000	Pillar-based Object Detection	000
001	for Autonomous Driving	001
002	for Autonomous Driving	002
003		003
004	Anonymous ECCV submission	004
005		005
006	Paper ID 3892	006
007		007
800		800
009	Supplementary Material	009
010		010
011	Longer training	011
012	One recent work [1] shows object detection models exhibit better performance if	012
014	it is trained longer. We find the methods we compared to use different training	014
015	scheduling: StarNet [3] is trained for 75 epochs: MVF [5] and PointPillars [2] re-	015
016	implemented by [5] are trained for 100 epochs, while ours in the main text is only	016
017	trained for 30 epochs. To have a fair comparison to these methods and investigate	017
018	the effect of training schedule, we report the results of the model trained for 75	018
019	epochs. Table 1 (for vehicles) and Table 2 (for pedestrians) show that when being	019
020	trained longer, the proposed method has additional performance boosting. Also,	020
021	compared to MVF [5] which is trained for 100 epochs, our method improves by	021
022	6.19 3D mAP for vehicle and $5.32 3D mAP$ for pedestrian.	022
023		023
024	Parameter Specification	024
025		025
026	In this section, we provide details on the parameters of the model. The model	026
027	pillar backbone network; and a detection head. We show the pipeline in Figure 1	027
020	and the additional parameter specification in Table 3	020
030		030
031		031
032		032
033		033
034		034
035		035
036		036
037		037
038		038
039		039
040		040
041		041
042		042
043		043
044		044

Method

046
047
048

Mothod								
Method	Overall	0 - 30m	30 - 50m	50m - Inf	Overall	0 - 30m	30 - 50m	50m - Inf
StarNet [3] (75 epochs)	-	-	-	-	53.7	-	-	-
PointPillars¶ [2]	80.4	92.0	77.6	62.7	62.2	81.8	55.7	31.2
PointPillars† [2] (100 epochs)	75.57	92.1	74.06	55.47	56.62	81.01	51.75	27.94
MVF [5] (100 epochs)	80.4	93.59	79.21	63.09	62.93	86.3	60.2	36.02
Ours (30 epochs)	86.14	95.59	83.62	70.85	67.71	87.46	64.38	39.88
Ours (75 epochs)	86.65	95.41	84.51	71.19	69.12	88.26	65.67	41.44
Improvements (over MVF)	+6.25	+1.82	+5.30	+8.1	+6.19	+1.96	+5.47	+5.42

Table 1. Results on vehicle. \P : re-implemented by [4], the feature map in the first PointPillars block is two times as big as in others; †: re-implemented by [5].

BEV mAP (IoU=0.7)

Mathad	BEV mAP (IoU=0.7)				3D mAP (IoU=0.7)			
Method	Overall	0 - 30m	30 - 50m	50m - Inf	Overall	0 - 30m	30 - 50m	50m - Inf
StarNet [3] (75 epochs)	-	-	-	-	66.8	-	-	-
PointPillars¶ [2]	68.7	75.0	66.6	58.7	60.0	68.9	57.6	46.0
PointPillars [†] [2] (100 epochs)	68.57	75.02	67.11	53.86	59.25	67.99	57.01	41.29
MVF [5] (100 epochs)	74.38	80.01	72.98	62.51	65.33	72.51	63.35	50.62
Ours (30 epochs)	76.45	82.42	74.38	64.91	67.69	75.42	64.88	51.48
Ours (75 epochs)	76.85	82.9	77.15	63.82	70.65	77.87	70.37	54.48
Improvements (over MVF)	+2.47	+2.89	+4.17	+1.31	+5.32	+5.36	+7.02	+3.86

Table 2. Results on pedestrian. ¶: re-implemented by [4]. †: re-implemented by [5].

Store	Vehicle Mod	del	Pedestrian Model			
Stage	Kernel	Output Size	Kernel	Output Size		
	3x3, 128, stride 1	512x512x128	3x3, 128, stride 1	512x512x128		
Multi-view Feature Learning	3x3, 128, stride 2	256x256x128	3x3, 128, stride 2	256x256x128		
	3x3, 128, stride 2	128x128x128	3x3, 128, stride 2	128x128x128		
Pillar Backbong Block1	3x3, 128, stride 2	256x256x128	3x3, 128, stride 1	512x512x128		
I mai Dackbone Diocki	{3x3, 128, stride 1}x3	256x256x128	{3x3, 128, stride 1}x3	512x512x128		
Dillan Daalthana Dlaalt?	3x3, 128, stride 1	256x256x128	3x3, 128, stride 2	256x256x128		
I mai Dackbone Diock2	{3x3, 128, stride 1}x5	256x256x128	{3x3, 128, stride 1}x5	256x256x128		
Pillar Backbone Block3	3x3, 256, stride 2	128x128x256	3x3, 256, stride 2	128x128x256		
	{3x3, 256, stride 1}x5	128x128x256	{3x3, 256, stride 1}x5	128x128x256		
Detection Head	{3x3, 256, stride 1}x4	256x256x256	{3x3, 256, stride 1}x4	512x512x256		

Table 3. Parameters of convolutional kernels and feature map sizes.

3D mAP (IoU=0.7)

Fig. 1. Details of the proposed model: (a) the multi-view feature learning module, we show the network for one view; (b) Pillar backbone network; (c) the detection head, we show both the classification network and the regression network. For details on the parameters and the feature map sizes, refer to Table 3.

4 ECCV-20 submission ID 3892

135	References	135
136		136
137	1. He, K., Girshick, R.B., Dollár, P.: Rethinking imagenet pre-training (2019)	137
138	2. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars:	138
139	Fast encoders for object detection from point clouds. In: The IEEE Conference on	139
140	3 Ngiam I Coine B Han W Yang B Chai V Sun P Zhou V Vi V Alshavif	140
141	O Nouven P Chen Z Shlens I Vasudevan V Starnet: Targeted computation	141
142	for object detection in point clouds. ArXiv abs/1908.11069 (2019)	142
143	4. Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tak-wing Tsui,	143
144	P., Guo, J.C.Y., Zhou, Y., Chai, Y., Caine, B., Vasudevan, V., Han, W., Ngiam,	144
145	J., Zhao, H., Timofeev, A., Ettinger, S., Krivokon, M., Gao, A., Joshi, A., Zhang,	145
146	Y., Shlens, J., Chen, Z.F., Anguelov, D.: Scalability in perception for autonomous	146
147	driving: Waymo open dataset. ArXiv abs/1912.04838 (2019)	147
148	5. Zhou, Y., Sun, P., Zhang, Y., Anguelov, D., Gao, J., Ouyang, I., Guo, J., Ngiam, J., Vacudaran, V., End to and multi-view fusion for 2d object detection in lider point	148
149	clouds. In: The Conference on Robot Learning (CoRL) (2019)	149
150		150
151		151
152		152
153		153
154		154
155		155
156		156
157		157
158		158
159		159
160		160
161		101
162		162
105		105
165		165
166		166
167		167
168		168
169		169
170		170
171		171
172		172
173		173
174		174
175		175
176		176
177		177
178		178
179		179