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1 Results of Attacking Adversarially Trained Model

We evaluate the sparse attack performance of SAPF on an adversarially trained
model on CIFAR-10. The model structure is the same as that in Section 4.1
of the main manuscript. To this end, we first train this model using Madry’s
adversarial training method [4] with PGD-10 and ε = 8/255. The trained model
correctly classifies 752 images out of 1000 images that used in Section 4.1 of the
main manuscript. We then conduct the targeted sparse attack to this model on
these 752 benign images.

Method
Average case

ASR `0 `1 `2 `∞
StrAttack [9] 51.73 1767 359.572 8.141 0.441
C&W-`0 [1] 100 607 77.153 4.748 0.731
SAPF (ours) 100 563 36.493 2.033 0.384

Table 1: Results of the sparse attack to an adversarially trained model on CIFAR-10.
The best results are shown in bold.

The results are shown in Table 1. For better understanding, we also tabulate
the performance of the C&W-`0 and the StrAttack that achieve 100% ASR on
the model trained on benign images (see Table 1 of the main manuscript). The
StrAttack fails to generate 100% ASR for this robust model. In comparison, our
SAPF method successfully attacks all images with the minimal perturbations in
terms of `p-norm (p = 0, 1, 2,∞). Compared to the attack performance to the
model trained on benign images (see Table 1 of the main manuscript), the ad-
versarial training significantly increases the norm of perturbations for successful
attack. However, the 100% ASR values of C&W-`0 and our method tell that the
above adversarial training is still not robust enough to defend the sparse attack.
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One-Pixel [8] CornerSearch [2] PGD `0 + `∞ [2] SparseFool [5] C&W-`0 [1] StrAttack [9] SAPF (ours)

CIFAR-10 3.33 1.23 0.19 0.54 11.33 79.71 63.19
ImageNet 217.22 464.41 1.46 16.56 318.89 1443.12 1138.89

Table 2: Average running time (seconds).

2 Comparison of Running Time

The average running time of attacking one image on CIFAR-10 and ImageNet
is given in Table 2. On the CIFAR-10, the One-Pixel, the CornerSearch, the
PGD `0 + `∞, and the SparseFool are more time efficient than the other three
methods. However, they fail to generate 100% attack success rate, and their `1-
norm and `2-norm are much larger. The C&W-`0, the StrAttack, and our SAPF
all achieve 100% ASR. Our SAPF method is slower than the C&W-`0, but faster
than the StrAttack. Besides, the perturbations of the SAPF are the lowest in
terms of `p-norm among these three methods. On the ImageNet, the running
time of the One-Pixel and the CornerSearch increases a lot, yet they still fail
to generate success attack in most cases. The SparseFool and the PGD `0 + `∞
are more time efficient than our SAPF, however, they fail to generate 100%
ASR and their perturbations are much larger than ours (see Table 1 of the main
paper). Compared to the C&W-`0 and the StrAttack that achieve 100% ASR,
our SAPF is slower than C&W-`0, but faster than StrAttack. And, our SAPF
achieves 100% ASR with the lowest `p-norm. Besides, we would like to emphasize
that the perspective of perturbation factorization of our SAPF brings multiple
benefits: 1) it enables the more convenient control of the degree of sparsity; 2)
it provides the extra flexibility to impose different constraints on perturbation
magnitudes or selection factor. Both are helpful for the analysis of the sparse
adversarial attacks.

3 Discussions

The Values of Sparse Adversarial Attack. Although several works on sparse
adversarial attack have been published, it seems that the impact or value of
sparse attack to the literature of adversarial examples has not been well studied.
According to the open reviews for other works and our previous experiences, one
typical question is that since the dense perturbations are also imperceptible to
human eyes, what is the additional benefit of sparse perturbations? The work [9]
has provided a good explanation via thorough experiments and analysis that the
sparse attack provides a better interpretation of adversarial attack, i.e., the clear
correspondence between the perturbed regions and the discriminative regions in
one image. This point is also verified in our experiments, as shown in Figs. 2 and
4 of the main manuscript. However, we think that the value of sparse adversarial
attack is more than interpretation. It can serve as a powerful tool to separate the
robust and discriminative features. For example, the sparse perturbation could
evaluate the robustness of different regions, while the heatmap could evaluate
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Fig. 1: One example of analyzing robust and discriminative regions. The
perturbation-position (generated by the SAPF method) indicates the non-robust
regions; The heatmap (generated by the Grad-CAM method [7]) tells the dis-
criminative regions; The images of 4th - 6th columns respectively indicate: the
discriminative but non-robust regions; the non-robust and non-discriminative re-
gions; the discriminative and robust regions.

the discrimination of different regions. Their combination could separate robust
and discriminative regions. As shown in Fig. 1, the discriminative and robust
positions locate at the surrounding region of the head of dog, where also includes
non-robust positions, especially around the face of dog. The similar separation
was studied in [3], utilizing the standard model and the adversarially trained
model. Here the sparse attack provides another approach to implement such a
separation. It will be thoroughly studied in our future work.

The Most Important Contribution of This Work. Finally, we would like
to emphasize that the simple perspective of perturbation factorization3 (see Eq.
(2) of the main manuscript) is the most valuable and interesting contribution of
this work to the literature of adversarial examples. Other contributions claimed
at the end of Section 1 of the main manuscript, including the formulation to the
MIP problem and the efficient continuous optimization algorithm, are derived
from this perspective. Although this work mainly focuses on the sparsity of per-
turbations, this new perspective is not specially designed for enforcing sparsity.
It could provide more potential benefits, such as incorporating the visual im-
perceptibility (studied in Section 3.4 of the main manuscript). More potential
values of this simple perspective will be explored in our future work.

Other Extensions. The flexibility due to the perturbation factorization enables
to enforce more constraints onto Problem (3) of the main manuscript, other
than the group-wise sparsity and the visual imperceptibility studied in Section
3.4. For example, the attacker may require that some regions should not be
perturbed. Although one can manually enforce the desired regions via a mask
during each iteration of the conventional adversarial attack, our formulation
provides a more elegant mechanism via the linear constraint (i.e., A>G = k with
A ∈ {0, 1}) in optimization. Another possible requirement is that the number

3 Note that we factorize the perturbation on each pixel individually to the magnitude
and the location, while [6] factorizes the perturbations on all pixels together to the
magnitude and the direction, i.e., ε = ‖ε‖ · ε

‖ε‖ . They are intrinsically different and
have different usages.
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of perturbed pixels of one region should be more than that of another region,
such as the background v.s. the foreground. It could be naturally embedded as
an linear inequality constraint (i.e., A>G > 0 with A ∈ {−1, 0, 1}). In contrast,
it is difficult to incorporate such non-accurate requirements in the conventional
formulation of adversarial attack (see Eq. (1) of the main manuscript). Similar
constraints could also be added onto perturbation magnitudes. More extensions
of Problem (3) will be studied in our future work.
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