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1 Implementation Details

1.1 Parameterization and Initialization

An object’s properties are defined as follows:

– Location: hloc ∈ R3

– Dimensions: hdim ∈ R3

– Rotation: hrot ∈ R
– Shape encoding: hsh ∈ RDsh

– Texture encoding: htx ∈ RDtx

Let btop, bleft, bbottom, bright be the coordinates of a detected 2D bounding box.
We define the following:

cu =
btop + bbottom

2
, (1)

cv =
bleft + bright

2
, (2)

su =
bbottom − btop

2
, (3)

sv =
bright − bleft

2
, (4)

u = cu + suhu, (5)

v = cv + sv(hv + 0.5), (6)

z = µz + hzσz (7)

The location of the object, hloc, is then expressed as

hloc = proj(u, v, z) (8)

Instead of directly optimizing for hloc, we optimize for hu, hv, and hd. µz and
σz are the mean and standard deviation of the z-coordinates of objects from the
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KITTI dataset. proj is the projection operator defined in [4]. We initialize hu,
hv, and hd to zero.

The dimensions of the object, hdim, are represented by

hdim = µd + h′dimσd, (9)

Instead of directly optimizing for hdim, we optimize for h′dim. µd and σd
are the mean and standard deviation of dimensions of objects from the KITTI
dataset. We initialize h′dim to zero.

Following [9], the rotation hrot is defined as

hrot = arctan2(hsinrot, h
cos
rot). (10)

We initialize hsinrot and hcosrot by sampling from a Gaussian distribution with
zero mean and a standard deviation of 0.1.

The shape and texture encoding, hsh and htx, are directly optimized. We
initialize them by sampling from a Gaussian distribution with zero mean and a
standard deviation of 0.01.

1.2 Filtering of 2D Bounding Boxes

We filter out 2D bounding boxes with a height smaller than 20 pixels because the
minimum height of objects that are used for evaluation, on the KITTI dataset, is
25 pixels. We also remove 2D bounding boxes near the image boundary because
the bounding box reconstruction loss is not meaningful if the bounding box is
truncated.

1.3 Network Architecture for Shape Generation

We use the ResNet-18 architecture for encoding shape and texture. Fig. 1 shows
the network architecture used for decoding them.

2 Additional Experimental Results

Table 1 shows a comparison with other methods on the KITTI validation set,
using the AP|R11

metric. Table 2 shows a quantitative evaluation of our method
on the KITTI validation set using different metrics and detection thresholds.

To confirm the effectiveness of shape reconstruction, we conducted two ad-
ditional experiments. The first one uses randomly initialized object shapes and
does not do any further shape optimization. The second one approximates ob-
ject shapes with cuboids without shape optimization, as previously done in other
works [5] that tackle the 3D detection problem.

Table 3 shows a quantitative evaluation of these approaches. When the shape
is not optimized, the detection accuracy drops by about 20%-30%. When cuboids
are used as shapes, the detection accuracy decreases to nearly zero. Fig. 2 shows
the difference between the two approaches. If the shapes are not optimized,
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Fig. 1: We deform the vertices of a unit cube in order to generate the shape of
an object. The cube is uniformly sampled to form a 17× 17× 17 grid. The total
number of vertices on the surfaces is, therefore, 173 − 153 = 1538. Six texture
images of 128× 128 pixels are mapped onto the surfaces of the cube. Conv5, in
this figure, represents a 2D convolution operation that uses a 5× 5 kernel.

the (projected) object silhouettes negatively impact the estimation of rotation,
when using the render-and-compare approach. As we optimize for the silhouette
loss along with fitting within the bounding box area, if the shapes are cuboids,
optimization results in trying to fill the area inside the bounding boxes and
silhouette loss becomes ineffective. These experimental results demonstrate that
optimizing shapes is essential for our method to work effectively.
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Method Supervised
3D detection Bird’s eye view

Easy Moderate Hard Easy Moderate Hard

Mono3D[1] X 2.53 2.31 2.31 5.22 5.19 4.13
OFTNet[7] X 4.07 3.27 3.29 11.06 8.79 8.91
FQNet[3] X 5.98 5.50 4.75 9.50 8.02 7.71
ROI-10D[4] X 9.61 6.63 6.29 14.50 9.91 8.73
Mono3D++[2] X 10.60 7.90 5.70 16.70 11.50 10.10
MonoGRNet[6] X 13.88 10.19 7.62 - - -
MonoDIS [8] X 18.05 14.98 13.42 24.26 18.43 16.95

MonoDR 13.90 14.17 12.12 21.20 17.35 15.25

Table 1: Evaluation of different monocular 3D detection methods: We report
AP|R11

on the KITTI 3D validation set. The values are calculated assuming an
intersection-over-union (IoU) between the predicted and ground truth bounding
boxes of at least 0.7.

Metric Threshold
3D detection Bird’s eye view

Easy Moderate Hard Easy Moderate Hard

AP|R40
0.7 12.50 7.34 4.98 19.49 11.51 8.72

AP|R40
0.5 43.37 29.50 22.72 48.53 33.90 25.85

AP|R40
0.3 65.58 52.02 42.38 68.62 54.94 45.29

AP|R11
0.7 18.86 14.04 12.05 24.79 17.10 15.01

AP|R11
0.5 45.76 32.31 26.19 51.13 37.29 30.20

AP|R11
0.3 66.44 52.09 44.30 68.94 57.00 45.66

Table 2: Quantitative evaluation of different metrics and thresholds on the KITTI
validation set.

Design choice
3D detection Bird’s eye view

Easy Moderate Hard Easy Moderate Hard

Optimizing shapes 12.50 7.34 4.98 19.49 11.51 8.72
Using random shapes 9.10 5.51 4.01 16.28 10.26 7.48

Using cuboids 0.30 0.17 0.16 0.79 0.48 0.44

Table 3: Effectiveness of shape reconstruction on the KITTI validation set.
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(a) 3D detection with shape optimization.

(b) 3D detection without shape optimization (the shapes are randomly initialized).

(c) 3D detection using cuboids as object shapes.

Fig. 2: The difference between 3D detection with and without shape optimiza-
tion: Raw images with predicted 2D bounding boxes are shown in the left column.
Reconstructed images (with the projection of an estimated 3D shape onto the
image plane) are shown in the middle column. Ground-truth (green)/predicted
(red) 3D bounding boxes in the bird’s-eye view (BEV) are shown in the right
column. The white points in BEV represent projections of object point clouds
generated from predicted depth maps. The ground truth information is only used
for visualization purposes.
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