorithm effectively solves the divergence issue
when large batch size is applied and successfully expands the applicable range
of LSR. As showed in Table 4.1, we successfully scale the batch size up to 1056.
Besides, our proposed PMD-LAMB algorithm outperforms LAMB on different
batch sizes. For batch size 128 and 256, the detector can recover the baseline per-
formance by using PMD-LAMB without extending the training iterations. For
larger batch size, PMD-LAMB can still provide consistent performance gain, 1%
improvement at batch size 512 compared to LAMB, which shows the proposed
PMD-LAMB is an effective method to further improve the performance.

Second, by slightly extending the training time, the performance can be fur-
ther improved. For a relatively large batch size, it is hard to recover the per-
formance in the same training epochs as the small batch size training baseline.
For batch size 512 and 640, it still suffers little accuracy drop. And for batch
size 1056, the accuracy drop is more, 1.4% lower than the baseline. We argue
that this is mainly due to the inadequate statistics of BN with less iterations.
By slightly increasing the training iterations, 1.4 times in our experiments, the
performance can be further improved. For batch size 512, 1.4x training itera-
tions yield 36.9 mAP, even higher than the small batch size training accuracy.
In summary, our proposed framework is an effective approach to train an object
detector when using a large batch size.

The Effect of Hyper-parameters In PMD-LAMB, there are two hyper-
parameters introduced. One is the scale factor α, the other is the cycle length T.
We perform ablation experiments to explore how they affect the performance.
In the ablation study, we use LargeDet to train the detector with batch size 256.
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Table 3. The effect of hyper-parameters in PMD-LAMB

α 0.012 0.008 0.01 0.012 0.015 0.018

T 10 200 500 1000 ∞ 200

mAP 35.6 36.7 36.7 36.6 36.2 36.4 36.5 36.7 36.2 35.2

The results are summarized in Table 4.1. We can see that our method works well
in a quite wide range for T. But a very small value will lead to obvious accuracy
loss. For scale factor α, it should be set to a proper value. A small α leads to
insufficient training and results in inferior performance. While a large α causes
a fluctuated training process, which deteriorates the final performance as well.
From the results in Table 4.1, we can know that setting α to 0.012, T to 200 is
a good choice.

4.2 Training COCO in 12 Minutes

With LargeDet, we are able to challenge the limit of fast training of COCO.
We choose Faster R-CNN with FPN and Mask R-CNN detectors and explore
how fast can we train a relatively strong detector. We adopt the ResNet50 as
the backbone. For Faster R-CNN, when the detection mAP@0.5:0.95 reaches
36.6, we stop the training. For Mask R-CNN, the threshold is 37.6 detection
mAP@0.5:0.95 and 33.9 segmentation mAP@0.5:0.95. We conduct experiments
on 10 NVIDIA DGX-2 servers, 160 GPUs in total.

Table 4. The results of fast training experiments on COCO. Faster means Faster R-
CNN with FPN. Mask represents the Mask R-CNN detector. Steps indicates when we
lower the learning rate by factor 0.1

Steps Stop iter Stop mAP Time

Faster 2400,3200 3360 box:36.65 11m53s

Mask 3000,4000 4120
box:37.61

16m55s
seg:34.98

The total batch size is set to 320 for both Faster R-CNN and Mask R-CNN
detectors. We set the global learning rate to 0.4 according to the LSR. Table 4.2
shows the results of fast training experiments. We are able to finish the training
of Faster R-CNN in 12 minutes, and Mask R-CNN in 17 minutes, which will
substantially accelerate the experimental cycle and facilitate the exploration of
more effective strategies.
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4.3 Experiments on Open Images

Open Images V5 is the largest existing dataset with object location annotations
which contains a total of 16M bounding boxes for 600 object classes on 1.9M
images. It is split into three subsets, train, validation and test subset. We use
the train subset which contains 1.7M images to train and report the accuracy
on validation subset. For evaluation, we use the official evaluation code for Open
Images which evaluates only at IoU threshold 0.5.

In this section, we conduct experiments on Open Images V5 with batch size
16, 320 and 640, and compare the training time and accuracy. We adopt the FPN
detector with ResNet50 and ResNet101 backbone. For experiment with batch
size 16, the learning rate is set to 0.02 and other settings follows the default
configurations for COCO. For large batch size 320 and 640, the learning rate is
set to 0.4 and 0.8, respectively. We train the detector for 12 epochs, and multiply
the learning rate by 0.1 and 0.01 at epoch 8 and 11, respectively. To make a fair
comparison, we do not modify other settings such as anchor ratio and anchor
number, etc. And we adopt multi-scale training for all experiments.

Table 5. Experiments on Open Images V5 with different batch sizes and backbones

Backbone BatchSize GPUs mAP@0.5 Time

Res50
16 8 42.9 87h
320 32 53.1 23h
640 64 55.1 12h

Res101
16 8 45.5 108h
320 32 54.0 27h
640 64 56.3 14h

The results are summarized in Table 4.3. We achieve a nearly linear accel-
eration by utilizing more GPUs. With LargeDet, we reduce the training time of
ResNet50 from 87 hours to 12 hours, approximately 8× acceleration. The same
acceleration can be observed for ResNet101. Except for reducing the training
time, we also obtain a considerable performance improvement when training
with a larger batch size. For ResNet50 backbone, by using a batch size of 640,
we achieve 12.2% mAP@0.5 absolute improvement, compared to the baseline
trained with batch size 16. For ResNet101, we can achieve 10.8% improvement
as well. We also observe that the improvements brought by LargeDet increase
as the batch size grows.

We conjecture the performance gain may come from the following two as-
pects. On the one hand, large batch size increases the category richness in a
mini-batch. Open Images V5 has object location annotations for 600 classes.
According to official statistics, there are 8.4 boxes objects per image on average.
If the batch size is 16, there are 135 objects in a mini-batch on average. Even if
all these boxes are from different categories, the number of the total categories
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Positive  Labels: Bicycle, Vehicle, Bicycle helmet

Missing  Labels: Person, Human face

Positive  Labels: Cat, Dog

Missing  Labels:  Person,  Human  face

Fig. 6. Example annotations in Open Images V5. Green boxes indicate the anno-
tated ground truth. Red boxes are some missing instances which are not annotated in
Open Images. Positive labels indicate some object classes are present in current image.
Missing labels are those classes which are present in the image but no corresponding
instances are annotated

in a mini-batch is merely 135, which is far lower than the total category 600. By
increasing the batch size, the category richness can be greatly improved and the
detector can achieve better performance.

On the other hand, large batch optimization is an effective strategy to fight
against the label noise which is widespread in large-scale datasets. For instance,
missing annotations frequently occur in Open Images, as illustrated in Figure 6.
During training, such missing instances are prone to be mistaken for negative
samples, which will cause incorrect training signals and confuse the detector. By
increasing batch size, these wrong signals can be suppressed to a great extent
by numerous correctly annotated instances.

5 Conclusions

We present a large batch optimization framework for object detection called
LargeDet, with which we successfully scale the batch size to 1056 with a ResNet50
backbone. Besides, LargeDet supports us to finish the training of ResNet50 FPN
detector on COCO in 12 minutes. Moreover, large batch training provides a novel
means to tackle the widespread label noise in large scale datasets. By training
ResNet50 FPN with a batch size of 640, we achieve a remarkable 12.2% absolute
improvement in terms of mAP@0.5 on Open Images V5. And the improvement
for ResNet101 FPN is 10.8%. We hope that our research can serve for the future
exploration of the large-scale datasets.
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