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Abstract. Recent studies often exploit Graph Convolutional Network
(GCN) to model label dependencies to improve recognition accuracy for
multi-label image recognition. However, constructing a graph by count-
ing the label co-occurrence possibilities of the training data may de-
grade model generalizability, especially when there exist occasional co-
occurrence objects in test images. Our goal is to eliminate such bias and
enhance the robustness of the learnt features. To this end, we propose an
Attention-Driven Dynamic Graph Convolutional Network (ADD-GCN)
to dynamically generate a specific graph for each image. ADD-GCN
adopts a Dynamic Graph Convolutional Network (D-GCN) to model
the relation of content-aware category representations that are gener-
ated by a Semantic Attention Module (SAM). Extensive experiments
on public multi-label benchmarks demonstrate the effectiveness of our
method, which achieves mAPs of 85.2%, 96.0%, and 95.5% on MS-
COCO, VOC2007, and VOC2012, respectively, and outperforms current
state-of-the-art methods with a clear margin.

Keywords: Multi-label image recognition, semantic attention, label de-
pendency, dynamic graph convolutional network

1 Introduction

Nature scenes usually contains multiple objects. In the computer vision com-
munity, multi-label image recognition is a fundamental computer vision task
and plays a critical role in wide applications such as human attribute recogni-
tion [19], medical image recognition [9] and recommendation systems [15, 33].
Unlike single-label classification, multi-label image recognition needs to assign
multiple labels to a single image. Therefore it is reasonable to take account of
the relationships of different labels to enhance recognition performance.

Recently, Graph Convolutional Network (GCN) [16] achieves great success
in modeling relationship among vertices of a graph. Current state-of-the art
methods [2, 4] build a complete graph to model the label correlations between
each two categories by utilizing prior frequency of label co-occurrence of the
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(a) Example of static graph
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(b) Example of dynamic graph

Fig. 1. Static graph and dynamic graph. Solid line indicates higher relation and dashed
line indicates lower relation of the categories. (a) illustrates all images share a static
graph [2, 3]. (b) shows our motivation that different image has its own graph that can
describe the relations of co-occurred categories in the image.

target dataset and achieved remarkable results. However, building such a global
graph for the whole dataset could cause the frequency-bias problem in most
common datasets. As highlighted in [25, 26], most prominent vision datasets
are afflicted with the co-occur frequency biases despite the best efforts of their
creators. Let us consider a common category “car”, which always appears with
different kind of vehicles such as “truck”, “motorbike”, and “bus”. This may
inadvertently cause the frequency-bias in these datasets, which would guide the
model to learn higher relations among them. Specifically, as shown in Fig 1(a),
each image share a static graph which is built by calculating the co-occurrence
frequency of categories in target dataset. The static graph gives higher relation
values between “car” and “truck” and lower ones between “car” and “toilet”in
each image. This may result in several problems as follows: 1) failing to identify
“car” in a different context such as in the absence of “truck”, 2) hallucinating
“truck” even in a scene containing only “car”, and 3) ignoring “toilet” when
“car” co-occurs with “toilet”.

Given these issues, our goal is to build a dynamic graph that can capture
the content-aware category relations for each image. Specifically, as shown in
Fig 1(b), we construct the image-specific dynamic graph in which “car” and
“toilet” has strong connections for the image that “car” and “toilet” appear to-
gether and vice versa. To this end, we propose a novel Attention-Driven Dynamic
Graph Convolutional Network (ADD-GCN) for multi-label image recognition
which leverages content-aware category representations to construct dynamic
graph representation. Unlike previous graph based methods [2, 4], ADD-GCN
models semantic relation for each input image by estimating an image-specific
dynamic graph. Specifically, we first decompose the convolutional feature map
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into multiple content-aware category representations through the Semantic At-
tention Module (SAM). Then we feed these representations into a Dynamic
GCN (D-GCN) module which performs feature propagation via two joint graphs:
static graph and dynamic graph. Finally discriminative vectors are generated by
D-GCN for multi-label classification. The static graph mainly captures coarse
label dependencies over the training dataset and learns such semantic relations
as shown in Fig 1(a). The correlation matrix of dynamic graph is the output
feature map of a light-weight network applied upon content-aware category rep-
resentations for each image, and is used to capture fine dependencies of those
content-aware category representations as illustrated in Fig 1(b).

Our main contributions can be summarized as follows,

– The major contribution of this paper is that we introduce a novel dynamic
graph constructed from content-aware category representations for multi-
label image recognition. The dynamic graph is able to capture category re-
lations for a specific image in an adaptive way, which further enhance its
representative and discriminative ability.

– We elaborately design an end-to-end Attention-Driven Dynamic Graph Con-
volutional Network (ADD-GCN), which consists of two joint modules. i)
Semantic Attention Module (SAM) for locating semantic regions and pro-
ducing content-aware category representations for each image, and ii) Dy-
namic Graph Convolutional Network (D-GCN) for modeling the relation of
content-aware category representations for final classification.

– Our ADD-GCN significantly outperforms recent state-of-the-art approaches
on popular multi-label datasets: MS-COCO, VOC2007, and VOC2012. Specif-
ically, our ADD-GCN achieves mAPs of 85.2% on MS-COCO, 96.0% on
VOC2007, and 95.5% on VOC2012, respectively, which are new records on
these benchmarks.

2 Related work

Recent renaissance of deep neural network remarkably accelerates the progresses
in single-label image recognition. Convolutional Neural Networks (CNNs) can
learn powerful features from large scale image datasets such as MS-COCO [20],
PASCAL VOC [7] and ImageNet [6], which greatly alleviates the difficulty of
designing hand-crafted features. Recently, many CNN-based approaches have
been proposed for multi-label image recognition as well [2, 5, 10, 23, 37, 27, 30],
which can be roughly categorized into two main directions as following.

Region based methods. One direction aims to first coarsely localize mul-
tiple regions and then recognize each region with CNNs [5, 10, 23, 37]. Wei et
al. [31] propose a Hypotheses-CNN-Pooling (HCP) framework which generates
a large number of proposals by objectness detection methods [5, 37] and treats
each proposal as a single-label image recognition problem. Yang et al. [32] for-
mulate the task as a multi-class multi-instance learning problem. Specifically,
they incorporate local information by generating a bag of instances for each
image and enhance the discriminative features with label information. However,
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these object proposal based methods lead to numerous category-agnostic regions,
which make the whole framework sophisticated and require massive computa-
tional cost. Moreover, these methods largely ignore the label dependencies and
region relations, which are essential for multi-label image recognition.

Relation based methods. Another direction aims to exploit the label de-
pendencies or region relations [27, 30, 17, 4, 2, 29]. Wang et al. [27] propose CNN-
RNN framework to predict the final scores and formulate label relation by utiliz-
ing Recurrent Neural Network (RNN). Wang et al. [30] attempt to discover such
relations by iterative locating attention regions with spatial transformer [14] and
LSTM [13]. Actually, these RNN/LSTM based methods explore the relation be-
tween labels or semantic regions in a sequential way, which cannot fully exploit
the direct relations among them. Different from these sequential methods, some
works resort to Graphical architectures. Li et al. [17] cope with such relations by
image-dependent conditional label structures with Graphical Lasso framework.
Li et al. [18] use a maximum spanning tree algorithm to create a tree-structured
graph in the label space. Recently, the remarkable capacity of Graph Convolu-
tional Networks (GCNs) has been proved in several vision tasks, Chen et al. [4]
utilize GCN to propagate prior label representations (e.g. word embeddings) and
generate a classifier, which replaces the last linear layer in a normal deep convo-
lutional neural network such as ResNet [11]. With the help of label annotations,
Chen et al. [2] compute a probabilistic matrix as the relation edge between each
label in a graph. Our work is largely inspired by these GCN based methods for
multi-label image recognition. However, instead of using external word embed-
ding for category representations and label statistics for graph construction, our
Attention-Driven Dynamic Graph Convolutional Network (ADD-GCN) directly
decomposes the feature map extracted by a CNN backbone into content-aware
category representations and optimizes the D-GCN, which consists of a static
graph for capturing the global coarse category dependencies and a dynamic
graph for exploiting content-dependent category relations, respectively.

3 Method

This section presents Attention-Driven Dynamic Graph Convolutional Network
(ADD-GCN) for multi-label image recognition. We first give a brief overview of
ADD-GCN, and then describe its key modules (Semantic Attention Module and
Dynamic GCN module) in details.

3.1 Overview of ADD-GCN

As objects always co-occur in image, how to effectively capture the relations
among them is important for multi-label recognition. Graph based representa-
tions provide a practical way to model label dependencies. We can use nodes
V = [v1,v2, . . . ,vC ] to represent labels and correlation matrix A to represent
the label relations (edges). Recent studies [2, 4] exploited Graph Convolutional
Network (GCN) to improve the performance of multi-label image recognition
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Fig. 2. Overall framework of our approach. Given an image, ADD-GCN first uses a
CNN backbone to extract convolutional feature maps X. Then, SAM decouples X
to content-aware category representations V, and D-GCN models global and local
relations among V to generate the final robust representations Z that contains rich
relation information with other categories.

with a clear margin. However, they construct correlation matrix A in a static
way, which mainly accounts for the label co-occurrence in the training dataset,
and is fixed for each input image. As a result, they fail to explicitly utilize the
content of each specific input image.

To address this problem, this paper proposes ADD-GCN with two elabo-
rately designed modules: We first introduce Semantic Attention Module (SAM)
to estimate content-aware category representation vc for each class c from the
extracted feature map and the representations are input to another module,
Dynamic-GCN, for final classification. We will detail them in the next part.

3.2 Semantic Attention Module

The objective of Semantic Attention Module (SAM) is to obtain a set of content-
aware category representations, each of which describes the contents related to
a specific label from input feature map X ∈ RH×W×D. As shown in Fig 2,
SAM first calculates category-specific activation maps M = [m1,m2, . . . ,mC ] ∈
RH×W×C and then they are used to convert the transformed feature map X′ ∈
RH×W×D′

into the content-aware category representations V = [v1,v2, . . . ,vC ] ∈
RC×D . Specifically, each class representation vc is formulated as a weighted sum
on X′ as follows, such that the produced vc can selectively aggregate features
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related to its specific category c.

vc = mT
c X′ =

H∑
i=1

W∑
j=1

mc
i,jx
′
i,j , (1)

where mc
i,j and x′i,j ∈ RD′

are the weight of c th activation map and the feature
vector of the feature map at (i, j), respectively. Then the problem reduces to
how to calculate the category-specific activation maps M, where the difficulty
comes from we do not have explicit supervision like bounding box or category
segmentation for images.

Activation map generation. We generate the category-specific activation
maps M based on Class Activation Mapping (CAM) [35], which is a technique to
expose the implicit attention on an image without bounding box and segmenta-
tion. Specifically, we can perform Global Average Pooling (GAP) or Global Max
Pooling (GMP) on the feature map X and classify these pooled features with
FC classifiers. Then these classifiers are used to identify the category-specific
activation maps by convolving the weights of FC classifiers with feature map X.
Unlike CAM, we put a convolution layer as the classifier as well as a Sigmoid(·)
to regularize M before the global spatial pooling, which has better performance
in experiments. Ablation studies on these methods are presented in Table 6.

3.3 Dynamic GCN

With content-aware category representations V obtained in previous section,
we introduce Dynamic GCN (D-GCN) to adaptively transform their coherent
correlation for multi-label recognition. Recently Graph Convolutional Network
(GCN) [16] has been widely proven to be effective in several computer vision
tasks and is applied to model label dependencies for multi-label image recogni-
tion with a static graph [2, 4]. Different from these works, we propose a novel
D-GCN to fully exploit relations between content-aware category representations
to generate discriminative vectors for final classification. Specifically, our D-GCN
consists of two graph representations, static graph and dynamic graph, as shown
in Fig 2. We first revisit the traditional GCN and then detail our D-GCN.

Revisit GCN. Given a set of features V ∈ RC×D as input nodes, GCN aims
to utilize a correlation matrix A ∈ RC×C and a state-update weight matrix W ∈
RD×Du to update the values of V. Formally, The updated nodes Vu ∈ RC×Du

can be formulated by a single-layer GCN as

Vu = δ(AVW), (2)

where A is usually pre-defined and W is learned during training. δ(·) denotes an
activation function, such as the ReLU(·) or Sigmoid(·), which makes the whole
operation nonlinear. The correlation matrix A reflects the relations between the
features of each node. During inference, the correlation matrix A first diffuse the
correlated information among all nodes, then each node receives all necessary
information and its state is updated through a linear transformation W.
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D-GCN. As shown in the bottom of Fig 2, D-GCN takes the content-aware
category representations V as input node features, and sequentially feeds them
into a static GCN and a dynamic GCN. Specifically, the single-layer static GCN
is simply defined as H = LReLU(AsVWs), where H = [h1,h2, . . . ,hC ] ∈
RC×D1 , the activation function LReLU(·) is LeakyReLU, and the correlation
matrix As and state-update weights W is randomly initialized and learned by
gradient decent during training. Since As is shared for all images, it is expected
that As can capture global coarse category dependencies.

In the next, we introduces dynamic GCN to transform H, whose correlation
matrix Ad is estimated adaptively from input features H. Note this is differ-
ent from static GCN whose correlation matrix is fixed and shared for all input
samples after training, while our Ad is constructed dynamically dependent on
input feature. Since every sample has different Ad, it makes model increase its
representative ability and decrease the over-fitting risk that static graph brings.
Formally, the output Z ∈ RC×D2 of the dynamic GCN can be defined as,

Z = f(AdHWd), where Ad = δ(WAH′), (3)

where f(·) is the LeakyReLU activation function, δ(·) is the Sigmoid activation
function, Wd ∈ RD1×D2 is the state-update weights, WA ∈ RC×2D1 is the
weights of a conv layer to formulate the dynamic correlation matrix Ad, and
H′ ∈ R2D1×C is obtained by concatenating H and its global representations
hg ∈ RD1 , which is obtained by global average pooling and one conv layer,
sequentially. Formally, H′ is defined as,

H′ = [(h1; hg), (h2; hg), . . . , (hc; hg)]. (4)

It is worth mentioning that the dynamic graph Ad is specific for each image
which may capture content-dependent category dependencies. Overall, our D-
GCN enhances the content-aware category representations from V to Z by the
dataset-specific graph and the image-specific graph.

3.4 Final Classification and Loss

Final Classification. As shown in Fig 2, the final category representation Z =
[z1, z2, . . . , zC ] is used for final classification. Due to each vector zi is aligned with
its specific class and contains rich relation information with others, we simply
put each category vector into a binary classifier to predict its category score. In
particular, we concatenate the score for each category to generate the final score
vector sr = [s1r, s

2
r, . . . , s

C
r ]. In addition, we can also get another confident scores

sm = [s1m, s
2
m, . . . , s

C
m] through global spatial pooling on the category-specific

activation map M estimated by SAM in Section 3.2. Thus, we can aggregate the
two score vectors to predict more reliable results. Here we simply average them
to produce the final scores s = [s1, s2, . . . , sC ].
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Training Loss. We supervise the final score s and train the whole ADD-
GCN with the traditional multi-label classification loss as follows,

L(y, s) =

C∑
c=1

yc log(σ(sc)) + (1− yc) log(1− σ(sc)), (5)

where σ(·) is Sigmoid(·) function.

4 Experiments

In this section, we first introduce the evaluation metrics and our implementation
details. And then, we compare our ADD-GCN with other existing state-of-the-
art methods on three public multi-label image recognition dataset, i.e., MS-
COCO [20], Pascal VOC 2007 [7], and Pascal VOC 2012 [7]. Finally, we conduct
extensive ablation studies and present some visualization results of the category-
specific activation maps and the dynamic graphs.

4.1 Evaluation Metrics

To compare with other existing methods in a fair way, we follow previous works [2,
4, 36] to adopt the average of overall/per-class precision (OP/CP), overall/per-
class recall (OR/CR), overall/per-class F1-score (OF1/CF1) and the mean Aver-
age Precision (mAP) as evaluation metrics. When measuring precision/recall/F1-
score, the label is considered as positive if its confident score is great than 0.5.
Besides, top-3 results of precision/recall/F1-score are also reported. Generally,
the OF1, CF1 and mAP are more important than other metrics.

4.2 Implementation Details

For the whole ADD-GCN framework, we use ResNet-101 [11] as our backbone.
The channel of V is 1024 and the nonlinear activation function LeakyReLU
with negative slop of 0.2 is adopted in our SAM and D-GCN. During training,
we adopt the data augmentation suggested in [4] to avoid over-fitting: the input
image is random cropped and resized to 448× 448 with random horizontal flips
for data augmentation. To make our model converge quickly, we follow [2] to
choose the model that trained on COCO as the pre-train model for Pascal VOC.
We choose SGD as our optimizer, with momentum of 0.9 and weight decay of
10−4. The batch size of each GPU is 18. The initial learning rate is set to 0.5
for SAM/D-GCN and 0.05 for backbone CNN. We train our model for 50 epoch
in total and the learning rate is reduced by a factor of 0.1 at 30 and 40 epoch,
respectively. During testing, we simply resize the input image to 512 × 512 for
evaluation. All experiments are implemented based on PyTorch [22].
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Table 1. Comparison of our ADD-GCN and other state-of-the-art methods on MS-
COCO dataset. The best results are marked as bold.

Method
All Top-3

mAP CP CR CF1 OP OR OF1 CP CR CF1 OP OR OF1

RARL [1] - - - - - - - 78.8 57.2 66.2 84.0 61.6 71.1
RDAR [30] - - - - - - - 79.1 58.7 67.4 84.0 63.0 72.0
Multi-Evidence [8] - 80.4 70.2 74.9 85.2 72.5 78.4 84.5 62.2 70.6 89.1 64.3 74.7
ResNet-101 [11] 79.7 82.7 67.4 74.3 86.4 71.8 78.4 85.9 60.5 71.0 90.2 64.2 75.0
DecoupleNet [21] 82.2 83.1 71.6 76.3 84.7 74.8 79.5 - - - - - -
ML-GCN [4] 83.0 85.1 72.0 78.0 85.8 75.4 80.3 89.2 64.1 74.6 90.5 66.5 76.7
SSGRL [2] 83.8 89.9 68.5 76.8 91.3 70.8 79.7 91.9 62.5 72.7 93.8 64.1 76.2

Ours 85.2 84.7 75.9 80.1 84.9 79.4 82.0 88.8 66.2 75.8 90.3 68.5 77.9

4.3 Comparison with State of The Arts

To demonstrate the scalability and effectiveness of our proposed ADD-GCN,
extensive experiments are conducted on three widely used benchmarks, i.e., MS-
COCO [20], Pascal VOC 2007 [7], and Pascal VOC 2012 [7].

MS-COCO. Microsoft COCO [20] is primarily built for object segmentation
and detection, and it is also widely used for multi-label recognition recently. It is
composed of a training set with 82081 images, a validation set with 40137 images.
The dataset covers 80 common object categories with about 2.9 object labels
per image. The number of labels for each image varies considerably, rendering
MS-COCO more challenging. Since the labels of the test set are not given, we
compare our performance to other previous methods on the validation set.

Table 1 shows the comparison between our ADD-GCN and other state-of-
the-art methods. In particular, we compare with RARL [1], RDAR [30], Multi-
Evidence [8], ResNet-101 [11], DecoupleNet [21], ML-GCN [4], and SSGRL [2].
Our ADD-GCN consistently outperforms the other state-of-the-art approaches
in terms of OF1, CF1, and mAP, as well as some other less important metrics.
In particular, both ML-GCN and SSGRL also construct graphs for multi-label
classification, our ADD-GCN respectively outperforms ML-GCN by 2.2% and
SSGRL by 1.4% in terms of mAP. In addition, our ADD-GCN improves the
baseline by 5.5%. This demonstrates the superiority of our approach.

VOC 2007. Pascal VOC 2007 [7] is widely used multi-label dataset, which
contains 9963 images from 20 common object categories. It is divided into a
train set, a validation set, and a test set. For fair comparisons, following previous
works [2, 4], we train our model on the trainval set (5011 images) and evaluate
on the test set (4952 images). The evaluation metrics are the Average Precision
(AP) and the mean of Average Precision (mAP).

The comparison between our ADD-GCN and other methods is presented
in Table 2. Our method consistently outperforms these methods with a clear
margin, and improves our baseline from 90.8% to 96.0%. Particularly, compared
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Table 2. Comparison of our ADD-GCN and other state-of-the-art methods on Pascal
VOC 2007 dataset. The best results are marked as bold.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

CNN-RNN [27] 96.7 83.1 94.2 92.8 61.2 82.1 89.1 94.2 64.2 83.6 70.0 92.4 91.7 84.2 93.7 59.8 93.2 75.3 99.7 78.6 84.0
RMIC [12] 97.1 91.3 94.2 57.1 86.7 90.7 93.1 63.3 83.3 76.4 92.8 94.4 91.6 95.1 92.3 59.7 86.0 69.5 96.4 79.0 84.5
RLSD [34] 96.4 92.7 93.8 94.1 71.2 92.5 94.2 95.7 74.3 90.0 74.2 95.4 96.2 92.1 97.9 66.9 93.5 73.7 97.5 87.6 88.5
VeryDeep [24] 98.9 95.0 96.8 95.4 69.7 90.4 93.5 96.0 74.2 86.6 87.8 96.0 96.3 93.1 97.2 70.0 92.1 80.3 98.1 87.0 89.7
ResNet-101 [11] 99.1 97.3 96.2 94.7 68.3 92.9 95.9 94.6 77.9 89.9 85.1 94.7 96.8 94.3 98.1 80.8 93.1 79.1 98.2 91.1 90.8
HCP [31] 98.6 97.1 98.0 95.6 75.3 94.7 95.8 97.3 73.1 90.2 80.0 97.3 96.1 94.9 96.3 78.3 94.7 76.2 97.9 91.5 90.9
RDAR [30] 98.6 97.4 96.3 96.2 75.2 92.4 96.5 97.1 76.5 92.0 87.7 96.8 97.5 93.8 98.5 81.6 93.7 82.8 98.6 89.3 91.9
FeV+LV [32] 98.2 96.9 97.1 95.8 74.3 94.2 96.7 96.7 76.7 90.5 88.0 96.9 97.7 95.9 98.6 78.5 93.6 82.4 98.4 90.4 92.0
RARL [1] 98.6 97.1 97.1 95.5 75.6 92.8 96.8 97.3 78.3 92.2 87.6 96.9 96.5 93.6 98.5 81.6 93.1 83.2 98.5 89.3 92.0
RCP [28] 99.3 97.6 98.0 96.4 79.3 93.8 96.6 97.1 78.0 88.7 87.1 97.1 96.3 95.4 99.1 82.1 93.6 82.2 98.4 92.8 92.5
ML-GCN [4] 99.5 98.5 98.6 98.1 80.8 94.6 97.2 98.2 82.3 95.7 86.4 98.2 98.4 96.7 99.0 84.7 96.7 84.3 98.9 93.7 94.0
SSGRL [2] 99.7 98.4 98.0 97.6 85.7 96.2 98.2 98.8 82.0 98.1 89.7 98.8 98.7 97.0 99.0 86.9 98.1 85.8 99.0 93.7 95.0

Ours 99.8 99.0 98.4 99.0 86.7 98.1 98.5 98.3 85.8 98.3 88.9 98.8 99.0 97.4 99.2 88.3 98.7 90.7 99.5 97.0 96.0

Table 3. Comparison of our ADD-GCN and other state-of-the-art methods on Pascal
VOC 2012 dataset. The best results are marked as bold.

Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

RMIC [12] 98.0 85.5 92.6 88.7 64.0 86.8 82.0 94.9 72.7 83.1 73.4 95.2 91.7 90.8 95.5 58.3 87.6 70.6 93.8 83.0 84.4
VeryDeep [24] 99.1 88.7 95.7 93.9 73.1 92.1 84.8 97.7 79.1 90.7 83.2 97.3 96.2 94.3 96.9 63.4 93.2 74.6 97.3 87.9 89.0
HCP [31] 99.1 92.8 97.4 94.4 79.9 93.6 89.8 98.2 78.2 94.9 79.8 97.8 97.0 93.8 96.4 74.3 94.7 71.9 96.7 88.6 90.5
FeV+LV [32] 98.4 92.8 93.4 90.7 74.9 93.2 90.2 96.1 78.2 89.8 80.6 95.7 96.1 95.3 97.5 73.1 91.2 75.4 97.0 88.2 89.4
RCP [28] 99.3 92.2 97.5 94.9 82.3 94.1 92.4 98.5 83.8 93.5 83.1 98.1 97.3 96.0 98.8 77.7 95.1 79.4 97.7 92.4 92.2
SSGRL [2] 99.7 96.1 97.7 96.5 86.9 95.8 95.0 98.9 88.3 97.6 87.4 99.1 99.2 97.3 99.0 84.8 98.3 85.8 99.2 94.1 94.8

Ours 99.8 97.1 98.6 96.8 89.4 97.1 96.5 99.3 89.0 97.7 87.5 99.2 99.1 97.7 99.1 86.3 98.8 87.0 99.3 95.4 95.5

with other two current state-of-the-art methods ML-GCN and SSGRL [2], the
gain of overall mAP is 2.0% and 1.0%, respectively.

VOC 2012. Pascal VOC 2012 [7] is the dataset that is widely used for multi-
label image recognition task, which consists of 11540 images as trainval set and
10991 as test set from 20 common object categories. For fair comparisons with
previous state-of-the-art methods, we train our model on the trainval set and
evaluate our results on test set.

We present the AP of each category and mAP over all categories of VOC
2012 in Table 3. Our ADD-GCN also achieves the best performance compared
with other state-of-the-art methods. Concretely, the proposed ADD-GCN ob-
tains 95.5% mAP, which outperforms another state-of-the-art SSGRL by 0.7%.
And the AP of each category is higher than other methods except “horse”. The
results demonstrate the effectiveness of our framework.

4.4 Ablation Studies

In this section, we conduct ablation experiments on MS-COCO and VOC 2007.
Evaluation of SAM and D-GCN. To investigate the contribution of each

module in ADD-GCN, we separately apply SAM and D-GCN with certain adap-
tions upon a standard ResNet backbone. We evaluate the effectiveness of SAM
by removing D-GCN and adding binary classifiers upon the output of SAM (V)
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(a) Comparisons on MS-COCO.
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Fig. 3. Evaluation of SAM and D-GCN on MS-COCO and VOC 2007.

Table 4. The performance of different combinations of static and dynamic graph. “S”:
static graph and “D”: dynamic graph. “P”: we propagate information through the
static and dynamic graph in a parallel way, and fuse them by either addition (add) or
element-wise multiplication (mul) or concatenation (cat).

Methods
All (COCO) All (VOC 2007)

mAP OF1 CF1 mAP OF1 CF1

ResNet-101 79.7 78.4 74.3 90.8 84.3 83.4
S 82.9 78.3 74.7 94.5 89.3 88.3
D 83.7 79.4 76.6 94.9 89.9 88.7
P (add) 84.0 79.4 76.9 94.6 88.8 88.2
P (mul) 83.7 80.8 78.5 94.6 89.6 88.5
P (cat) 83.3 80.0 76.9 94.9 89.7 88.8
D→S 84.5 81.4 79.3 95.0 90.1 88.8
S→D 85.2 82.0 80.1 96.0 91.0 89.9

directly, while for evaluating the effectiveness of D-GCN, we simply replace SAM
with a Conv-LReLU block. The results are shown in Fig 3. As can be seen, on
both MS-COCO and VOC-2007, SAM and D-GCN individually improve the
baseline with large margins. Compared to the baseline that directly learn clas-
sifier upon global-pooled features, SAM first decomposes the feature map into
content-aware category representations and train classifiers upon them. The im-
provement from SAM shows that the decomposed representations are more dis-
criminative. We also find that D-GCN is able to enhance the discriminative
ability of features from the results compared with the baseline. Combining SAM
and D-GCN further boosts performance as we expect, since they focus on differ-
ent aspects. Specifically, the gain of the mAP, OF1 and CF1 over the baseline is
5.5%, 3.6% and 5.8% on MS-COCO, while 5.2%, 6.7% and 6.5% on VOC 2007.
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Table 5. Comparison of different final
representations.

Methods
All (COCO) All (VOC 2007)

mAP OF1 CF1 mAP OF1 CF1

Sum 84.5 81.5 79.5 94.7 89.4 88.4
Avg 84.5 81.5 79.2 94.8 89.6 88.6
Max 83.9 81.2 78.8 94.7 89.6 88.8
Bi 85.2 82.0 80.1 96.0 91.0 89.9

Table 6. Evaluation of activation map gen-
eration.

Methods
All (COCO) All (VOC 2007)

mAP OF1 CF1 mAP OF1 CF1

GAP→cls 85.0 82.0 79.8 94.8 89.7 88.5
GMP→cls 84.1 80.9 79.0 93.9 89.1 87.7
cls → GMP 85.2 82.0 80.1 96.0 91.0 89.9

Static graph vs Dynamic graph. We investigate the effects of static graph
and dynamic graph in D-GCN. Results are shown in Table 4. Firstly, we study
the case with only one graph. Both static and dynamic graph can achieve bet-
ter performance compared with baseline ResNet-101, and the dynamic graph
performs better on both MS-COCO and VOC 2007. The results show that mod-
eling local (i.e., image-level) category-aware dependencies is more effective than
coarse label dependencies over the whole dataset. To further explore whether the
static graph is complementary with the dynamic graph, we attempt to combine
them in different ways as shown in Table 4. “S” stands for static graph, “D” do-
nates dynamic graph, “P” denotes that we propagate information through the
static graph and dynamic graph in a parallel way, and fuse them by either ad-
dition (add) or element-wise multiplication (mul) or concatenation (cat). From
the results, “S→D” achieves the best performance among all settings.

Final representations. To demonstrate the effectiveness and rationality of
category-specific feature representations, we compare it with image-level feature
representations by aggregating the category-specific feature representations to
an image feature vector. For aggregation, Sumation (Sum), Average (Avg) and
Maximum (Max) are adopted to fuse category-specific feature representations Z,
which are the output of D-GCN for obtaining image-level feature representations.
“Bi” means that we utilize binary classifier for each category-specific feature
representation to decide whether this class exists or not. Table 5 shows the results
that the category-specific feature representations outperforms other aggregated
representations on all metrics. Thus, we can believe it is an effective way to
represent an input image by decomposing the feature map to category-specific
representations for multi-label recognition.

Evaluation of activation map generation. As mentioned in Section 3.2,
we first adopt the standard CAM as baseline. Here we compare the final perfor-
mance of ADD-GCN between our method and the standard CAM. Specifically,
CAM can be donated as “GAP→cls” or “GMP→cls”, and ours is “cls→GMP”.
“GAP→cls” equals to “cls→GAP” since the classifier is linear operator. The
results are shown in Table 6. Comparing the results of GAP (i.e., GAP→cls)
and GMP (i.e., GMP→cls), we believe that GMP loses lots of information as
GMP only identify one discriminative part. However, our adaption “cls→GMP”
outperforms “GAP→cls”, which indicates that the modified GMP(cls→GMP)
may compensate for the disadvantages that “GMP→cls” brings.
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Fig. 4. Visualization results of category-specific activation maps on MS-COCO.

4.5 Visualization

In this section, we visualize some examples of category-specific activation maps
and dynamic correlation matrix Ad to illustrate whether SAM can locate se-
mantic targets and what relations dynamic graph has learned, respectively.

Visualization of category-specific activation maps. We visualize orig-
inal images with their corresponding category-specific activation maps to illus-
trate the capability of capturing the semantic region of each category appeared
in the image with our SAM module. Some examples are shown in Fig 4, each
row presents the original image, corresponding category-specific activation maps
and the final score of each category. For the categories appeared in image, we
observe that our model can locate their semantic regions accurately. In contrast,
the activation map has low activation of categories that the image does not con-
tain. For example, the second row has labels of “person”, “tie” and “chair”, our
ADD-GCN can accurately highlight related semantic regions of the three classes.
Besides, the final scores demonstrate that the category-aware representations are
discrminative enough, and can be accurately recognized by our method.

Visualization of dynamic graph. As shown in Fig 5, we visualize an
original image with its corresponding dynamic correlation matrix Ad to illustrate
what relations D-GCN has learned. For the input image in Fig 5(a), its ground
truths are “car”, “dog” and “person”. Fig 5(b) is the visualization of the Ad of

the input image. We can find that Acar;dog
d and Acar;person

d rank top (about top
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Fig. 5. Visualization of an example and what its dynamic correlation matrix Ad looks
like on Pascal-VOC 2007.

10%) in the row of “car”. It means that “dog” and “person” are more relevant
for “car” in the image. Similar results can also be found in the rows of “dog”
and “person”. From the observation of the dynamic graph’s visualization, we
can believe that D-GCN has capacity to capture such semantic relations for a
specific input image.

5 Conclusion

In this work, we propose an Attention-Driven Dynamic Graph Convolutional
Network (ADD-GCN) for multi-label image recognition. ADD-GCN first decom-
poses the input feature map into category-aware representations by the Semantic
Attention Module (SAM), and then models the relations of these representations
for final recognition by a novel dynamic GCN which captures content-aware cat-
egory relations for each image. Extensive experiments on public benchmarks
(MS-COCO, Pascal VOC 2007, and Pascal VOC 2012) demonstrate the effec-
tiveness and rationality of our ADD-GCN.
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