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1 Implementation Details

In all of our experiments, we use Mean Square Error(MSE) as the loss function:

Loss =
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N

∑
k∈Kv
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pre
k ||

2 (1)

where Kv is the set of valid points, N is the number of valid points. Dgt
k and

Dpre
k are ground truth depth value and predicted depth value, respectively.

We complete all of our experiments based on two RTX TITAN GPUs. All of
our models except the model fine-tuned on NYUDv2 dataset [8] are trained with
a batch size of 8 for about 50 epochs and use Adam [4], where β1 = 0.9, β2 =
0.999, ε = 10−8, and weight decay is set to 10−6. Batch size is set to 4 when
the model is fine-tuned on NYUDv2 dataset. As for learning rate, we set the
initial learning rate to 10−3 in all of our experiments. The learning rate decays
exponentially with epochs and the learning rate for the tth epoch can be written
as:

LRt = 10−3 ∗ (1− t− 1

50
)0.9 (2)

where LRt is the learning rate for the tth epoch.
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2 Results on NYUDv2

2.1 NYUDv2 Dataset

The NYUDv2 dataset [8] provides RGB images and dense depth maps captured
by Microsoft Kinect from 464 indoor scenes. Its raw data contains more than
100k samples and following [7], [2], [6], we use about 46k samples as training data.
Besides, NYUDv2 provides an officially labeled subset containing 1449 samples
(654 for testing). To fill missing values, the depth values are in-painted using the
official toolbox, which adopts the colorization scheme [5]. Following [10] and [6],
we have down-sampled the origin images to half-resolution and center-cropped
to the dimension of 320× 256 with additional paddings.

Fig. 1 and Fig. 2 show the results of our baseline model with different sam-
pling strategies. Fig. 3 and Fig. 4 show the results of our full model with different
sampling strategies.

2.2 Cross Dataset Evaluation: From KITTI to NYUDv2

We fine-tune the models trained on KITTI[3] with the 795 training samples
in NYUDv2 subset under different sampling strategies. Specifically, we fix the
feature extractor and only fine-tune the last layer. Fig. 5 and Fig. 6 show the
outdoor-indoor transfer results of our baseline and full model with different
sampling strategies.
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Table 1. Result of models transferred from KITTI dataset to NYUDv2 dataset using
different sampling strategies. All models are pre-trained on KITTI dataset. For method,
Ours GNN is our full model with graph neural network. Mode “D” means directly
evaluating the model on NYUDv2 test set with 654 samples and mode “F” means
fine-tuning the model on NYUDv2 subset with 795 samples. For methods with *, we
test the pre-trained model provided by their author.

Method Mode Sample Rel↓ RMSE↓ δ1↑ δ2↑ δ3↑
*Van et al. [9] D Random 0.090 0.487 85.7 93.6 97.2

Ours Baseline D Random 0.087 0.365 90.6 97.7 99.3

Ours GNN D Random 0.061 0.310 94.0 98.4 99.5

Ours Baseline D R2 0.060 0.261 95.8 99.0 99.8

Ours Baseline D Plastic 0.060 0.262 95.7 99.0 99.7

Ours Baseline D Golden 0.058 0.256 95.7 98.7 99.7

Ours Baseline D Halton2,3 0.070 0.294 94.6 98.7 99.7

Ours GNN D R2 0.044 0.238 96.6 99.2 99.8

Ours GNN D Plastic 0.044 0.238 96.6 99.2 99.8

Ours GNN D Golden 0.045 0.240 96.4 99.1 99.7

Ours GNN D Halton2,3 0.048 0.254 96.1 99.1 99.7

Ours Baseline F Random 0.075 0.275 93.9 98.9 99.8

Ours Baseline F R2 0.047 0.189 97.3 99.6 99.9

Ours Baseline F Plastic 0.047 0.189 97.3 99.6 99.9

Ours Baseline F Golden 0.044 0.177 97.4 99.6 99.9

Ours Baseline F Halton2,3 0.055 0.211 96.6 99.5 99.9

Ours GNN F Random 0.050 0.212 97.1 99.5 99.9

Ours GNN F R2 0.036 0.165 98.2 99.7 99.9

Ours GNN F Plastic 0.036 0.166 98.2 99.7 99.9

Ours GNN F Golden 0.034 0.158 98.3 99.7 99.9

Ours GNN F Halton2,3 0.040 0.177 98.1 99.7 99.9

3 Results on Matterport3D

3.1 Supplementary note for Matterport3D

Matterport3D [1] is an indoor large-scale RGB-D dataset with 10.8k real panoramic
views and 90 real indoor scenes. We use the same training and testing split as
Zhang [11]. There are about 104k samples for training and 474 samples for test-
ing. The ground truth depth map of Matterport3D is generated from Zhang [11]
using multi-view reconstruction method. It should be noticed that Matterport3D
provides raw depth map produced by the sensor. Those depth maps always have
holes in which depth valves are missed. Different from recoverving depth from
sparse points, the depth completion task on Matterport3D aims to recover dense
depth map from those raw depth with holes.

Fig. 7 shows the results of our baseline model and full model on Matter-
port3D.
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Fig. 1. Results of our baseline models with different sampling strategies on NYUDv2
test set. From top to bottom are the RGB image, the ground truth depth map and the
results of our baseline model with Random, R2, Plastic, Halton and Golden sampling
strategy, respectively.
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Fig. 2. Results of our baseline models with different sampling strategies on NYUDv2
test set. From top to bottom are the RGB image, the ground truth depth map and the
results of our baseline model with Random, R2, Plastic, Halton and Golden sampling
strategy, respectively.
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Fig. 3. Results of our full models with different sampling strategies on NYUDv2 test
set. From top to bottom are the RGB image, the ground truth depth map and the re-
sults of our full model with Random, R2, Plastic, Halton and Golden sampling strategy,
respectively.
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Fig. 4. Results of our full models with different sampling strategies on NYUDv2 test
set. From top to bottom are the RGB image, the ground truth depth map and the re-
sults of our full model with Random, R2, Plastic, Halton and Golden sampling strategy,
respectively.
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Fig. 5. Results of our baseline model trained on KITTI[3] and fine-tuned on NYUDv2
sub set while tested on NYUDv2 test set. From top to bottom are the RGB image, the
ground truth depth map and the results of our full model with Random, R2, Plastic,
Halton and Golden sampling strategy, respectively.
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Fig. 6. Results of our full model trained on KITTI[3] and fine-tuned on NYUDv2 sub
set while tested on NYUDv2 test set. From top to bottom are the RGB image, the
ground truth depth map and the results of our full model with Random, R2, Plastic,
Halton and Golden sampling strategy, respectively.
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3.2 Cross Dataset Evaluation: From NYUDv2 to Matterport3D

Matterport3D dataset provides both the raw depth map and the ground truth
depth map, and we can do the cross dataset evaluation from NYUDv2 to Mat-
terport3D. We utilize the raw depth map as sparse depth input.

Fig. 8 shows the cross dataset evaluation results of our full model trained on
NYUDv2 with different sampling strategies.

Fig. 7. Results of our models on Matterport3D test set. From top to bottom are the
RGB image, the raw depth map, the ground truth depth map, the results of our baseline
model and the results of our full model.
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Fig. 8. Results of our full model trained on NYUDv2 while tested on Matterport3D.
From top to bottom are the RGB image, the raw depth map, the ground truth depth
map, and the results of our full model trained on NYUDv2 with Random, R2, Plastic,
Halton and Golden sampling strategy, respectively.
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