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Abstract. Depth completion is a widely studied problem of predicting
a dense depth map from a sparse set of measurements and a single RGB
image. In this work, we approach this problem by addressing two issues
that have been under-researched in the open literature: sampling strat-
egy (data term) and graph construction (prior term). First, instead of
the popular random sampling strategy, we suggest that Poisson disk sam-
pling is a much more effective solution to create sparse depth map from a
dense version. We experimentally compare a class of quasi-random sam-
pling strategies and demonstrate that an optimized sampling strategy
can significantly improve the performance of depth completion for the
same number of sparse samples. Second, instead of the traditional square
kernel, we suggest that dynamic construction of local neighborhood is a
better choice for interpolating the missing values. More specifically, we
proposed an end-to-end network with a graph convolution module. Since
the neighborhood relationship of 3D points is more effectively exploited
by our novel graph convolution module, our approach has achieved not
only state-of-the-art results for depth completion of indoor scenes but
also better generalization ability than other competing methods.

Keywords: Depth Completion, Graph Neural Network, Poisson Disk
Sampling, Sparse-to-Dense

1 Introduction

Depth sensing and measurement has become an essential tool supporting a wide
range of engineering applications from robotics and autonomous vehicles to 3D
vision and augmented reality. Despite decades of research, existing depth sensors
still have various limitations. More specifically LiDAR-based (e.g., Velodyne)
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sensors are expensive and only provide sparse measurements for objects at a dis-
tance. Structure-light-based sensors (e.g., Kinect) are sensitive to sunlight and
suffer from a short ranging distance (i.e., only suitable for indoor scenes). Stereo-
camera based approaches often require a large baseline and careful calibration;
and their computational complexity is demanding and performance around fea-
tureless regions is often poor. Most recently, 3D from a single image [39], [15],
[20],[63],[61],[62] has received increasingly more attention because it might lead
to a low-cost and energy-efficient solution to 3D/depth sensing.

In view of the limitations of existing depth sensors, it has been suggested in
[42] that sparse-to-dense depth completion is a promising remedy in practice.
Sparse depth measurements are often readily available from low-cost LiDARs or
computed from the output of Simultaneous Localization and Mapping (SLAM).
The task of sparse-to-dense is to fill in the missing data and approximate the
dense depth map as accurate as possible. Previous works [42], [64], [8], [17] have
all assumed that sparse samples are acquired in a random fashion - i.e., observ-
ing a Bernoulli distribution spatially [42]. However, the optimality of random-
sampling strategy is often questionable. In fact, the sampling locations given
by practical LiDAR sensors are seldom randomly distributed, but distributed
uniformly in the sampling space due to mechanical spinning [37]. To the best
of our knowledge, the issue of sampling strategy has not been studied for depth
completion in the open literature.

The other important motivation behind this work is the definition of neigh-
borhood and the construction of network for sparse-to-dense depth completion.
Almost all existing works [12], [18], [47], [44], [65], [42], [8], [7], [17] have adopted
a standard spatially-invariant square kernel (refer to Fig. 3b). Attempts to work
with spatially varying kernels such as guided-image filter [24] have been made
in recent works (e.g., GuideNet [55]) but requires a special implementation of
guided convolution module. To manage the prohibitive computational complex-
ity, GuideNet [55] has to count on a factorization strategy to speed up the imple-
mentation. How to seamlessly integrate adaptive selection of local neighborhood
with network design has remained an under-researched topic.

Based on the above observations, we conduct a systematic study of sampling
strategy and neighborhood construction in this paper. On one hand, we propose
to leverage the idea of Poisson disk sampling [2] and low-discrepancy sequence
[46] to generate a class of deterministic yet quasi-random sampling patterns.
When compared with randomly sampled patterns, patterns generated by Poisson
disk sampling appear more spatially uniformly distributed (please refer to Fig.
1). On the other hand, inspired by the latest advances in graph neural networks
(GNN) [31], [58], [67], [60], we propose a novel GNN-based implementation with
the desirable spatially-varying kernels. More specifically, we first construct a k-
Nearest-Neighbor(kNN) based neighborhood and compute pointwise features as
the inputs for GNN; then the task of depth completion is done by a multi-layer
perceptron (MLP) based propagation process on the constructed GNN. Overall,
the main technical contributions of our work are summarized as follows:
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• For the first time, we demonstrate that optimizing the sampling strategy can
significantly improve the performance of sparse-to-dense depth completion. We
have systematically compared a class of four competing quasirandom sampling
strategies and found that Golden sequence based sampling represents the best
approximation of ideal Poisson disk sampling.

• We propose to develop a GNN-based sparse-to-dense depth completion al-
gorithm. Constructed on a kNN-based local neighborhood, our solution is
capable of exploiting spatially varying kernel which elegantly fits the graph
convolutional module of GNN. We have also developed a MLP-based propa-
gation process for depth completion on the constructed GNN.

• On NYUDv2 benchmark dataset, our GNN-based method with Golden sam-
pling outperforms previous state-of-the-art methods DeepLiDAR [49] and depth-
normal constraints [64] by over 25% in terms of RMSE values. On Matter-
port3D test set, ours outperforms previous state-of-the-art [26] by over 20%
in terms of RMSE values.

2 Related Work

Depth completion Traditional depth completion methods usually employ hand-
craft features or specific kernels to predict missing values[12], [18], [47], [65], [44].
While these algorithms might be suitable for a specific task or scene, their per-
formance and generalization capability is often unsatisfactory. Recently, deep
learning based methods have shown promising performance on depth comple-
tion task - e.g., sparsity-invariant CNN [56], multi-scale sparsity-invariant net-
work[27], confidence propagation CNN [17], color-guided encoder-decoder net-
work [42], self-supervised depth completion from sparse LiDAR data [41], and
global/local information fusion [57]. In addition to color information, other meth-
ods utilize the surface normal or object boundary to facilitate the task of depth
completion - e.g., [49], [66], [26]. Among them, [66] and [26] recover depth from
coarse depth map with missing values taken by structured-light scanners in in-
door scenes. There also exist other competing methods exploiting the correlation
among sparse data in the depth map - e.g., [8] , [64], and [6].
Spatial sampling strategy Spatial sampling of an unknown function is a
widely studied problem in spatial statistics [50] [28], computer graphics [45],
[2], image processing [16], and remote sensing [14]. Unlike regular sampling
on integral lattice, irregular sampling such as Poisson disk sampling [2] often
demonstrates better coverage of the space in terms of uniformity (e.g., absent
from cluster of points within a certain region). Despite the theoretical appeal,
practical implementation of Poisson disk sampling is a nontrivial task especially
when computational complexity is considered. To address the problem of large
computational consumption, Monte Carlo methods [4] have been developed to
generate quasi-random sequences and sampling patterns. The quasi-random se-
quences are also known as low-discrepancy sequences [46] which is constructed
in a deterministic manner while ensuring that the whole sampling space is uni-
formly covered.
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Graph Neural Network Graph Neural Networks (GNNs) are a class of neural
networks for modeling graph-based data. Some GNN methods [3], [11] apply
Convolution Neural Networks(CNNs) to a graph in the spectral domain char-
acterized by the graph Laplacian. Other methods [21], [52] aim at recurrently
applying neural networks to every node of the graph. When GNNs contain an
iterative process, they propagate the node states until reaching the equilibrium
and produce an output for each node based on its state in the process. This idea
was adopted and improved by[38], which used gated recurrent units [10] in the
propagation step. The learning process of these methods can be achieved by the
back-propagation through time (BPTT) algorithm [59].

3 Spatial Sampling Strategy

In this section, we study and compare different quasi-random sampling strategies
based on deterministic 1D low-discrepancy sequences. To facilitate the objective
comparison, we propose a minimum-radius based criterion to evaluate the effec-
tiveness of different sampling strategies for the depth completion task.

Golden Plastic R2

Halton Random Radius Comparison

Fig. 1. Visualization of 5 different spatial sampling strategies (N = 500) and their
performance comparison in terms of radius metric (rmin).

3.1 Low-discrepancy Sequences and Quasi-random Sampling

The problem of generating deterministic 1D low-discrepancy sequences has been
well studied in the literature [1], [32]. We opt to work on Van der Corput se-
quences, a series of low-discrepancy sequences defined on a unit interval [35].
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Each Van Der Corput sequence is defined by a unique hyper-parameter b. Note

that any natural number n can be represented using b as a radix: n =
L−1∑
k=0

dk(n)bk,

where dk(n) is the k-th coefficient and L is the length. Then the n-th number in

Van Der Corput reverse-radix sequence is given by gb(n) =
L−1∑
k=0

dk(n)b−k−1. For

example, the first few terms for b = 2, b = 3 are: V2 :
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}
Halton Sampling: Since we want to sample a depth map, 1D low-discrepancy
sequences need to be extended into 2D. A simple yet effective solution is to simply
consider the Cartesian product of multiple 1D sequences. For instance, Halton
sequence in 2D is constructed by using different 1D van de Corput sequences
whose bases b’s are co-prime. For instance, taking Halton(2,3) as an example,
the coordinates of the k-th point in a Halton(2,3) sequence can be written by
Halton : {(V2[k], V3[k])}k=1,2,....

It is also possible to construct low-discrepancy sequence which dose not re-
quire choosing any basis parameters. These methods are based on golden ratio
[13] and there have been many ways to generalize the golden ratio (e.g., [33]).
We define the golden ratio φd by the unique positive root of xd+1 = x+ 1 - i.e.,

d = 1, φ1 = 1.61803398874989484820458683436563...
d = 2, φ2 = 1.32471795724474602596090885447809...
d = 3, φ3 = 1.22074408460575947536168534910883...

...

(1)

This special sequence of constants, φd is called Harmonious numbers [43]. These
special values can be expressed very elegantly as:

φ1 =

√
1 +
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1 +
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1 +
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1 +
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1 + ...
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4
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1 + 4
√

1 + ..., ...

(2)
where φ1 is the canonical golden ratio and φ2 is called the plastic constant.
Golden Sampling: We denote the low-discrepancy sequences generated by
golden ratio and plastic constant by Golden sequence and Plastic sequence re-
spectively. Then Golden sampling is constructed by:

Golden : {( k +m

N + n
,
k

φ1
mod 1)}k=1,2,... (3)

where N is the total number of points, m and n are two hyper parameters,
and mod denotes the modulo operator. In the classical packing problem, the
objective is to maximize the smallest neighboring distance among N disks: dN =
mini 6=j |xi−xj |. We have chosen the pair of m = 6, n = 11 producing a large dN
in our implementation of Golden sampling.
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Plastic Sampling: Similar to Golden sampling, Plastic sampling is defined by:

Plastic : {( k
φ2

mod 1,
kφ2
φ2 + 1

mod 1)}k=1,2,... (4)

R2 Sampling: Another variation is based on plastic number and the coordinates
of the k-th point in R2 sampling is given by:

R2 : {((0.5 +
k + 1

φ2
) mod 1, (0.5 +

φ2(k + 1)

φ2 + 1
) mod 1)}k=1,2,... (5)

Fig. 1 shows the distribution of five different sampling strategies. It can be
seen that ad-hoc random sampling exhibits clustering of points, which does not
spread the sampling location uniformly in the 2D space. By contrast, quasi-
random sampling more uniformly cover the whole 2D space, which is more de-
sirable for signal reconstruction.

Fig. 2. The architecture of our baseline model for depth completion. Specifically, we
substitute the normal convolution in the encoder part of baseline model with the basic
residual block structure proposed by [25].

3.2 Quasi-random Sampling Pattern Comparison and Criterion

How do we compare different quasi-random sampling patterns for sparse-to-
dense completion? For low-discrepancy sequences, the definition of discrepancy
has been articulated in in [46]. Let P denotes a point set consisting of X1, ...XN ∈
Id, where Id = [0, 1]d is the normalized integration domain (i.e., a closed d-
dimensional unit cube). For an arbitrary subset B ∈ Id, we can define

A(B;P ) =

N∑
n=1

cB(xn) (6)
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where cB is the characteristic function of B - i.e., cB = 1 if xn ∈ B; otherwise
cB = 0. Then A(B;P ) can be deemed as a counting function indicating the num-
ber of points falling into B. If B is a nonempty family of Lebesgue-measurable
subsets of Id, the discrepancy of a point set P is given by:

DN (B;P ) = sup
B∈B

∣∣∣∣A(B;P )

N
− λd(B)

∣∣∣∣ ∈ [0, 1] (7)

where λd is a d-dimensional Lebesgue measure. However, such definition in the
continuous space can not be directly used for discrete data such as depth maps.

Let Ds denotes the sparse depth map which requires the completion, and Ms

the binary mask of Ds (1/0 denotes valid/missing depth values respectively). For
each missing point, we need to gather information from its neighbouring valid
points to evaluate the discrepancy. It turns out that the maximum distance to
the closest valid points(dv) can be a plausible approximation of Eq. (7), which
is correlated with the overall difficulty of depth completion. The distance of a
missing point pm to its closest valid point is defined by:

dv(pm) = min
pv

d(pm, pv) (8)

where d(pm, pv) denotes the Euclidean distance between point pm and pv. We
can find the maximum distance dvmax among all missing points in Ds as:

Rmax(Ds) = max
pm

dv(pm) (9)

Note that such sphere packing bound dvmax can be approached from an alterna-
tive perspective of sphere covering - i.e., the minimum radius of covering circles.
For a sparse point set Ds, the smallest r needed to cover the whole image rmin

can be calculated by:

rmin(Ds) = min r s.t. dv(pm) ≤ r, ∀ pm (10)

For a fixed number of valid points, we conjecture the arrangement of their posi-
tions to minimize the covering radius rmin(Ds) is equivalent to the dual problem
of maximizing the packing radius Rmax(Ds).

In summary, we suggest that Rmax = rmin can serve as an objective metric
for quantifying the performance of sparse sampling pattern Ds on the depth
completion task - the smaller this value, the better performance we can achieve
(at least in theory). Using this radius as a criterion for evaluating the sampling
strategy, we have compared the five sampling strategies as shown in Fig. 1. It
can be observed that: 1) all four quasirandom sampling strategies have much
better performance than random sampling; 2) all four quasirandom sampling
strategies have shown comparable performance. For n ≤ 350, R2 shown slightly
better performance; while Golden shows better performance for n ∈ [350, 750].

4 Graph Construction for GNN-based Depth Completion

To better motivate our network design, we start from a baseline model im-
plementing spatially varying convolution kernel and then proceed with the full
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(a) (b) (c)

Fig. 3. Comparison of neighborhood in 2D and 3D space. (a) the color image (the red
point in the red square is the point of interest); (b) the 2D neighborhood in the imaging
plane; (c) the 3D neighborhood considering the pin-hole camera model (we first use
model-inverted 3D coordinates to calculate the neighborhood of the red point in the
physical world, then project those points to the 2D imaging plane).

model incorporating 3D graph with GNN module. The construction of 3D graph
using kNN-based neighborhood is the soul of our full model, which distinguishes
our approach from the existing ones.

4.1 Spatially-Variant Filter and Neighborhood Consideration

The concept of spatially-variant filter dated back to guided image filtering [24]
which was originally proposed as an edge-preserving smoothing operator for
images. Under the context of color-guided depth completion, guided image filter
is still useful to capture rapid changes of depth values around a sharp depth
discontinuity or an object boundary, which leads to recently developed GuideNet
[55]. This concept was later extended in Dynamic Filter Networks [30] where
filters are generated dynamically from the input. For different inputs, a special
filter generating network will produce different filters which can be adaptively
applied to the output by the dynamical filtering layer in the network. Inspired by
both [30] and [55], we propose a multi-scale extension of dynamic filter networks
to support sparse-to-dense depth completion in this work.

Our baseline model consists of two fully-convolutional subnetworks which
have similar shapes as U-net [51]. One subnetwork (filter-generation) takes the
color guide image as the input and generates feature maps at different scales that
will be used as spatially-variant filters. Another subnetwork (depth-completion)
takes sparse depth measurements as the input and generates a dense depth map
as the final result. Both networks have almost identical encoder-decoder configu-
rations but do not share the weights. As shown in Fig. 2, we multiply the feature
maps generated by two subnetworks (filter generation and depth completion).
Note that GuideNet [55] utilizes the generated filters as the weight of convolu-
tion kernels; however in view of the prohibitive complexity with convolution, we
simply use element-wise product in our approach.

To further exploit spatially-variant mechanism, we propose a 3D extension
that is specially tailored for depth completion tasks. Note that unlike color im-
ages, depth maps indeed convey important 3D information about the physical
world. If we consider the abstraction of projection onto imaging plane by a pin-
hole camera model, the 2D neighborhood in the projected image plane is different
from the actual 3D neighborhood in the physical world as shown in Fig. 3. For
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Fig. 4. The architecture of our full model including the graph convolution module.

the definition of neighborhood in 3D space, it is intrinsically connected with
the object which the point of interest belongs to. While for 2D, we might not
have the luxury of accessing to the complete neighborhood information (e.g.,
due to occlusion). Such observation motivates us to construct a graph-based
representation for spatially-variant neighborhood as we will elaborate next.

4.2 Graph Construction and Network Propagation

The input data to Graph Neural Networks (GNNs) [21, 52] are often represented
by a graph G = {V,E}, where V and E denote the nodes and edges. For each
node v ∈ V , we use Uv, fv and htv to represent its neighborhood, input feature
and state for time t respectively. Note that the hidden dynamics of all nodes in a
GNN will evolve over time. Such time-evolving process can be modeled by [48]:{

mt
v =M(

{
htu
}

), u ∈ Uv

ht+1
v = F(ht,mt

v)
(11)

where M is a function to fuse information from the neighborhood of node v,
F is a function to update its hidden state, mt

v is a feature vector generated by
M containing information from the node’s neighborhood. Similar to a recurrent
neural network (RNN) [29, 48], M and F share weights at different time steps.

Since the baseline model computes features for each point, we directly use
these features as the input to our GNN. Specifically, we use the feature map
at 1/8 of original scale; we have used median pooling to downsample the initial
dense depth map DN to 1/8 scale. Moreover, we propose to merge the sparse
depth input DI and baseline output DB as follows:

Di
N =

{
Di

I Di
I 6= 0

Di
B Di

I = 0
(12)
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where Di
N , Di

I and Di
B are the depth values of point i in DN , DI and DB ,

respectively. Then we construct the graph using DN . Let [u, v] be the coordinates
of a point in the imaging plane and [x, y, z] be the 3D coordinates of this point
in the camera coordinate system. We can easily convert between 2D and 3D
coordinates using the standard pinhole camera model [23].

To design a GNN for depth completion task, we need to identify the 3D
neighborhood of each point in the color image first. Similar problem has been
considered in a recent work 3DGNN [48] but for a different application (semantic
segmentation) and with a more favorable assumption (access to the dense instead
of sparse depth maps). Inspired by 3DGNN [48], we make each point in the image
as a node and find out its k-Nearest-Neighbor(kNN) in 3D space (k is set to 64 in
all experiments). Note that our constructed graph is a directed graph. This way
all directed edges convey information about how each node obtains information
from others. As shown in Fig. 4, we can create the new dense depth map DN by
searching 3D neighbors and propagating the information on GNN.

The propagation process on GNN (M and F in Eq. (11)) is implemented by
a multi-layer perceptron (MLP) with ReLu [34]. The propagation process can
be written as: {

mt
v = 1

|Uv|
∑

v∈Uv
g(htu)

ht+1
v = F(ht,mt

v)
(13)

where g denotes MLP. During the propagation, each node in the graph first
collects the information from its neighbors; then features will be computed by g
and mt

v is the average feature over the whole neighborhood. Finally every node
updates its state based on the previous information. We use MLP as the update
function F because it is commonly used in RNN (e.g., [48]).

5 Experimental Results

5.1 Datasets

KITTI Dataset The KITTI depth completion dataset [19] provides 86898
training samples, 1000 validating samples and 1000 testing samples taken in
outdoor scenes. The ground truth depth is not 100% dense and only about 30%
of points in the ground truth depth map have valid depth value. Since these
points with valid depth values are at the bottom, following [57] we opt to crop
the bottom portion of input images to 256 ∗ 1216 for training and testing.
NYUDv2 Dataset The NYUDv2 dataset [54] provides RGB images and dense
depth maps captured by Microsoft Kinect from 464 indoor scenes. Its raw data
contains more than 100k samples and following [49], [8], [42], we use about
46k samples as training data. Besides, NYUDv2 provides an officially labeled
subset containing 1449 samples (654 for testing and evaluation). To fill missing
values, the depth values are in-painted using the official toolbox, which adopts
the colorization scheme [36]. Following [64] and [42], we have down-sampled the
origin images to half-resolution and center-cropped to the dimension of 320×256
with additional paddings.
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Matterport3D Matterport3D[5] is an indoor large-scale RGB-D dataset with
10.8k real panoramic views and 90 real indoor scenes. We use the same training
and testing split as Zhang [66]. There are about 104k samples for training and 474
samples for testing. The ground truth depth map of Matterport3D is generated
from Zhang [66] using multi-view reconstruction method.

Evaluation Metrics and Loss Function In all of our experiments, we use
Mean Square Error(MSE) as the loss function. For evaluation metric, we take
root mean squared error (RMSE) as a prime index to evaluated our models.
Besides, mean absolute error (MAE) and mean absolute relative error (REL)
are used. For indoor scenes, percentage index δi which means the percentage of
predicted pixels where the relative error is less a threshold i are used. Specifically,
i is chosen as 1.25, 1.252, 1.253 (Details of experiments are shown in supplement).

Table 1. Ablation studies on the test set of the NYUDv2 dataset. The effectiveness of
GNN module and various sampling strategies are evaluated, respectively.

Method Sample Rel↓ RMSE↓ δ1↑ δ2↑ δ3↑

Ours Baseline

Random 0.020 0.112 99.4 99.9 100
R2 0.017 0.101 99.5 99.9 100
Plastic 0.016 0.095 99.5 99.9 100
Golden 0.016 0.094 99.6 99.9 100
Halton2,3 0.017 0.098 99.5 99.9 100

Ours GNN

Random 0.016 0.106 99.5 99.9 100
R2 0.015 0.092 99.6 99.9 100
Plastic 0.014 0.091 99.6 99.9 100
Golden 0.013 0.087 99.6 99.9 100
Halton2,3 0.015 0.093 99.5 99.9 100

5.2 Ablation Study

Neighborhood Construction via GNN We show the effectiveness of neigh-
borhood construction via GNN by comparing against its baseline without GNN.
Quantitative results are listed in Table 1. Consistent improvement can be ob-
served for different sampling strategies when comparing GNN to baseline models,
which suggest the effectiveness of neighborhood construction via GNN.

Evaluation of Various Sampling Strategies We have compared four quasi
random sampling strategies against random sampling as shown in Table 1. We
can observe that the RMSE values of quasirandom sampling are much smaller
than that of random sampling, and Golden is the best one among four quasir-
andom strategies. This finding is consistent with our analysis in Section 3.2 and
Fig. 1 - i.e., rmin metric of the Golden sampling is the smallest.
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5.3 Comparison with State-of-the-Art

We compare our method against several state-of-the-art methods on two indoor
datasets (NYUDv2 and Matterport3D) and one outdoor dataset (KITTI). Ta-
bles 2-4 show the quantitative results. It can be observed that our GNN achieves
much better results than previous methods on indoor datasets and highly com-
petitive result on outdoor datasets. Especially for NYUDv2 dataset, our GNN
with Golden sampling has dramatically outperformed all existing approaches in
the open literature. Figs. 5 and 6 include the visual comparison of reconstructed
depth maps among several competing methods. It can be observed that our
result are consistently the closest to the ground-truth on both datasets.

Table 2. Comparison with state-of-the-art methods on the test set of the NYUDv2.
For fair comparison, we add the random sampling strategy of our GNN.

Method Sample Rel↓ RMSE↓ δ1↑ δ2↑ δ3↑
Bilateral [54] Random 0.084 0.479 92.4 97.6 98.9

Ma et al.[42] Random 0.044 0.230 97.1 99.4 99.8

Eldesokey et al.[17] Random 0.018 0.129 99.0 99.8 100

CSPN [9] Random 0.016 0.117 99.2 99.9 100

DeepLiDAR [49] Random 0.022 0.115 99.3 99.9 100

Xu et al.[64] Random 0.018 0.112 99.5 99.9 100

Ours Baseline Random 0.020 0.112 99.4 99.9 100

Ours GNN Random 0.016 0.106 99.5 99.9 100

Ours GNN Golden 0.013 0.087 99.6 99.9 100

Table 3. Comparison with other methods
on the test set of the Matterport3D.

Method RMSE↓ MAE↓
Huang et al. [26] 1.092 0.342

Zhang et al. [66] 1.316 0.461

MRF [22] 1.675 0.618

AD [40] 1.653 0.610

Ours GNN 0.860 0.462

Table 4. Comparison with other
methods on the KITTI validation set.

Method RMSE↓ MAE↓ Rel↓
Dfusenet [53] 1240 429 0.022

Ours baseline 883 280 0.016

Ma et al. [41] 858 311 0.019

Ours GNN 831 247 0.013

5.4 Cross-Dataset Evaluation

We further conduct cross-dataset experiments to show the transferability of our
method. Two transfer scenes (outdoor→indoor and indoor→indoor) are con-
sidered, and the experimental results are shown in Tables 5 and 6. Our GNN
achieves significant improvements in both scenarios. First, our approach (base-
line model without GNN) shows much better transfer results than [57]. Second,
our approach with quasi-random sampling achieved much better transfer results
than random sampling. Besides the good transferability of our model, the feature
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RGB GT CSPN Baseline GNN Golden
GNN

Fig. 5. Results on NYUDv2 dataset. From left to right is RGB image, the ground truth
, result from [9], results of our baseline model, results of our full model and results of
our full model with golden sampling strategy. Except the rightest one, other methods
are tested using randomly sampling strategy.

Fig. 6. Results on KITTI dataset. From top to bottom is RGB image, the sparse depth
input, the ground truth , results of our baseline model, result from [41], results of our
full model.

is more transferable. We show the transferability by fixing the feature extractor
and only fine-tuning the last layer (please refer to the supplemental material).
Similar improvements can be observed as transferring the whole model, and
transferring the feature achieves better cross-dataset results.

It is worth mentioning that initial sparse depth maps in the Matterport3D
dataset are generated differently from those in the NYUDv2 dataset, where the
depth values of local areas are completely missing (i.e., noticeable holes in the
depth map). To evaluate the generalization property of our work between differ-
ent datasets, we have compared two transfer settings: R2R using initial sparse
depth maps (without filling the holes) and Q2Q using a modified sparse depth
maps (resampled by quasi-random sampling). As shown in Table 6, when adopt-
ing the original sparse depth maps as the initial input, our trained network on
NYUDv2 with random sampling performs better than quasi-random sampling,
which justifies that the original sparse depth maps are indeed more similar to
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random sampling. By contrast, when adopting the modified sparse depth maps
as the input, our trained network with quasi-random sampling performs better
than random sampling. As expected, the RMSE of Q2Q setting is much smaller
than that of R2R setting. These findings suggest that our GNN model with
quasi-random sampling enjoys good generalization properties.

Table 5. Result of models transferred from KITTI dataset to NYUDv2 dataset using
different sampling strategies. All models are pre-trained on KITTI dataset. For method,
Ours GNN is our full model with graph neural network. Mode “D” means directly
evaluating the model on NYUDv2 test set with 654 samples. For methods with *, we
have used the pre-trained model provided by their author.

Method Mode Sample Rel↓ RMSE↓ δ1↑ δ2↑ δ3↑
*Van et al. [57] D Random 0.090 0.487 85.7 93.6 97.2

Ours Baseline D Random 0.087 0.365 90.6 97.7 99.3

Ours GNN D Random 0.061 0.310 94.0 98.4 99.5

Ours Baseline D R2 0.060 0.261 95.8 99.0 99.8

Ours Baseline D Plastic 0.060 0.262 95.7 99.0 99.7

Ours Baseline D Golden 0.058 0.256 95.7 98.7 99.7

Ours Baseline D Halton2,3 0.070 0.294 94.6 98.7 99.7

Ours GNN D R2 0.044 0.238 96.6 99.2 99.8

Ours GNN D Plastic 0.044 0.238 96.6 99.2 99.8

Ours GNN D Golden 0.045 0.240 96.4 99.1 99.7

Ours GNN D Halton2,3 0.048 0.254 96.1 99.1 99.7

Table 6. RMSE results of our GNN transferred from NYUDv2 to Matterport3D in
two different transfer settings (R2R and Q2Q) are evaluated.

Setting Mode Random Plastic Golden R2 Halton

R2R D 1.831 1.859 1.913 1.855 1.895

Q2Q D 0.501 0.483 0.489 0.487 0.460

6 Conclusion

In this paper, we have studied different sampling strategies approximating Pois-
son disk sampling and their impact on sparse-to-dense depth completion. We
show that random sampling is far from being optimal and quasi-random sam-
pling constructed by low-discrepancy sequences can significantly outperforms
random sampling. We have also proposed to construct a 3D graph based on
kNN neighborhood information and develop a novel propagation-driven depth
completion algorithm based on Graph Neural Network. Our proposed depth
completion method outperforms the state-of-the-art on indoor scenes and has
good generalization property for outdoor scenes.
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