	Dechasting with CNN
	Degnosting with CINN
	Anonymous ECCV supplementary submission
	Anonymous ECC v supplementary submission
	Paper ID 3792
Abstract. In	this supplementary file, we provide the additional ablation on dif-
ferent downsa	mple factors and qualitative results. We also provide the detailed
description of	the N_g network model used in our method.
Notations	
n Table 1, we prov	ide a brief description of notations used in this supplementary and
n the main paper.	1 11 2
1 1	
Table 1. Descript	ion of notations used in this supplementary file and in the main paper.
Notation	Description
	Original full resolution image
N	Image downsampled by factor of <i>a</i>
N N	Guide image generation network
N _e	Final HDR generation network
/ N +	
$\{I_{-}^{h}, I_{0}^{h}, I_{+}^{h}\}$	Full resolution input images
$ \{I_{-}^{h}, I_{0}^{h}, I_{+}^{h}\} \\ \{S_{-}^{h}, S_{0}^{h}, S_{+}^{h}\} $	Full resolution input images Ground truth motion segmentation maps as mentioned in Section 4.1 of
$ \{I_{-}^{h}, I_{0}^{h}, I_{+}^{h}\} \\ \{S_{-}^{h}, S_{0}^{h}, S_{+}^{h}\} $	Full resolution input images Ground truth motion segmentation maps as mentioned in Section 4.1 of the main paper
$\{ \begin{split} & \{I_{-}^{h}, I_{0}^{h}, I_{+}^{h} \} \\ & \{S_{-}^{h}, S_{0}^{h}, S_{+}^{h} \} \\ & \{ \widetilde{M}_{-}^{h}, \widetilde{M}_{+}^{h} \} \end{split}$	Full resolution input images Ground truth motion segmentation maps as mentioned in Section 4.1 of the main paper Combined ground truth motion segmentation maps as described in Sec-
$\{I_{-}^{h}, I_{0}^{h}, I_{+}^{h}\} \\ \{S_{-}^{h}, S_{0}^{h}, S_{+}^{h}\} \\ \{\widetilde{M}_{-}^{h}, \widetilde{M}_{+}^{h}\} $	Full resolution input images Ground truth motion segmentation maps as mentioned in Section 4.1 of the main paper Combined ground truth motion segmentation maps as described in Sec- tion 4.1 of the main paper
$ \{ I^{h}_{-}, I^{h}_{0}, I^{h}_{+} \} \\ \{ S^{h}_{-}, S^{h}_{0}, S^{h}_{+} \} \\ \{ \widetilde{M}^{h}_{-}, \widetilde{M}^{h}_{+} \} \\ \{ M^{h}_{-}, M^{h}_{+} \} $	Full resolution input images Ground truth motion segmentation maps as mentioned in Section 4.1 of the main paper Combined ground truth motion segmentation maps as described in Sec- tion 4.1 of the main paper Motion segmentation maps predicted by N_{mc} (equation 1 and 2 of the
$ \{ I_{-}^{h}, I_{0}^{h}, I_{+}^{h} \} $ $ \{ S_{-}^{h}, S_{0}^{h}, S_{+}^{h} \} $ $ \{ \widetilde{M}_{-}^{h}, \widetilde{M}_{+}^{h} \} $ $ \{ M_{-}^{h}, M_{+}^{h} \} $	Full resolution input images Ground truth motion segmentation maps as mentioned in Section 4.1 of the main paper Combined ground truth motion segmentation maps as described in Sec- tion 4.1 of the main paper Motion segmentation maps predicted by N_{mc} (equation 1 and 2 of the main paper)
$ \{I_{-}^{h}, I_{0}^{h}, I_{+}^{h}\} \\ \{S_{-}^{h}, S_{0}^{h}, S_{+}^{h}\} \\ \{\widetilde{M}_{-}^{h}, \widetilde{M}_{+}^{h}\} \\ \{\widetilde{M}_{-}^{h}, M_{+}^{h}\} \\ \{M_{-}^{h}, M_{+}^{h}\} \\ \{I_{-}^{h}, I_{0}^{h}, I_{-}^{h}, I_{0}^{h}, I_{-}^{h}\} $	Full resolution input images Ground truth motion segmentation maps as mentioned in Section 4.1 of the main paper Combined ground truth motion segmentation maps as described in Sec- tion 4.1 of the main paper Motion segmentation maps predicted by N_{mc} (equation 1 and 2 of the main paper) Motion corrected images
$ \{I_{-}^{h}, I_{0}^{h}, I_{+}^{h}\} \\ \{S_{-}^{h}, S_{0}^{h}, S_{+}^{h}\} \\ \{\widetilde{M}_{-}^{h}, \widetilde{M}_{+}^{h}\} \\ \{\widetilde{M}_{-}^{h}, M_{+}^{h}\} \\ \{M_{-}^{h}, M_{+}^{h}\} \\ \{u_{-}^{h}, w_{0}^{h}, w_{+}^{h}\} \\ w_{-}^{h}, w_{0}^{h}, w_{+}^{h}\} \\ u_{-}^{H}$	Full resolution input images Ground truth motion segmentation maps as mentioned in Section 4.1 of the main paper Combined ground truth motion segmentation maps as described in Sec- tion 4.1 of the main paper Motion segmentation maps predicted by N_{mc} (equation 1 and 2 of the main paper) Motion corrected images N_g output weight maps (equation 6 of the main paper)
$ \{I^{h}_{-}, I^{h}_{0}, I^{h}_{+}\} \\ \{I^{h}_{-}, S^{h}_{0}, S^{h}_{+}\} \\ \{\widetilde{M}^{h}_{-}, \widetilde{M}^{h}_{+}\} \\ \{M^{h}_{-}, M^{h}_{+}\} \\ \{I^{h}_{mc,-}, I^{h}_{0}, I^{h}_{mc,+}\} \\ \{w^{h}_{-}, w^{h}_{0}, w^{h}_{+}\} \\ H_{g} \\ H_{g} $	Full resolution input images Ground truth motion segmentation maps as mentioned in Section 4.1 of the main paper Combined ground truth motion segmentation maps as described in Sec- tion 4.1 of the main paper Motion segmentation maps predicted by N_{mc} (equation 1 and 2 of the main paper) Motion corrected images N_g output weight maps (equation 6 of the main paper) Guide image generated using equation 7 of the main paper
$ \{ I^{h}_{-}, I^{h}_{0}, I^{h}_{+} \} \\ \{ I^{h}_{-}, I^{h}_{0}, I^{h}_{+} \} \\ \{ S^{h}_{-}, S^{h}_{0}, S^{h}_{+} \} \\ \{ \widetilde{M}^{h}_{-}, \widetilde{M}^{h}_{+} \} \\ \{ M^{h}_{-}, M^{h}_{+} \} \\ \{ I^{h}_{mc,-}, I^{h}_{0}, I^{h}_{mc,+} \} \\ \{ w^{h}_{-}, w^{h}_{0}, w^{h}_{+} \} \\ H_{g} \\ H_{f} \\ \widetilde{\Xi} $	Full resolution input images Ground truth motion segmentation maps as mentioned in Section 4.1 of the main paper Combined ground truth motion segmentation maps as described in Sec- tion 4.1 of the main paper Motion segmentation maps predicted by N_{mc} (equation 1 and 2 of the main paper) Motion corrected images N_g output weight maps (equation 6 of the main paper) Guide image generated using equation 7 of the main paper Final HDR output from N_f
$ \begin{array}{c} \{I_{-}^{h}, I_{0}^{h}, I_{+}^{h}\} \\ \{I_{-}^{h}, S_{0}^{h}, S_{+}^{h}\} \\ \{S_{-}^{h}, S_{0}^{h}, S_{+}^{h}\} \\ \{\widetilde{M}_{-}^{h}, \widetilde{M}_{+}^{h}\} \\ \{M_{-}^{h}, M_{+}^{h}\} \\ \{M_{-}^{h}, M_{0}^{h}, I_{mc,+}^{h}\} \\ \{w_{-}^{h}, w_{0}^{h}, w_{+}^{h}\} \\ H_{g} \\ H_{f} \\ \widetilde{H} \\ \widetilde{H} \end{array} $	Full resolution input images Full resolution input images Ground truth motion segmentation maps as mentioned in Section 4.1 of the main paper Combined ground truth motion segmentation maps as described in Sec- tion 4.1 of the main paper Motion segmentation maps predicted by N_{mc} (equation 1 and 2 of the main paper) Motion corrected images N_g output weight maps (equation 6 of the main paper) Guide image generated using equation 7 of the main paper Final HDR output from N_f Ground truth HDR image
$ \begin{cases} I_{-}^{h}, I_{0}^{h}, I_{+}^{h} \\ \{I_{-}^{h}, I_{0}^{h}, I_{+}^{h} \} \\ \{S_{-}^{h}, S_{0}^{h}, S_{+}^{h} \} \\ \{\widetilde{M}_{-}^{h}, \widetilde{M}_{+}^{h} \} \\ \{M_{-}^{h}, M_{+}^{h} \} \\ \{M_{-}^{h}, M_{0}^{h}, I_{mc,+}^{h} \} \\ \{w_{-}^{h}, w_{0}^{h}, w_{+}^{h} \} \\ H_{g} \\ H_{f} \\ \widetilde{H} \\ \end{cases} $	Full resolution input images Full resolution input images Ground truth motion segmentation maps as mentioned in Section 4.1 of the main paper Combined ground truth motion segmentation maps as described in Sec- tion 4.1 of the main paper Motion segmentation maps predicted by N_{mc} (equation 1 and 2 of the main paper) Motion corrected images N_g output weight maps (equation 6 of the main paper) Guide image generated using equation 7 of the main paper Final HDR output from N_f Ground truth HDR image
$ \begin{cases} I_{-}^{h}, I_{0}^{h}, I_{+}^{h} \\ \{I_{-}^{h}, I_{0}^{h}, S_{+}^{h} \} \\ \{S_{-}^{h}, S_{0}^{h}, S_{+}^{h} \} \\ \{\widetilde{M}_{-}^{h}, \widetilde{M}_{+}^{h} \} \\ \{M_{-}^{h}, M_{+}^{h} \} \\ \{M_{-}^{h}, M_{0}^{h}, I_{mc,+}^{h} \} \\ \{w_{-}^{h}, w_{0}^{h}, w_{+}^{h} \} \\ H_{g} \\ H_{f} \\ \widetilde{H} \\ \end{cases} $	Full resolution input images Full resolution input images Ground truth motion segmentation maps as mentioned in Section 4.1 of the main paper Combined ground truth motion segmentation maps as described in Sec- tion 4.1 of the main paper Motion segmentation maps predicted by N_{mc} (equation 1 and 2 of the main paper) Motion corrected images N_g output weight maps (equation 6 of the main paper) Guide image generated using equation 7 of the main paper Final HDR output from N_f Ground truth HDR image
$ \{ I_{-}^{h}, I_{0}^{h}, I_{+}^{h} \} \\ \{ S_{-}^{h}, S_{0}^{h}, S_{+}^{h} \} \\ \{ \widetilde{M}_{-}^{h}, \widetilde{M}_{+}^{h} \} \\ \{ M_{-}^{h}, M_{+}^{h} \} \\ \{ M_{-}^{h}, M_{+}^{h} \} \\ \{ W_{-}^{h}, w_{0}^{h}, W_{+}^{h} \} \\ \{ w_{-}^{h}, w_{0}^{h}, w_{+}^{h} \} \\ H_{g} \\ H_{f} \\ \widetilde{H} $	Full resolution input images Full resolution input images Ground truth motion segmentation maps as mentioned in Section 4.1 of the main paper Combined ground truth motion segmentation maps as described in Sec- tion 4.1 of the main paper Motion segmentation maps predicted by N_{mc} (equation 1 and 2 of the main paper) Motion corrected images N_g output weight maps (equation 6 of the main paper) Guide image generated using equation 7 of the main paper Final HDR output from N_f Ground truth HDR image
$ \{I_{-}^{h}, I_{0}^{h}, I_{+}^{h}\} \\ \{I_{-}^{h}, S_{0}^{h}, S_{+}^{h}\} \\ \{S_{-}^{h}, S_{0}^{h}, S_{+}^{h}\} \\ \{\overline{M}_{-}^{h}, \overline{M}_{+}^{h}\} \\ \{M_{-}^{h}, M_{+}^{h}\} \\ \{W_{-}^{h}, w_{0}^{h}, W_{+}^{h}\} \\ H_{g} \\ H_{f} \\ \widetilde{H} \\ \end{bmatrix} $	Full resolution input images Full resolution input images Ground truth motion segmentation maps as mentioned in Section 4.1 of the main paper Combined ground truth motion segmentation maps as described in Sec- tion 4.1 of the main paper Motion segmentation maps predicted by N_{mc} (equation 1 and 2 of the main paper) Motion corrected images N_g output weight maps (equation 6 of the main paper) Guide image generated using equation 7 of the main paper Final HDR output from N_f Ground truth HDR image
$ \begin{cases} I_{-}^{h}, I_{0}^{h}, I_{+}^{h} \\ \{I_{-}^{h}, S_{0}^{h}, S_{+}^{h} \} \\ \{S_{-}^{h}, S_{0}^{h}, S_{+}^{h} \} \\ \{\widetilde{M}_{-}^{h}, \widetilde{M}_{+}^{h} \} \\ \{M_{-}^{h}, M_{+}^{h} \} \\ \{I_{mc,-}^{h}, I_{0}^{h}, I_{mc,+}^{h} \} \\ \{w_{-}^{h}, w_{0}^{h}, w_{+}^{h} \} \\ H_{g} \\ H_{f} \\ \widetilde{H} \\ \end{cases} $	Full resolution input images Full resolution input images Ground truth motion segmentation maps as mentioned in Section 4.1 of the main paper Combined ground truth motion segmentation maps as described in Sec- tion 4.1 of the main paper Motion segmentation maps predicted by N_{mc} (equation 1 and 2 of the main paper) Motion corrected images N_g output weight maps (equation 6 of the main paper) Guide image generated using equation 7 of the main paper Final HDR output from N_f Ground truth HDR image

pling factors (*d*). While d=1 method achieves the best performance, the time taken for processing in full resolution is in the range of 54 seconds for 1000×1500 resolution images. Comparatively, downsampling by a factor of 8 has equal balance between speed and accuracy. Downsampling further to 16, reduces the accuracy significantly. It should 089

be noted that, major time consuming part for d=2 and 4 is the camera alignment and optical flow registration.

4 Motion segmentation dataset

In Figures 2, 3, 4, 5 and 6, we show examples of annotated ground truth segmentation maps, predictions from trained N_{mc} model and the motion corrected sequence. As seen in Figures 2 and 5 (i) and (j), the network has predicted more regions in addition to moving objects. This is due to the fact, the input images are not perfectly aligned with I_0 . Due to small camera motion misalignment, the network identified those regions as moving. From these examples, we observe that N_{mc} model can successfully handle small alignment errors as well.

5 Additional results

In Figures 7 to 12, we show the qualitative comparison between proposed method against state-of-the-art methods.

Fig. 3. An example of annotated motion segmentation maps for images from UCSD dataset [1].

Fig. 4. An example of annotated motion segmentation maps for images from UCSD dataset [1].

Fig. 5. An example of annotated motion segmentation maps for images from UCSD dataset [1].

Fig. 7. Qualitative comparison on an example from [2] dataset.

(a) I_{-}^{h}

(b) I_0^h

(c) I^h_+

(d) Kalantari17 [1]

(e) AHDR [5]

(f) SCHDR [2]

(g) Wu18 [4]

(h) Proposed

(i) Ground truth

Fig. 10. Qualitative comparison on an example from [1] dataset.

(j) Cropped regions in linear domain. Stripped texture is preserved in Kalantari17 and proposed method, while Wu18 and AHDR has smoothed the details.

584

Fig. 11. Qualitative comparison on an example from [1] dataset.

13

16 ECCV-20 submission ID 3792

F	References	
		676
1.	. Kalantari, N.K., Ramamoorthi, R.: Deep high dynamic range imaging of dynamic scenes.	677
	ACM Transactions on Graphics (Proceedings of SIGGRAPH 2017) 30 (4) (2017) 2, 4, 5, 6, 7, 8, 0, 10, 11, 12, 13, 15	678
2	Prabhakar K R Arora R Swaminathan A Singh K P Babu R V A fast scalable and	679
2.	reliable deghosting method for extreme exposure fusion. In: 2019 IEEE International Confer-	680
	ence on Computational Photography (ICCP). pp. 1–8. IEEE (2019) 9, 10, 11, 12, 13, 14	681
3.	. Sen, P., Kalantari, N.K., Yaesoubi, M., Darabi, S., Goldman, D.B., Shechtman, E.: Robust	682
	patch-based HDR reconstruction of dynamic scenes. ACM Trans. Graph. 31(6), 203 (2012)	683
	10, 14, 15	684
4	. Wu, S., Xu, J., Tai, Y.W., Tang, C.K.: Deep high dynamic range imaging with large foreground	685
5	motions. In: European Conference on Computer Vision. pp. 120–135 (2018) 9, 12, 13	686
5	network for ghost-free high dynamic range imaging. In: Proceedings of the IEEE Conference	687
	on Computer Vision and Pattern Recognition, pp. 1751–1760 (2019) 9, 12, 13	688
		689
		690
		691
		692
		693
		694
		695
		696
		697
		698
		700
		700
		701
		702
		703
		705
		706
		707
		708
		709
		710
		711
		712
		713
		714
		715
		716
		717
		718
		719
		719