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Abstract. Generating High Dynamic Range (HDR) image in the pres-
ence of camera and object motion is a tedious task. If uncorrected, these
motions will manifest as ghosting artifacts in the fused HDR image.
On one end of the spectrum, there exist methods that generate high-
quality results that are computationally demanding and too slow. On
the other end, there are few faster methods that produce unsatisfac-
tory results. With ever increasing sensor/display resolution, currently
we are very much in need of faster methods that produce high-quality
images. In this paper, we present a deep neural network based approach
to generate high-quality ghost-free HDR for high-resolution images. Our
proposed method is fast and fuses a sequence of three high-resolution
images (16-megapixel resolution) in about 10 seconds. Through exper-
iments and ablations, on different publicly available datasets, we show
that the proposed method achieves state-of-the-art performance in terms
of accuracy and speed.

1 Introduction

Natural scenes have a wide range of illumination that exceeds the dynamic range
of standard digital camera sensors. The resulting image has undesirable saturated
regions (too bright or too dark) while capturing an HDR scene. Widely followed
software solution is to merge multiple low dynamic range (LDR) images into
a single HDR image. Each LDR image in the input stack captures part of the
brightness spectrum by varying exposure time (or aperture, ISO). Then, the
HDR image is generated by combining the best regions of each LDR image. The
generated HDR has a wider dynamic range than each LDR input image.

HDR fusion is a simple and straightforward process for static scenes: scenes
without any camera or object motion [27]. However, in the presence of camera or
object motion, such naive static fusion techniques result in artifacts. While the
camera motion can be corrected using homography-based alignment procedures,
the harder challenge is to address the object motion. If uncorrected, the moving
objects from all the input images appear mildly in the final result, resulting in
a ghost-like perception, hence known as ghosting artifact. Several methods have
been proposed in the literature to generate results without ghosting artifacts,
a.k.a., HDR deghosting methods. The initially proposed rejection-based meth-
ods [4, 5, 8, 9, 11, 23, 24, 26, 28, 41, 45] are fast and easy to implement. Despite
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Fig. 1. The input exposure sequence with motion is shown on the leftmost column.
The result by our proposed method is shown in the second column. The zoomed regions
of different methods are highlighted in (a) to (g). (a) Wu18 [40], (b) Kalantari17 [15],
(c) SCHDR [25], (d) AHDR [42], (e) guide image generated by Ng, (f) ground truth
and (g) proposed method. Best viewed in color monitor.

their better performance for mostly static scenes, they suffer from having only
LDR content for moving objects. Alignment-based methods register input im-
ages to a selected reference image using rigid [36, 39] or non-rigid [6, 12, 16, 46]
registration techniques. While the rigid registration techniques find complex ob-
ject motion difficult to handle, the non-rigid techniques (such as optical flow)
are inaccurate for deformable motions and occluded pixels. On the other hand,
patch-based optimization methods [13,34] synthesize a static sequence from the
dynamic input sequence. Despite their high-quality results, they suffer from huge
computational complexity, making them not suitable for portable devices with
limited computational resources.

Recently proposed deep learning-based HDR deghosting methods [15,40,42–
44] generate visually pleasing results for the majority of the contents. However,
they still suffer from artifacts in heavily saturated regions (see Figure 1). An-
other limitation of the existing CNN-based methods is the need for more compu-
tational resources to process high-resolution images (more than 5 megapixels).
For example, Yan et al.’s [43] approach can process a maximum of 2 megapixels
(MP) on a GPU with 11GB memory (RTX 2080Ti); their method requires GPU
with more memory to process high-resolution images. Similarly, [40] can only
process images up to 5 MP on a GPU with 11GB memory.

To address the issues mentioned above, we propose a robust CNN based
HDR deghosting method that can generate artifact-free results and can process
up to 16 MP images within 11 seconds on a GPU with 11GB memory. Unlike
previous CNN based methods [15,40,42,43], in our approach, we avoid processing
full resolution images with CNN. Alternatively, we process low-resolution images
and upscale the result to the original full resolution. However, a simple bilinear or
bicubic upsampling may introduce blur artifacts. Hence, we make use of bilateral
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guided upsampling [2,7] to generate full resolution artifact-free output. The main
contributions of our work is summarized as follows,
– We present a CNN based HDR deghosting algorithm that is robust to sig-

nificant object motion and saturation.
– We propose an efficient HDR deghosting approach to process high-resolution

images with Bilateral Guided Upsampler (BGU). We also demonstrate the
use of BGU for a fusion task where the guide image is not readily available.

– We provide motion segmentation masks for UCSD dataset [15] to benefit
HDR deghosting research community.

– We perform an extensive quantitative and qualitative evaluation on publicly
available datasets. We also perform various ablation experiments on different
choices in our model.

2 Related works

In general, we can classify most of the deghosting algorithms into four categories:
alignment-based, rejection-based, patch-based, and learning-based methods1.
Alignment-based methods: The first class of algorithms register all input im-
ages to a chosen reference image using rigid or non-rigid registration techniques.
Rigid registration methods handle global camera motion by matching feature
descriptors such as SIFT [36], SURF [8] and Median Threshold Bitmap [39].
In [36], Tomaszewska and Mantuik perform RANSAC after SIFT to refine the
matches. Non-rigid registration methods like Bogoni et al. [1], Kang et al. [16],
Gallo et al. [6] and Zimmer et al. [46] make use of optical flow to align images.
The non-rigid registration based methods have the advantage of producing re-
sults with moving HDR content. However, as some of the features used for rigid
and non-rigid registration are not robust against huge brightness changes, they
are more prone to fail for saturated regions or occluded regions.

Rejection-based methods: The second class of algorithms assume the in-
put images to be fairly static and detects the pixels affected by motion [4,18,29],
after which they combine only static images in those regions. To identify the
moving objects in the registered images, many techniques have been proposed
that make use of illumination constancy criteria, linear relationship between im-
ages [17,35,41], prediction and thresholding [9,23,29], thresholding background
probability map [18], etc. Gallo et al. [5] perform patch wise comparison in loga-
rithmic domain to identify moving regions. Raman and Chaudhuri [28] perform
a comparison in super-pixels to improve motion segmentation accuracy along
edges. Although this class of algorithms is fast, a major drawback is that they
generate low dynamic range content in the moving object regions.

Patch-based optimization methods: The third class of algorithms han-
dles both camera and object motion jointly by performing patch-based registra-
tion between the varying exposure images [13,21,34]. They pick one of the input
images as the structural reference and find dense correspondences between the
reference image and all other input source images in the stack. Using these corre-
spondences, they synthesize modified source images that are structurally similar

1 Elaborate literature review can be found in [32,33,37].
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to the original reference image but resemble the corresponding source images
in terms of the brightness. The synthesized images are fused using static fusion
techniques like Debevec and Malik [3]. Despite the impressive performance, the
patch-based methods [13,34] suffer from high computation time.

Deep learning methods: The fourth class of algorithms uses deep learn-
ing methods to fuse input images into an HDR image. In [15], a simple CNN
network is trained to correct artifacts introduced by the optical flow method.
Though [15] generates visually pleasing results for some images, it fails to cor-
rect warping errors in saturated regions, especially on moving regions. Wu et
al. [40] treat HDR deghosting as an image translation problem. In their method,
authors have shown that it is possible to fuse images without performing optical
flow. In [43], Yan et al. use a multiscale CNN to extract features at different
scales and fuse them. More recently, Yan et al. proposed an attention-guided
method in [42]. In this approach, the authors identify regions with motion and
exclude them during the fusion process. Each of the above-discussed methods
addresses an important issue. However, existing CNN based methods require
heavy computational resources to process high resolution images.

3 Proposed method

Motivation for using BGU: Existing CNN based HDR deghosting meth-
ods require a substantial amount of computational resources to process high-
resolution images. The bottleneck is to process the images in their full resolu-
tion with CNNs. Hence these methods are not easily scalable to ever increasing
image resolution. To circumvent this issue, we propose a method that performs
all operations in low resolution and upscales the result to the required full reso-
lution. For efficient and artifact-free upscaling, we utilize deep Bilateral Guided
Upsampling (BGU) used by Gharbi et al. [7]. For upscaling, the BGU algorithm
requires a guide image for structural reference (see Figure 2). Such a guide image
should satisfy the following two criteria: (1) must be in full high-resolution as
the expected final HDR result, (2) should have similar structural details as the
expected final HDR result. In other words, the guide image should be a high-
resolution fused image without any ghosting artifacts. However, predicting the
high-resolution guide image through a CNN will have the same challenges as
discussed before.

To address this challenge, we propose to generate a guide image through
weight-map based strategy. The core idea is to predict weight maps at low res-
olution for downsampled inputs and upscale them using bicubic interpolation.
The upscaled weight maps can be used to combine original high-resolution input
images and generate guide image. As the upscaling is performed on the weight
maps instead of the image domain, the predicted guide image will be void of any
blurring artifacts. In this step, CNN processes only the low-resolution images,
but the generated guide image is in full high-resolution. Finally, the generated
guide image is used by BGU to produce the deghosted HDR result.

Pipeline: The objective of our HDR deghosting method is to fuse input
varying exposure LDR input images ({I1, · · · , IN}) into an HDR image (Hf )
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Fig. 2. Our method comprises of two components: guide and final HDR prediction. The
input images in full-resolution (Ih) is downsampled by a factor of d to generate Il. The
optical flow aligned low-resolution images, IlOF , are fused by Nf model to generate
final HDR result (Hf ) in full-resolution using Bilateral Guided Upsampler (BGU).
For efficient artifact-free upsampling, BGU requires a guide image (Hg) for structual
guidance. Hg is generated with Nmc and Ng with Il as input. For more details, see
Section 3.

without any ghosting artifacts. Our approach is a reference-based HDR deghost-
ing method, meaning, the generated HDR image will have identical structural
details as that of the chosen reference image. Similar to [15,40,42,43], our method
takes three different exposure images (I−, I0, I+) as input with the middle im-
age (I0) as the reference, where (I−, I0, I+) denotes the underexposed, normally
exposed, and overexposed images.

We denote the full high-resolution input as Ih = {Ih−, Ih0 , and Ih+} and the
corresponding downsampled (by a factor d) images as I l = {I l−, I l0, and I l+}
(see Figure 2)2. As I l may have camera and object motion, we align them using
optical flow method by Liu et al. [20]. We align the non-reference images (I l−
and I l+) to reference image (I l0) after exposure correction. The generated optical
flow aligned sequence (I lOF ) is fed to fusion (Nf ) network, to generate a fused
feature map at low resolution. Then, the fused feature map is passed to BGU
to generate Hf in high-resolution. However, BGU requires a guide image for
structural reference.

The guide image is generated in two steps: motion compensation followed by
weight map based fusion. In the first step, I l is passed to a CNN network (Nmc)
to segment moving regions between reference and other non-reference images.
The predicted segmentation maps are used to generate motion compensated
sequence, I lMC in low-resolution. The corresponding high-resolution motion maps
are obtained by upscaling the low-resolution segmentation maps using bicubic
interpolation. Then, the upsampled motion maps are used to compensate motion
in Ih and generate high-resolution motion compensated sequence, IhMC . Naively
fusing IhMC using classical fusion methods like triangle function [3] may have

2 Throughout the rest of the paper, the full high-resolution images are denoted by
superscript h, i.e., �h and the downsampled low-resolution images by �l.
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artifacts in the guide image. Hence, we correct such artifacts using a trainable
CNN, Ng. With I lMC as input, Ng generates three weight maps, one for each of
the three input images. The weighted sum of upscaled weight maps (using bicubic
interpolation) and IhMC results in the guide image (Hg) at high-resolution. It
should be noted that, throughout this process, both inputs and predictions of
Nmc and Ng are in low-resolution.

Finally, Hf is generated by BGU with Hg as structural guidance. We provide
elaborate details of each step in further sections.
Guide Image Generation: The input images (I l) to Nmc are assumed to be
aligned for camera motion. If not, the low resolution (I l) images can be aligned
with simple homography based methods. The aligned images are passed to a
CNN model, Nmc, to segment moving regions between reference image (I l0) and
non-reference images (I l−, I

l
+) individually. To do so, we concatenate reference

and a non-reference image, I l− (or I l+) together to form a six channel data and
feed as input to Nmc. We use the U-net architecture [30] for Nmc model3. The
model architecture consists of four encoders followed by four decoders with skip
connections from encoders. The output of Nmc is a single channel binary seg-
mentation map, M l

− (M l
+ for I l+ input) with same resolution as I l. Each pixel

in M l
− has value between 0 and 1. Value ‘0’ indicates the absence of motion at

that pixel in either reference or the non-reference image, and ‘1’ indicating the
presence of motion in any one of them. Using the predicted motion segmentation
maps, we perform motion compensation in the input sequence (MC box shown in
Figure 2). The motion compensation is achieved by replacing the moving regions
in non-reference image with regions from reference image at the same location.

I lmc,− = M l
− × E(I l0, t0, t−) + (1−M l

−)× I l− (1)

I lmc,+ = M l
+ × E(I l0, t0, t+) + (1−M l

+)× I l+ (2)

In the above equation, E() denotes exposure normalization function. For exam-
ple, E() modifies the exposure of image A with exposure time tA to exposure of
image B with exposure time tB by:

E(A, tA, tB) =

(
Aγ × tB

tA

) 1
γ

(3)

where, γ=2.2. At the end of this process, we generate motion compensated se-
quence I lMC = {I lmc,−, I l0, I lmc,+}. To generate motion compensated sequence in

high-resolution, the predicted segmentation maps, M l
− and M l

+, are upscaled
using bicubic interpolation to generate Mh

− and Mh
+. Then, we repeat the steps

in equations 1 and 2, but with high resolution motion maps and high resolution
input images to create IhMC = {Ihmc,−, Ih0 , Ihmc,+}.

The motion compensated low resolution sequence I lMC is fed as input to
Ng network to generate fusion weight maps. The input to Ng is obtained by
concatenating {I lmc,−, I l0, I lmc,+} images in channel dimension,

(wl−, w
l
0, w

l
+) = Ng(I

l
mc,−, I

l
0, I

l
mc,+) (4)

3 More detailed model architecture is provided in supplementary material
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The output of Ng consists of three weight maps: wl−, w
l
0, and wl+. Similar to Nmc

model, we use U-net architecture for Ng network as well. Before using the weight
maps for fusion, they are upscaled using bicubic interpolation to the required
high resolution: wh−, w

h
0 , and wh+. Then, the upscaled and normalized weight

maps are used to combine motion corrected high-resolution images IhMC as,

Hg = wh− × LH(Ihmc,−) + wh0 × LH(Ih0 ) + wh+ × LH(Ihmc,+) (5)

where, LH() denotes the LDR to HDR conversion process. For a sample LDR
image A, the corresponding HDR version is obtained by,

LH(A) =
Aγ

tA
(6)

Nf network: The input images (I l) are aligned using optical flow to compensate
for camera and object motion. Instead of applying the optical flow on high
resolution images, we apply it on downsampled low-resolution images, I l. We use
optical flow model proposed by Liu et al. [20] to align the non-reference images to
the reference image. The optical flow aligned images, I lOF = (I lOF,−, I

l
0, I

l
OF,+),

are passed as input data to Nf model to predict final HDR (Hf ) result,

Hf = Nf (I lOF ) (7)

As shown in Figure 3, three input images are passed to a small encoder with three
convolution layers to extract individual image features. The extracted features
of reference and a non-reference image (I lOF,− or I lOF,+) is concatenated together
and further processed by another convolutional layer. By doing so, the network
has the ability to compare both feature maps and choose the properly exposed
details from both. This operation is repeated for all three convolutional levels of
the encoder to produce final feature maps for non-reference images. Then, the
output of last layer in reference image encoder is concatenated with other two
final feature maps of non-reference images. The concatenated feature maps are
further processed by three blocks of Extended Stacked and Dilated Convolution
(XSDC) blocks.

A higher receptive field is necessary for the network to gather information
over a vast image region to faithfully reconstruct occluded and saturated regions.
We achieve such a high receptive field by using XSDC blocks. XSDC is an simple
extention to SDC block proposed by Schuster et al. [31]. The original SDC block
has four dilated convolutions with dilation rate from 1 to 4, stacked parallely. The
output of stacked convolutional layers is concatenated to produce output feature
maps. We make small extention to SDC by increasing the number of consecutive
convolutional layers from one (in SDC) to three and process the concatenated
features with a 1×1 convolutional layer to aggregate the feature maps. In our
implementation, we use three stacks of three convolutional layers (see Figure 3)
with dilation rate of 1,2 and 4, and kernel size 3×3 for stacked convolutional
layers. Through ablation experiments, we observed that our changes perform
better than original SDC (see Table 4) by having better ability to transfer details
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in saturated regions. In addition, we also have dense connections among each of
the three XSDC blocks. The output low-resolution feature map of final XSDC
block is passed to the BGU, which takes high-resolution Hg generated from
Ng model as the guide image to predict final fused HDR image, Hf in high-
resolution.
Loss functions: The total loss to train the model consists of three sub-losses
at output of Nmc, Ng and Nf . The predicted segmentation maps (Mh

− and Mh
+)

by Nmc is compared with ground truth segmentation maps (M̃h
− and M̃h

+) using
Binary Cross Entropy (BCE). The motion compensation loss (Lmc) is computed
by taking the sum of two individual BCE losses,

Lmc = BCE(Mh
−, M̃

h
−) +BCE(Mh

+, M̃
h
+) (8)

The `2 loss between guide image (Hg) and ground truth HDR (H̃), final image

(Hf ) and H̃ is used to train Ng and Nf .

Lg = `2(T (Hg), T (H̃)) (9)

Lf = `2(T (Hf ), T (H̃)) (10)

where, T (�) denotes the tonemapping operation applied to HDR images with
commonly used µ-law function,

T (H) =
log(1 + µH)

log(1 + µ)
(11)

where µ = 5000. The total loss is taken as the weighted sum of three losses: Lmc,
Lg and Lf .

Ltotal = α1 × Lmc + α2 × Lg + α3 × Lf (12)

where α1, α2 and α3 denote the weight values assigned to individual loss func-
tions. We found that assigning equal weight values from beginning takes longer
time to stabilize the training and converge to optimum solution. Hence, we assign
low value of 1e−4 for α2 and α3 for initial 25 epochs, thus making Nmc network
learn better segmentation maps that would improve Ng. From 26th epoch till
50, we set α2 as 1 and for epochs after 75, all three weights are assigned to one.

4 Experiments

4.1 Implementation

Datasets: We trained our model on the dataset provided by Kalantari and Ra-
mamoorthi [15]. The dataset consists of 74 training and 15 testing images of
1500 × 1000 resolution, with ground truth for evaluation. Additionally, we also
tested our model on datasets provided by Prabhakar et al. [25], Sen et al. [34]
and Tursun et al. [38].
Groundtruth for Nmc: For training Nmc model, we have generated ground
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Fig. 3. Illustration of Nf architecture. The input to Nf is optical flow corrected low-
resolution sequence {IlOF } and Hg. The output is the final HDR image Hf in full-
resolution.

truth by annotating the moving objects in each input image. For a sequence with
three images: (Ih−, I

h
0 , I

h
+), we generated three segmentation maps, (Sh−, S

h
0 , S

h
+),

by manually annotating only the moving regions (see Figure 4). The ground
truth is obtained by taking the union of reference and non-reference image seg-
mentation mask. For example, M̃h

− is generated by performing a union of Sh−
and Sh0 . Similarly, M̃h

+ is generated by taking a union of Sh+ and Sh0 . In total,
we have annotated 89 images of UCSD dataset including train and test set.
Data pre-processing: To train our model, we extracted 50K patches of size
256 × 256 from the 74 training images and applied eight augmentations (rota-
tion, flip, and noise) to increase the training sample size.
Network details: For both Nmc and Ng, we use U-net model with four convo-
lutional layers for encoder. The features are downsampled using the max pool
after each block before passing to the next convolution layer. The decoder part
consists of the same number of layers as encoders with the upsampling layer to
increase the feature resolution. We use Leaky ReLu in all the layers except the
final layer of Nmc and Ng, where we use sigmoid activation to predict weight
maps in [0-1] range. Adam optimizer [19] is used to train our model with a
learning rate of 2e−4 for 200 epochs.

4.2 Quantitative evaluation

We compare our proposed method against seven state-of-the-art methods: 1. Hu13
[13], 2. Sen12 [34], 3. Kalantari17 [15], 4. Wu18 [40], 5. MSDN-HDR4 [43],
6. AHDR [42], and 7. SCHDR [25]. In Table 1, we report the quantitative eval-
uation on two datasets: [15] and [25] using three full-reference image quality
assessment metrics: PSNR computed in linear HDR domain (PL), PSNR com-
puted in tonemapped domain (PT ) after applying tonemapping (equation 11),

4 HDR-VDP-2 metric and scores for [25] dataset is not reported for Yan20 [44] and
MSDN [43] as the codes are not publicly available. The numbers reported are taken
from their paper.
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Fig. 4. (a) Input sequence, (b) ground truth motion masks (Sh
−, S

h
0 , S

h
+), (c) M̃h

−, ob-

tained by combining Sh
− and Sh

0 , (d) M̃h
+, obtained by combining Sh

+ and Sh
0 , (e)

predicted motion map, Mh
−, for inputs Il− and Il0, (f) predicted motion map Mh

+ for in-
puts Il+ and Il0, (g) motion corrected image Ihmc,−, (h) motion corrected image Ihmc,+, (i)
zoomed regions in motion corrected images highlighting artifacts, and (j) corresponding
regions at guide image (Hg) after refining with Ng.

and HDR-VDP-2 [22]. HDR-VDP-2 is a full-reference metric specifically designed
for quantifying degradations in HDR images.

From results in Table 1, we observe that our proposed method with BGU
(denoted as Ours (w/ BGU)) for downsampling factor of 8 performs better than
almost all methods in both datasets. Additionally, we present results for another
variation of our model without using BGU (Ours (w/o BGU)). By setting d=1,
means passing the input without downsampling, in full resolution to the network.
Since the output of the XSDC block is already in full resolution, using BGU is
redundant. Thus, the network is modified to predict three-channel RGB output
at the end of the last XSDC module, excluding BGU. From the results reported
in Table 1, we see that the network trained with d=1 shows better performance
than all methods, in all three metrics for both [15,25] datasets.

4.3 Ablation experiments

Guide-image ablations: In Table 2, we present results for different simple
baseline approaches to generate guide image. We report the PSNR-L (PL) and
PSNR-T (PT ) on test set of UCSD dataset.
[1] B1+ [3]: A simple baseline to generate guide image would be to detect moving

pixels by taking difference between images. We detect the moving pixels by
thresholding (with 0.1) the image difference after brightness normalization.
The threshold maps are used as Mh

− and Mh
+ in equation 1 and 2 to generate

motion compensated sequence. Then, the motion corrected HDR sequence
is fused by using triangle weighing strategy [3].

[2] Nmc+ [3]: Motion correction by Nmc followed by fusion with [3].
[3] Ng: Direct input without motion correction is passed to Ng model.
[4] B1+Ng: Motion compensation by simple difference and fusion withNg model.
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Table 1. Quantitative comparison of our proposed method against eight state-of-art
HDR deghosting algorithms on [15] and [25] datasets. For [15] dataset, we report the
scores averaged over all 15 test sequences, and for [25], over 116 test sequences with
PSNR-L (PL) and PSNR-T (PT ) metrics. The best performing method is highlighted
in bold and the second best in blue color. PT (in dB) is computed after tonemapping
with equation 11.

M
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\

D
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Metrics
Sen12

[34]
Hu13

[13]
Kalantari17

[15]
Wu18

[40]
Yan20

[44]
MSDN

[43]
AHDR

[42]
SCHDR

[25]
Ours

(w/o BGU)

Ours

(w/ BGU)

[15]
PL 38.57 30.83 41.07 40.91 - 41.01 41.01 39.68 41.68 41.33
PT 40.94 32.18 42.74 41.65 42.41 42.22 42.10 40.47 43.08 42.82
HDR-

VDP-2
61.98 60.12 66.64 67.96 - - 66.67 66.80 67.21 66.94

[25]
PL 29.57 28.87 32.08 30.72 - - 31.83 31.44 32.52 32.11
PT 32.09 30.82 35.34 31.31 - - 33.72 30.57 35.84 35.46
HDR-

VDP-2
62.43 60.47 64.47 64.03 - - 64.32 62.20 64.76 64.57

[5] Nmc+Ng: Motion compensation by Nmc and fusion with Ng model. This
denotes the accuracy of Hg images.

From Table 2, we observe that while the individual performance of Nmc and Ng is
low, using them together can result in significant boost in PSNR. Similarly, using
Nmc for motion correction achieves a PT score approximately 1.5 dB higher than
B1. This is due to the fact that simple difference can produce false segmentation
in heavily saturated regions. Whereas, Nmc network has learnt reliable features
that can produce accurate motion segmentation maps.
Choice of inputs: In Table 3, we present the accuracy obtained with different
type of inputs to the fusion model (Nf ). We report scores for the d=1 setting.

[1] Nf : We pass direct input images without optical flow correction to Nf model.
[2] Nmc+Nf : We pass motion corrected sequence (I lMC) as input to Nf .
[3] [20]+Nf : optical flow aligned input is passed to Nf .

The low score for passing input images without optical flow correction is because
of the fact that Nf has to perform both motion correction as well as fusion. For
saturated regions in I0, Nf has to choose details from under or over exposed
image. However, in moving regions, it has to choose details from reference image.
Hence, the network gets confused in heavily saturated regions, as to whether it
is a saturated region or motion affected region. Most often, it chooses to identify
those regions as motion affected, hence losing HDR content in those pixels. By
passing IMC images to Nf , the fusion network has to focus only on merging
them. However, as motion corrected sequence has low HDR content for moving
objects and saturated regions, the final result has lower PSNR. Finally, passing
optical flow corrected sequence results in higher PSNR as it can transfer details
from neighbouring pixels for motion affected and saturated regions.
Architecture ablation: In Table 4, we show results for different choices of
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Fig. 5. Our proposed method can fuse im-
ages up to 16MP on a GPU with 11GB
memory for PSNR higher than state-of-
the-art HDR deghosting algorithms. The
y-axis for both the plots is in the logarith-
mic time scale in seconds. See section 4.5
for details.

(a) (b)
Fig. 6. A qualitative comparison between
(a) Wu18 [40], (b) Proposed method on a
test sequence from [25] dataset.

Table 2. Ablation experi-
ments for different choice of
guide image generation. See
section 4.3 for more details.

Methods PL PT

B1 + [3] 34.40 33.50
Nmc + [3] 37.55 37.98
Ng 36.38 37.24
B1 + Ng 38.32 39.06
Nmc + Ng 40.73 41.56

Table 3. Ablation on dif-
ferent type inputs to Nf

model. See section 4.3 for
more details.

Methods PL PT

Nf 40.88 41.16
Nmc + Nf 41.02 41.54
[20] + Nf 41.33 42.82

Table 4. Base architecture
ablation. See section 4.3 for
more details.

Methods PL PT

Vanilla 39.60 41.08
U-Net [30] 41.13 41.76
ResNet18 [10] 41.24 42.45
DenseNet [14] 41.03 41.78
SDC [31] 40.76 41.94
Ours (w/o dense) 41.21 42.34
Ours (w/ dense) 41.33 42.82

network architecture. The vanilla network denotes using ten convolutional layers
instead of XSDC blocks.

4.4 Qualitative evaluation

In Figures 1 and 6, we show qualitative comparison against Wu18 [40] and
AHDR [42] methods. Both Wu18 and AHDR fail to reconstruct details in satu-
rated regions of the reference image that is occluded in other input images. As
a result, the occluded regions appear as distinct structure in the result (zoomed
regions in Figure 1). Sen12 [34] suffers from color bleeding and over-smoothing
artifacts introduced in heavily saturated regions of reference image (see Figure
7). In Figure 1 and 7, we show the results by Kalantari17 [15] and proposed
method. Kalantari17 method introduces structural distortions for moving ob-
jects in saturated regions and hallucinates details in heavily saturated regions.
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Fig. 7. Qualitative comparison between proposed method and state-of-the-art methods
in a test set from UCSD dataset [15]. The input sequence is shown on the left column.
(a) SCHDR [25], (b) Kalantari17 [15], (c) Sen12 [34], (d) Hg, (e) Hf and (f) ground
truth.

Comparatively, our proposed method generates visually pleasing results without
any artifacts5. All the results shown in the paper are generated with d=8.

4.5 Running time

In Figure 5 left graph, we compare the running times of seven methods for image
resolutions from 1 to 16 MP. The reported numbers are obtained from a machine
with NVIDIA RTX 2080 Ti GPU, 32GB RAM and an i7-8700 CPU. For each
resolution, we report the average of 15 runs with three varying exposure images.
The non-deep methods Sen12 [34] and Hu13 [13] take up to 468 seconds and
893 seconds respectively to fuse a 4MP sequence. Among the deep learning-
based methods, Kalantari17 [15] fuses a 1MP sequence in 42 seconds. For any
other higher resolutions, it throws an out-of-memory error. Similarly, Yan19 [42]
can support a maximum of 2MP resolution in 0.83 seconds. Wu18 [40] method
takes up to 10 seconds to process 1MP images and can only support up to
5MP. Comparatively, our proposed method with d=8 can fuse 16MP images
in 11 seconds on a 11GB GPU card. In Figure 5 right graph, we report the
average PSNR-T score for 15 test images of size 1.5MP from dataset provided
by Kalantari17 [15]. It should be noted that, for a fair comparison, we have used
SIFT followed by the RANSAC method to align images for both Wu18 and our
method. However, as the input images are downsampled by a factor of 8 before
image alignment, it does not have significant overhead on our approach.

5 Discussion
Guide vs Final HDR: As shown in Figures 1, 7 and 8, Hg image lacks details
in moving regions affected by saturation. This effect is because Hg generation

5 For more results, please check supplementary material.
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Fig. 8. Hg vs Hf : (a) Patches from I0 image, (b) Hg, (c) Hf and (d) ground truth.
The regions affected by motion and saturation is not corrected in the guide image
(highlighted by the red arrows). In contrast, Nf network can generate plausible details
in those regions as well.

process is a weight map-based method; it does not have the freedom to move
details from neighboring pixels. In contrast, as input to Nf are optical flow
corrected images, the Hf has proper contents in those regions as well.
Limitations: Similar to [15,40,42], our method is also trained for a fixed number
of three images. Hence, extending our method (including [15,41,42]) requires re-
training with the new number of images. To overcome this issue, one can use the
max-mean fusion strategy instead of feature concatenation [25].

6 Conclusion

In the current era of high-resolution imaging with smartphones and DSLRs, it is
difficult to find the best performing HDR deghosting method that can support
higher image resolutions with limited computational resources. We address this
issue by performing all heavy processing in low resolution (including optical flow
computation) and upscale the low-resolution output to full resolution using a
guide image. The guide image is generated using a simple weight map based fu-
sion of original full-resolution inputs. We have shown that our approach improves
the state-of-the-art in generating high-quality artifact-free HDR images. Our ap-
proach can fuse 16-megapixel images in about 10 seconds on a GPU with 11GB
memory and achieves state-of-the-art results in publicly available datasets. We
also have demonstrated the use of BGU for tasks where the guide image is not
readily available. We hope that our paper will motivate the research community
to explore BGU for other fusion tasks.
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38. Tursun, O.T., Akyüz, A.O., Erdem, A., Erdem, E.: An objective deghosting quality
metric for HDR images. In: Computer Graphics Forum. vol. 35, pp. 139–152. Wiley
Online Library (2016) 8

39. Ward, G.: Fast, robust image registration for compositing high dynamic range
photographs from hand-held exposures. Journal of Graphics Tools 8(2), 17–30
(2003) 2, 3

40. Wu, S., Xu, J., Tai, Y.W., Tang, C.K.: Deep high dynamic range imaging with large
foreground motions. In: European Conference on Computer Vision. pp. 120–135
(2018) 2, 4, 5, 9, 11, 12, 13, 14

41. Wu, S., Xie, S., Rahardja, S., Li, Z.: A robust and fast anti-ghosting algorithm for
high dynamic range imaging. In: 2010 IEEE International Conference on Image
Processing. pp. 397–400. IEEE (2010) 1, 3, 14

42. Yan, Q., Gong, D., Shi, Q., van den Hengel, A., Shen, C., Reid, I., Zhang, Y.:
Attention-guided network for ghost-free high dynamic range imaging. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition. pp.
1751–1760 (2019) 2, 4, 5, 9, 11, 12, 13, 14

43. Yan, Q., Gong, D., Zhang, P., Shi, Q., Sun, J., Reid, I., Zhang, Y.: Multi-scale
dense networks for deep high dynamic range imaging. In: IEEE Winter Conference
on Applications of Computer Vision (WACV). pp. 41–50. IEEE (2019) 2, 4, 5, 9,
11

44. Yan, Q., Zhang, L., Liu, Y., Zhu, Y., Sun, J., Shi, Q., Zhang, Y.: Deep HDR imaging
via a non-local network. IEEE Transactions on Image Processing 29, 4308–4322
(2020) 2, 9, 11

45. Zhang, W., Cham, W.K.: Reference-guided exposure fusion in dynamic scenes.
Journal of Visual Communication and Image Representation 23(3), 467–475 (2012)
1

46. Zimmer, H., Bruhn, A., Weickert, J.: Freehand HDR imaging of moving scenes with
simultaneous resolution enhancement. In: Computer Graphics Forum. vol. 30, pp.
405–414. Wiley Online Library (2011) 2, 3


