
Sparse Adversarial Attack via Perturbation
Factorization

Yanbo Fan1†, Baoyuan Wu1†∗, Tuanhui Li1, Yong Zhang1, Mingyang Li2,
Zhifeng Li1, Yujiu Yang2

1 Tencent AI Lab
2 Tsinghua Shenzhen International Graduate School, Tsinghua University

wubaoyuan1987@gmail.com

Abstract. This work studies the sparse adversarial attack, which aims
to generate adversarial perturbations onto partial positions of one be-
nign image, such that the perturbed image is incorrectly predicted by
one deep neural network (DNN) model. The sparse adversarial attack
involves two challenges, i.e., where to perturb, and how to determine
the perturbation magnitude. Many existing works determined the per-
turbed positions manually or heuristically, and then optimized the mag-
nitude using a proper algorithm designed for the dense adversarial at-
tack. In this work, we propose to factorize the perturbation at each pixel
to the product of two variables, including the perturbation magnitude
and one binary selection factor (i.e., 0 or 1). One pixel is perturbed
if its selection factor is 1, otherwise not perturbed. Based on this fac-
torization, we formulate the sparse attack problem as a mixed integer
programming (MIP) to jointly optimize the binary selection factors and
continuous perturbation magnitudes of all pixels, with a cardinality con-
straint on selection factors to explicitly control the degree of sparsity.
Besides, the perturbation factorization provides the extra flexibility to
incorporate other meaningful constraints on selection factors or mag-
nitudes to achieve some desired performance, such as the group-wise
sparsity or the enhanced visual imperceptibility. We develop an efficient
algorithm by equivalently reformulating the MIP problem as a continuous
optimization problem. Extensive experiments demonstrate the superior-
ity of the proposed method over several state-of-the-art sparse attack
methods. The implementation of the proposed method is available at
https://github.com/wubaoyuan/Sparse-Adversarial-Attack.

Keywords: Perturbation Factorization, Sparse Adversarial Attack, Mixed
Integer Programming

1 Introduction

Deep neural networks (DNNs) have achieved a great success in many appli-
cations, such as image classification [16,32,35], face recognition [31,34], natural

† indicates equal contribution. ∗ indicates corresponding author.

https://github.com/wubaoyuan/Sparse-Adversarial-Attack


2 Y. Fan and B. Wu, et al.

Fig. 1: Examples of the targeted sparse adversarial attack to image classification on two
benign images selected from ImageNet [11]. (Left): benign images with their ground-
truth labels below. (Middle): perturbations generated by the C&W-`0 attack [7].
(Right): perturbations generated by our attack method. The text under each per-
turbation indicates the target attack class, `0, `1, `2, `∞-norms of the perturbation,
respectively. Our method successfully attacks the benign image to the target class with
fewer perturbed pixels and lower distortion compared to the C&W-`0 attack.

language processing [29], etc. However, it is discovered that DNNs are vulnerable
to adversarial examples [2,15,33], where small malicious perturbations can cause
DNNs to make incorrect predictions. It has been observed in many DNN based
applications, such as image classification [14,9,21], image captioning [39,8], im-
age retrieval [13,4], question answering [23], autonomous driving [24], automatic
check-out [25], face recognition [12], face detection [22], etc..

Most existing methods of adversarial attacks focus on optimizing the magni-
tudes of perturbations such that the perturbations are imperceptible to human
eyes, while the perturbed positions are not considered as assuming that all pixels
will be perturbed. It is called the dense adversarial attack. In contrast, some re-
cent works [17,7] observed that the DNN model can also be fooled if only partial
positions (even one pixel of one image [30]) are perturbed, dubbed sparse adver-
sarial attack. Compared to the dense attack, as analyzed in the previous work
[38], the sparse attack not only produces fewer perturbations, but also provides
additional insights about the vulnerability of DNNs, i.e., a better interpretation
of adversarial attacks. For example, as shown in Fig. 1, the sparse perturbations
generated by our attack method mainly occur on the positions of the main object
in the benign image, such as the body area of “Arabian camel” in the second
benign image. The perturbation positions reveal that which part of one image
is important but also fragile for its prediction by the DNN model. Despite these
advantages, there is also one additional challenge for the sparse attack, i.e., how
to determine the perturbed positions. Some existing works (e.g., LaVAN [17])



Sparse Adversarial Attack via Perturbation Factorization 3

manually determined a local patch. Then the attack algorithm designed for the
dense attack is adopted to generate perturbations within this local patch. Some
works tried to determine the perturbed positions using heuristic strategies. For
example, C&W-`0 [7] gradually fixed some pixels that don’t contribute much
to the classification output in each iteration. There is no guarantee that these
heuristic methods could identify satisfied perturbed positions.

In this work, we provide a new perspective that the perturbation at each sin-
gle pixel can be factorized according to its two characteristics, i.e., magnitude
and position. Consequently, each single perturbation can be represented by the
product between the perturbation magnitude and a binary selection factor (i.e.,
0 or 1). If the selection factor is 1, then the corresponding pixel is perturbed,
otherwise not perturbed. This simple perspective brings in multiple benefits.
First, the sparse adversarial attack can be formulated as a mixed integer pro-
gramming (MIP) problem, which jointly optimizes the binary selection factors
and the continuous perturbation magnitudes of all pixels in one image. And,
the number of perturbed pixels can be explicitly enforced by imposing a cardi-
nality constraint on all binary selection factors. In contrast to aforementioned
two-state methods (e.g., [17,7]), the proposed joint optimization is expected to
generate better perturbations (i.e., fewer perturbed positions or smaller pertur-
bation magnitudes), and enables the more convenient control of the degree of
sparsity. Second, the perturbation factorization provides the extra flexibility
to impose some meaningful constraints on the perturbation magnitude or the
binary selection factor, to achieve some desired attack performance. We present
two case studies. One is group sparsity on the selection factors to encourage the
perturbations to occur together. The other is introducing a prior weight of each
pixel onto the perturbation magnitude, according to the pixel values of the be-
nign image, to enhance the imperceptibility to human visual perception. Both of
them can be naturally embedded into the proposed joint optimization problem.
Moreover, the MIP problem is NP-hard and cannot be directly optimized by
any off-the-shelf continuous optimization solver. Inspired by one recent method
called `p-Box ADMM [36] designed for integer programming (IP), we propose to
reformulate the MIP problem to an equivalent continuous optimization problem,
which is then efficiently solved using an iterative scheme. Finally, we conduct
extensive experiments on two benchmark databases, including CIFAR-10 [18]
and ImageNet [11], to verify the performance of the proposed method.

The main contributions of this work are four-fold. 1) We provide a new per-
spective that the perturbation on each pixel can be factorized as the product
between the perturbation magnitude and one binary selection factor. 2) We
formulate the sparse adversarial attack as a MIP problem to jointly optimize
perturbation magnitudes and binary selection factors, with a cardinality con-
straint on selection factors to exactly control the sparsity. 3) We develop an
effective and efficient continuous algorithm to solve the MIP problem. 4) Ex-
perimental results on two benchmark databases demonstrate that the proposed
model is superior to several state-of-the-art sparse attack methods.



4 Y. Fan and B. Wu, et al.

2 Related Work

In this section, we focus on existing works of sparse adversarial attacks. In con-
trast to dense adversarial attacks, one special challenge in sparse adversarial
attacks is how to determine perturbed positions. According to the strategies for
tackling this challenge, we categorize existing sparse attack methods into three
types, including manual, heuristic and optimized strategies. First, the manual
strategy means that the attacker manually specify the perturbed positions. For
example, LaVAN [17] proposed to add a adversarial but visible local patch onto
the benign image to fool the CNN-based classification model. It demonstrated
that the model may be fooled by a small patch (about 2% of the image) lo-
cated at the background region. However, the exact position of the local patch
is manually determined by the attacker. Second, the perturbed positions are
determined following some heuristic strategies in some works. For example, the
method called Jacobian-based Saliency Map Attack (JSMA) [28] and its exten-
sions [7] proposed to determine the perturbed positions according to the saliency
map. CornerSearch [10] utilized a heuristic sampling to determine the perturbed
pixels. Third, some works attempted to optimize the perturbed positions. For
example, the One-Pixel attack [30] explored the extreme case that only one pixel
is attacked to fool the DNN model. The perturbed pixel is searched using the
differential evolution (DE) algorithm. Another attempt proposed in [41] utilized
the `0 minimization to enforce the sparsity of perturbations. The alternating
direction method of multipliers (ADMM) method is then adopted to separate
the `0-norm and the adversarial loss, to facilitate the optimization of the sparse
attack. However, there is no constraint on perturbation magnitudes, leading to
that the learned perturbation may be very large to be visible. Besides, since the
sparsity is enforced via the `0 term in the objective function, it is difficult to
exactly control the degree of sparsity. Apart from the pixel-wise sparsity, [38]
investigated the group-wise sparsity in adversarial attacks, motivated by the
group Lasso [40]. They showed that group-wise sparsity property provides the
better interpretability for adversarial attack and demonstrated that the learned
perturbation is highly related to discriminative image regions. The group-wise
sparsity can be naturally embedded into our sparse adversarial attack model.

3 Sparse Adversarial Attack

3.1 Preliminaries of Adversarial Attack

We denote the classification model as f : X → Y, with X ∈ [0, 1]w×h×c being
the image space and Y = {1, . . . ,K} being the K-class output space. x ∈ X
indicates one benign image, and y ∈ Y is its ground-truth label. f(x) ∈ [0, 1]K

denotes the posterior vector. The adversarial attack is generally formulated as

min
ε
‖ε‖pp + λL

(
f(x + ε), yt

)
, s.t. x + ε ∈ [0, 1], (1)

where the loss function L is specified according to yt: if yt = y, then it is called the
untargeted attack, and L is set as the negative cross entropy function; if yt 6= y



Sparse Adversarial Attack via Perturbation Factorization 5

is another target label assigned by the attack, then it is called the targeted
attack, and L is set as the cross entropy function. In this work, we focus on
the targeted attack, since it is more challenging than the untargeted attack.
The value p could be specified as different values, according to the attacker’s
requirement. The widely used values include p = 2 (e.g., C&W-L2 [7]), p = ∞
(e.g., FGSM [33]). Using these norms, the adversarial perturbations could be
added at all pixels, dubbed dense attack. In contrast, if p = 0, then the above
problem will encourage that only a few pixels are perturbed, dubbed sparse
attack. However, it is difficult to directly optimize the above problem, due to
the non-differentiability of `0-norm. Instead, some existing works (e.g., [17,7])
proposed to alternatively determine the perturbed positions using some heuristic
strategies and optimiz the magnitudes of perturbations. In contrast, we propose
to optimize the perturbed positions and the perturbation magnitudes jointly, as
specified below. For clarity, x and ε are reshaped from the tensor to the vector,
i.e., x, ε ∈ RN , with N = w · h · c.

3.2 Sparse Adversarial Attack via Perturbation Factorization

We firstly factorize the perturbation ε as follows:

ε = δ �G, (2)

where δ ∈ RN denotes the vector of perturbation magnitudes; G ∈ {0, 1}N
denotes the vector of perturbed positions; � represents element-wise product.
Utilizing this factorization, we propose a new formulation of the sparse adver-
sarial attack, as follows:

min
δ,G

‖δ �G‖22 + λ1L(f(x + δ �G), yt), s.t. 1>G = k, G ∈ {0, 1}N , (3)

where λ1 > 0 is a trade-off parameter. The cardinality constraint 1>G = k is
introduced to enforce that only k < N pixels are perturbed. Note that the range
constraint x + δ �G is omitted here, as it can be simply satisfied via clipping.
Since δ is continuous, while G is integer, Problem (3) is a mixed integer pro-
gramming (MIP) problem. Problem (3) is denoted as SAPF (Sparse adversarial
Attack via Perturbation Factorization).

3.3 Continuous Optimization for the MIP Problem

The mixed integer programming (MIP) problem is challenging, as it cannot be
directly optimized using any off-the-shelf continuous solver. Recently, a generic
method for integer programming called `p-Box ADMM [36] proved that the dis-
crete constraint space can be equivalently replaced by the intersection of two
continuous constraints, and it showed very superior performance in many inte-
ger programming tasks, such as image segmentation, matching, clustering [5],
MAP inference [37], model compression for CNNs [20], etc.. Inspired by that,



6 Y. Fan and B. Wu, et al.

Algorithm 1 Continuous optimization for the MIP problem (5).

Input: benign image {x, y0}, target attack class yt, number of perturbed pixels k and
trade-off parameter λ1.

Output: x + δ �G.
1: Initialize G = 1 and δ = 0.
2: while not converged do
3: Given G, update δ with gradient descent (see Step 1 and sub-problem (6) );
4: Given δ, update G with ADMM (see Step 2 and sub-problem (8)).
5: end while

we propose to equivalently reformulate the MIP problem to a continuous opti-
mization problem, which is then efficiently optimized via an iterative scheme.
Specifically, the binary constraints on G could be replaced as follows:

G ∈ {0, 1}N ⇔ G ∈ Sb ∩ Sp, (4)

where Sb = [0, 1]N is a box constraint and Sp =
{
G : ‖G − 1

2‖
2
2 = N

4

}
is an

`2-sphere constraint. Due to the space limit, we refer the reader to [36] for the
detailed proof of (4). Utilizing (4), Problem (3) is equivalently reformulated as

min
δ,G,Y1∈Sb,Y2∈Sp

‖δ �G‖22 + λ1L(f(x + δ �G), yt) (5)

s.t. 1>G = k, G = Y1, G = Y2,

where Y1 and Y2 are two additional variables to decompose the box and the
`2-sphere constraints on G. Due to the element-wise product between δ and G,
they should be alternatively optimized. The general structure of the optimization
is summarized in Algorithm 1, of which details are shown below.

Step 1: Given G, Update δ by Gradient Descent. Given G, the sub-
problem w.r.t. δ is as follows:

min
δ
‖δ �G‖22 + λ1L(f(x + δ �G), yt). (6)

It is very similar to the formulation of the dense adversarial attack, and can be
solved by the gradient descent algorithm, as follows:

δ ← δ − ηδ · ∇δ = δ − ηδ ·
[
2(δ �G�G) + λ1

∂L(f(x + δ �G), yt)

∂δ

]
, (7)

where ηδ > 0 and the number of gradient steps will be specified in experiments.

Step 2: Given δ, Update G using ADMM. Given δ, the sub-problem w.r.t.
(G,Y1,Y2) is as follows:

min
G,Y1∈Sb,Y2∈Sp

‖δ �G‖22 + λ1L(f(x + δ �G), yt) (8)

s.t. 1>G = k, G = Y1, G = Y2.



Sparse Adversarial Attack via Perturbation Factorization 7

It can be optimized by the alternating direction method of multipliers (ADMM)
algorithm [6]. Specifically, the augmented Lagrangian function of (8) is

L(G,Y1,Y2,Z1,Z2, z3) = ‖δ �G‖22 + λ1L(f(x + δ �G), yt) + (Z1)>(G−Y1)

+ (Z2)>(G−Y2) + z3(1>G− k) +
ρ1
2
‖G−Y1‖22 +

ρ2
2
‖G−Y2‖22

+
ρ3
2

(1>G− k)2 + h1(Y1) + h2(Y2), (9)

where Z1 ∈ RN ,Z2 ∈ RN , z3 ∈ R are dual variables and (ρ1, ρ2, ρ3) are positive
penalty parameters. Function h1(Y1) = I{Y1∈Sb} and h2(Y2) = I{Y2∈Sp} are
indicator functions, i.e., I{a} = 0 when a is true. Otherwise, I{a} = +∞. Follow-
ing the conventional procedure of the ADMM algorithm, we iteratively update
the primal and dual variables, as detailed below.

Step 2.1: Update Y1. Y1 is updated via the following minimization problem,

Y1 = arg min
Y1∈Sb

ρ1
2
‖G−Y1‖22 + (Z1)>(G−Y1). (10)

Its solution is obtained by projecting the unconstrained solution of Y1 to Sb as

Y1 = PSb
(
G +

1

ρ1
Z1

)
, (11)

where PSb(a) = min (1,max(0,a)) with a ∈ Rn indicates the projection onto
the box constraint Sb. Since the objective function of (10) is convex, and the
constraint space Sb is also convex, it is easy to prove that the solution (11) is
the optimal solution to Problem (10).

Step 2.2: Update Y2. Y2 is updated by the following minimization problem,

Y2 = arg min
Y2∈Sp

ρ2
2
‖G−Y2‖22 + (Z2)

>
(G−Y2). (12)

According to [36], Y2 is calculated by

Y2 = PSp
(
G +

1

ρ2
Z2

)
, (13)

where PSp(a) =
√
n
2

a
‖a‖+ 1

21 with a = a− 1
21 and a ∈ Rn indicates the projection

onto the `2-sphere constraint Sp. It has been proven in [36] that the solution (13)
is the optimal solution to Problem (12).

Step 2.3: Update G. It is infeasible to get a closed-form solution for G, due
to the nonlinear function f in L(f(x + δ �G), yt). We thus update G by the
gradient descent rule,

G← G− ηG ·
∂L

∂G
, where

∂L

∂G
= 2(δ � δ �G) + λ1

∂L(f(x + δ �G), yt)

∂G

+ ρ1(G−Y1) + ρ2(G−Y2) + (z3 + ρ3(1>G− k)) · 1 + Z1 + Z2, (14)



8 Y. Fan and B. Wu, et al.

where ηG > 0 and the number of gradient steps will be specified in experiments.

Step 2.4: Update (Z1,Z2, z3). The dual variables are updated as follows,

Z1 ← Z1 + ρ1(G−Z1), Z2 ← Z2 + ρ2(G−Z2), z3 ← z3 + ρ3(1>G− k). (15)

Remark. Since the updates w.r.t δ (i.e., Step 1) and G (i.e., Step 2.3) are
inexactly solved by gradient descent, the theoretical convergence of Algorithm
1 cannot be guaranteed. However, similar to the inexact ADMM algorithm, we
find that Algorithm 1 always converges in our experiments. In terms of the
computational complexity, the main costs are computing ∂L

∂δ (see Eq. (7)) and
∂L
∂G (see Eq. (14)), of which the exact costs depend on the attacked model f .

3.4 Two Extensions of SAPF

The factorization of ε in Eq. (2) provides the extra flexibility to impose different
constraints on perturbation magnitudes or selection factors (i.e., perturbed posi-
tions), so as to achieve some desired performance of the attacker. Here we provide
two case studies, including group-wise sparsity and visual imperceptibility.

Group-wise Sparsity. Model (3) is a natural combination of the pixel-wise
adversarial attack and sparsity. In the literature of sparsity, the group-wise spar-
sity [40,3] is well studied and shows promising performance on encouraging to
select grouped variables. One recent work called StrAttack [38] introduced the
group-wise sparsity into the adversarial attack, providing some insights about
the influences of different regions of one image on the adversarial attack. With-
out loss of generality, we assume the input image x is split into m sub-regions{
xi
}m
i=1

. δi and Gi denote perturbation magnitudes and selection factors corre-

sponding to the i-th region xi, respectively. Through the factorization of magni-
tude and selection factors, the group-wise sparsity can be realized by minimizing∑m

i=1 ‖Gi‖2, which is added onto model (3), leading to

min
δ,G∈{0,1}N

‖δ �G‖22 + λ1L(f(x + δ �G), yt) + λ2

m∑
i=1

‖Gi‖2, s.t. 1>G = k,

(16)

where λ2 > 0 controls the significance of the group-wise sparsity. This problem
can be solved using Algorithm 1, by modifying the update of G (see Eq. (14))
by adding the gradient of λ2

∑m
i=1 ‖Gi‖2 w.r.t. G. It is denoted as SAPF-GS.

Visual Imperceptibility. The visual imperceptibility is important for practical
adversarial learning. As shown in [19,26], the sensitiveness of humans to different
image regions varies according to pixel values. Thus, it is useful to assign relative
smaller perturbations to regions with the higher sensitiveness. This strategy can
be naturally incorporated into the proposed model (3), as follows

min
δ,G
‖w � δ �G‖22 + λ1L(f(x + δ �G), yt), s.t. 1>G = k, G ∈ {0, 1}N , (17)



Sparse Adversarial Attack via Perturbation Factorization 9

wherew ∈ [0, 1]N denotes the pre-defined weight at each pixel. The minimization
of ‖w � δ �G‖22 encourages to assign relative smaller perturbations at pixels
with higher weights, and vice-versa. The derivation of w will be discussed in
experiments. Problem (17) can be directly solved using Algorithm 1 by slightly
modifying the gradients w.r.t. δ and G. Problem (17) is denoted as SAPF-VI.

4 Experiments

In this section, we conduct experiments on CIFAR-10 [18] and ImageNet [11].
We compare our method with several state-of-the-art sparse adversarial attack
algorithms, including five pixel-wise attack algorithms (C&W-`0 [7], One-Pixel-
Attack [30], SparseFool [27], CornerSearch [10] and PGD `0+`∞ [10]), and one
group-wise attack algorithm (StrAttack [38]).

4.1 Experimental Settings

Database and Classification Model. CIFAR-10 has 50k training images and
10k validation images, covering 10 classes. Following [38], we randomly select
1,000 images from the validation set as input. Each image has 9 target classes
except its ground-truth class. Thus a total number of 9,000 adversarial examples
need to be learned for each adversarial attack method. ImageNet contains 1,000
classes, with 1.28 million images for training and 50k images for validation. We
randomly choose 100 images covering 100 different classes from the validation
set. To reduce the time complexity, we randomly select 9 target classes for each
image in ImageNet, resulting in 900 adversarial examples. For the classification
model f , on CIFAR-10, we follow the setting of C&W [7] and train a network
that consists of four convolution layers, three fully-connected layers, and two
max-pooling layers. The input size of the network is 32 × 32 × 3. It achieves
79.51% top-1 classification accuracy on the validation set. On ImageNet, we
use a pre-trained Inception-v3 network3 [32] with 77.45% top-1 classification
accuracy. The input size of the network is 299× 299× 3.

Parameter Settings. In the proposed model (3), the trade-off hyper-parameter
λ1 can effect the perturbation magnitude and the attack success rate. Following
C&W [7], we use a modified binary search to find an appropriate λ1. Specifically,
λ1 is initialized as 0.001 on CIFAR-10 and 0.01 on ImageNet, respectively. The
lower and upper bound of λ1 are set to 0 and 100, respectively. The binary search
of λ1 stops when generating a successful attack or exceeding a maximum search
times (e.g., 6 times in our experiments). Besides, in Algorithm 1, the maximum
number of iterations is set to 10. During each iteration, both G and δ are updated
by the gradient-descent method (see Eqs. (7) and (14)) for 2000 steps with an
initial step size 0.1, and the step size decays for every 50 steps with the decay
rate of 0.9. Besides, as shown in Algorithm 1, we adopt the simple initialization
that G = 1 and δ = 0. It ensures the fair chance for each individual pixel to be

3 Downloaded from https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth

https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth


10 Y. Fan and B. Wu, et al.

Database Method
Best case Average case Worst case

ASR `0 `1 `2 `∞ ASR `0 `1 `2 `∞ ASR `0 `1 `2 `∞

CIFAR-10

One-Pixel [30] 15 3 1.572 0.956 0.676 5.489 3 2.191 1.286 0.817 0.7 3 2.662 1.539 0.922
CornerSearch [10] 60.4 537 69.704 3.335 0.336 59.3 549 73.64 3.481 0.342 63.2 561 77.570 3.621 0.346
PGD `0 + `∞ [10] 99.4 555 18.112 0.966 0.116 98.6 555 23.172 1.169 0.123 99.3 555 26.815 1.349 0.125

SparseFool [27] 100 255 11.873 0.665 0.047 99.9 553 25.81 1.041 0.047 99.8 852 39.674 1.339 0.047
C&W-`0 [7] 100 614 6.948 0.428 0.086 100 603 13.071 0.805 0.157 100 598 18.603 1.141 0.221

StrAttack [38] 100 391 4.936 0.296 0.053 100 543 9.494 0.524 0.087 100 476 12.436 0.771 0.137
SAPF (Ours) 100 387 4.612 0.251 0.039 100 539 8.513 0.435 0.064 100 471 10.392 0.604 0.095

ImageNet

One-Pixel [30] 0 3 1.192 0.804 0.664 0 3 1.881 1.179 0.833 0 3 2.562 1.509 0.933
CornerSearch [10] 4 58658 5962.457 28.06 0.436 1.3 58792 6018.307 28.29 0.435 2 58920 6076.068 28.53 0.437
PGD `0 + `∞ [10] 95 56922 798.888 4.205 0.063 95.6 56919 854.674 4.508 0.063 96 56920 925.272 4.901 0.063

SparseFool [27] 97 34205 174.146 0.918 0.005 80.6 59940 305.182 1.219 0.005 46 82576 420.440 1.450 0.005
C&W-`0 [7] 100 73407 133.790 0.786 0.051 100 70885 199.203 1.117 0.058 100 69947 269.097 1.463 0.065

StrAttack [38] 100 38354 77.279 0.694 0.062 100 58581 127.585 0.974 0.081 100 67348 171.248 1.276 0.100
SAPF (Ours) 100 37275 70.253 0.586 0.038 100 56218 112.155 0.719 0.037 100 65250 150.552 0.872 0.041

Table 1: Results of targeted sparse adversarial attack on CIFAR-10 and ImageNet,
evaluated by ASR and `p-norm (p = 0, 1, 2,∞) of the learned perturbation. The best
`p-norm among methods that achieve more than 90% ASR is shown in bold.

perturbed, and avoids the uncertainty due to the random initialization, such that
our reported experimental results can be easily reproduced. Hyper-parameters
(ρ1, ρ2, ρ3) in ADMM (see Eq. (15)) are initialized as (5× 10−3, 5× 10−3, 10−4)
on both CIFAR-10 and ImageNet, and increase by ρi ← 1.01×ρi, i = 1, 2, 3 after
each iteration. The maximum values of (ρ1, ρ2, ρ3) are set to (20, 10, 100) on both
databases. The number of perturbed positions k is a key hyper-parameter for
sparse attack. It can be explicitly controlled through the cardinality constraint
in our SAPF method (see model (3)), while not the case in most existing sparse
attack methods. To ensure the fair comparison, in experiments we firstly run the
baseline C&W-`0 with 100% ASR. The `0-norm of C&W-`0 under the average
case (see the next paragraph) serves as the reference number to tune the k values
for other methods (including SAPF). The similar level of sparsity of all compared
methods facilitates the comparison using `2 and `∞-norm.

Evaluation Metrics. The `p-norm (p = 0, 1, 2,∞) of perturbations and the
attack success rate (ASR) are used to evaluate the attack performance of different
methods. In our experiments, we keep increasing the upper bound of `p-norm of
perturbations until the attack is success. In other words, we compare different
attack algorithms in terms of the `p-norm of perturbations under 100% ASR4.
Moreover, for each image, similar to C&W [7], we evaluate three different cases,
i.e., average case: the average performance of all 9 target classes; best case:
the performance w.r.t. the target class that is the easiest to attack; and worst
case: the performance w.r.t. the target class that is the most difficult to attack.

4.2 Experimental Comparisons between SAPF and Other Methods

Results on CIFAR-10. The average `p-norm and the ASR of the learned per-
turbation on CIFAR-10 under three different cases are given in Table 1. From
the table, we see that our method achieve 100% attack success rate under all

4 Note that some sparse attack methods fail to generate 100% ASR in our experiments.



Sparse Adversarial Attack via Perturbation Factorization 11

Fig. 2: Examples of perturbations generated by the proposed SAPF method. (Left-
most column): Two benign images from ImageNet with their ground-truth class labels
given below; (2nd - 5th columns): the generated sparse adversarial perturbations
with different target attack classes given below; (Right-most column): the common
perturbed pixels of four targeted adversarial attacks.

three cases. The `∞-norm of the One-Pixel-Attack is the largest among all al-
gorithms and it achieves the lowest attack success rate, e.g., it only achieves
15% ASR under the best case. Thus, it is hard to perform targeted adversar-
ial attacks by only perturbing one pixel (the `0 = 3 relates to three channels),
even on the tiny database CIFAR-10. The CornerSearch also fails to generate
100% success attack rate. Comparing to all adversarial attack algorithms except
One-Pixel-Attack, our method achieves the best `1-norm and `2-norm under all
three cases. This demonstrates the effectiveness of the proposed method. The
SparseFool achieves lower `∞-norm under the average and worst cases. However,
its `0-norm, `1-norm and `2-norm are significantly higher than our method. The
C&W-`0, StrAttack and our method all achieve 100% attack success rate. How-
ever, by factorizing the perturbation into positions and magnitude and jointly
optimizing them, our model significantly outperforms the C&W-`0 and StrAt-
tack, and achieves 100% ASR with the lowest `0-norm, `1-norm, `2-norm and
`∞-norm. These demonstrate the superiority of our proposed method.

Results on ImageNet. The numerical results of different adversarial attack
algorithms on ImageNet are given in Table 1. Seen from it, our method achieves
100% attack success rate under all three cases. The One-Pixel-Attack and Cor-
nerSearch algorithms fail to perform targeted adversarial attack on ImageNet
under all three cases. The SparseFool method also fails to generate successful
attack for many images, especially for the worst case where its ASR is only 46%.
The C&W-`0 and StrAttack algorithms also achieve 100% ASR under all three
cases. However, our method achieves the same 100% ASR with the least number
of perturbed positions. And the `1-norm, `2-norm and `∞-norm of C&W-`0 and
StrAttack are significant higher than our method. The SparseFool obtains the



12 Y. Fan and B. Wu, et al.

Fig. 3: Examples of perturbations with group-wise sparsity. (Left column): benign
images with their ground-truth classes given below. (Middle and Right column)
show the learned perturbations by SAPF-GS (i.e., model (16)) with λ2 = 0 and λ2 =
10, respectively. The text under each perturbation indicates its target attack class and
`1, `2, `∞-norm, respectively.

lowest `∞-norm. However, it fails to generate 100% ASR, and its `1-norm and
`2-norm are significantly higher than ours.

Visualization of the Learned Sparse Perturbations. The sparse perturbed
positions are adaptively determined during the optimization process. For the bet-
ter understanding of the learned perturbed positions, we present two examples
of visualizing the learned adversarial perturbations in Fig. 2. The benign images
in the first column of Fig. 2 can be correctly classified by the Inception-v3 model.
However, by adding small and sparse adversarial perturbations (i.e., the images
from column 2 to column 5) onto benign images, the corresponding adversarial
images successfully fool the Inception-v3 model. One interesting phenomenon
is that the positions of the learned perturbation are highly related to the dis-
criminative image regions. For example, in the second row, when performing a
targeted attack on the benign image “Spider monkey” with target attack class
“Crane”, the learned sparse perturbation mainly locates in the image regions
related to the object areas. A similar phenomenon can also be observed in other
images and different target attack classes. For each row, the right-most plot
highlights the positions that are always perturbed under four different target
attacks (i.e., 2nd - 5th column). We observe that when attacking certain benign
image to different target classes, the learned sparse perturbations w.r.t. different
target classes share common perturbed positions.

Degree of Sparsity. Here we evaluate the impact of different degrees of sparsity
in sparse attack. Specifically, we evaluate SAPF (i.e., model (3)) with different
values of the cardinality k. For each k, we keep increasing the magnitude of the
perturbation until the attack is success. Fig. 4 shows `p-norms of the pertur-
bation generated by our SAPF attack w.r.t. the number of perturbed positions
k. As k increases, more positions are perturbed, and the magnitudes of most
perturbations decrease, leading to the decreasing of `∞-norm. Besides, since the



Sparse Adversarial Attack via Perturbation Factorization 13

20 50 100 200 500
k

0.2

0.4

0.6

0.8

1.0

2
no

rm
, 

-n
or

m

2 1

9

10

11

12

13

14

15

1-n
or

m

500 1000 10000 20000 50000
k

0

1

2

3

4

5

2
no

rm
, 

-n
or

m

2 1

70

80

90

100

110

120

130

1-n
or

m

Fig. 4: `1, `2, `∞-norms of pertur-
bations generated by SAPF w.r.t.
the number of perturbed positions
k on CIFAR-10 (top) and Ima-
geNet (bottom).

Fig. 5: Perturbation visualization of different
weighting strategies in SAPF-VI (i.e., model
(17)). The top-left image is the benign im-
age with class “conch”. The other three images
are the learned perturbed positions with three
weighting strategies. The target attack class is
“fountain”.

magnitude of each single perturbation is much smaller than 1, `2-norm also de-
creases; in contrast, `1-norm increases, as the increasing from new perturbations
is larger than the decreasing of old perturbations.

4.3 Results of Group-wise Sparsity and Visual Imperceptibility

SAPF with Group-wise Sparsity. Fig. 3 visualizes the learned perturba-
tions without and with group-wise sparsity in the middle and right columns,
respectively. The number of perturbed positions (i.e., k) is the same for these
two cases. For group-wise sparsity, we split input image into 350 sub-regions
via super-pixel segmentation [1]. Comparing the learned perturbations in the
middle and right columns, the learned perturbations with group-wise constraint
(i.e., the plots in the right column) are more concentrated and gather around
discriminative object regions. It helps to explore regions that are sensitive to
adversarial attacks. Meanwhile, the perturbations with the group-wise sparsity
get larger (see the `p-norm under each perturbation in Fig. 3), but still im-
perceptible, due to the trade-off between the group-wise sparsity and the other
two terms in the objective function (16). This trade-off can be flexibly adjusted
through the hyper-parameter λ2 in (16) in practice.

SAPF with Visual Imperceptibility. For visual imperceptibility, we present
the perturbed positions learned by model (17) with different weighting strategies
in Fig. 5. We consider three weighting strategies: “uniform” that assigns equal
weight to each position; “variance” weight wi = 1/var(xi) [26], where var(xi) =√∑

xj∈Si(xj − µi)2/n2 and Si denotes the n × n neighborhoods of position i,



14 Y. Fan and B. Wu, et al.

µi =
∑

xj∈Si xj/n
2; and “variance-mean” weight wi = 1/ (var(xi)× µi), n is set

to 3 empirically. For better visualization, we highlight the top-1% perturbed po-
sitions with the largest magnitudes. The “uniform” weight treats each position
equally, and its learned perturbed positions may be located at uniform back-
ground regions where humans are more sensitive (e.g., the red box areas in Fig. 5
(b)). Considering that humans are more sensitive to perturbation at regions with
lower variance, the “variance” weight encourages the model to assign less per-
turbation to positions with lower variance. And its learned perturbed positions
mainly focus on the object regions with higher variance. The “variance-mean”
weight further considers the brightness around each position, and its learned
perturbed positions are barely located at the uniform background regions with
lower variance and lower brightness. Thus, the pixel weight w in model (17) in-
fluences the learned perturbed positions, and it is interesting to explore different
weighting strategies to further enhance visual imperceptibility.

4.4 Supplementary Materials

Due to the space limit, some important contents have to be presented in supple-
mentary materials, including: 1) the results of attacking the adversarially trained
model on CIFAR-10; 2) the running time of different attack methods; 3) detailed
discussions of three important problems, including the values of sparse adver-
sarial attack, the most important contribution of this work, other extensions of
the proposed method.

5 Conclusion

This work provided a new perspective of the adversarial perturbation that each
perturbation could be factorized by two characteristics, i.e., magnitude and po-
sition. This new perspective enables to formulate the the sparse adversarial at-
tack as a mixed integer programming (MIP) problem, which jointly optimizes
perturbation magnitudes and perturbed positions. The degree of sparsity is ex-
plicitly controlled via the cardinality constraint on the perturbed positions. We
developed an efficient and effective optimization algorithm by equivalently refor-
mulating the MIP problem as a continuous optimization problem. Experimental
evaluations on two benchmark databases demonstrate the superiority of the pro-
posed method to state-of-the-art sparse adversarial attack methods. Besides, we
visualized that the learned sparse positions closely related to the discriminative
regions, and also showed that the proposed model is flexible to incorporate dif-
ferent constraints on perturbation magnitudes or perturbed positions, such as
group-wise sparsity and visual imperceptibility.

Acknowledgement This work is supported by Tencent AI Lab. The partic-
ipation of Yujiu Yang is supported by The Key Program of National Natural
Science Foundation of China under Grant No. U1903213.



Sparse Adversarial Attack via Perturbation Factorization 15

References

1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpix-
els compared to state-of-the-art superpixel methods. IEEE transactions on pattern
analysis and machine intelligence 34(11), 2274–2282 (2012)

2. Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer
vision: A survey. IEEE Access 6, 14410–14430 (2018)

3. Bach, F., Jenatton, R., Mairal, J., Obozinski, G., et al.: Optimization with sparsity-
inducing penalties. Foundations and Trends R© in Machine Learning 4(1), 1–106
(2012)

4. Bai, J., Chen, B., Li, Y., Wu, D., Guo, W., Xia, S.t., Yang, E.h.: Targeted attack
for deep hashing based retrieval. In: ECCV (2020)

5. Bibi, A., Wu, B., Ghanem, B.: Constrained k-means with general pairwise and
cardinality constraints. arXiv preprint arXiv:1907.10410 (2019)

6. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed opti-
mization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends R© in Machine learning 3(1), 1–122 (2011)

7. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP). pp. 39–57. IEEE (2017)

8. Chen, H., Zhang, H., Chen, P.Y., Yi, J., Hsieh, C.J.: Show-and-fool: Crafting ad-
versarial examples for neural image captioning. arXiv preprint arXiv:1712.02051
(2017)

9. Chen, W., Zhang, Z., Hu, X., Wu, B.: Boosting decision-based black-box adversarial
attacks with random sign flip. In: Proceedings of the European Conference on
Computer Vision (2020)

10. Croce, F., Hein, M.: Sparse and imperceivable adversarial attacks. In: ICCV. pp.
4724–4732 (2019)

11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR. pp. 248–255. Ieee (2009)

12. Dong, Y., Su, H., Wu, B., Li, Z., Liu, W., Zhang, T., Zhu, J.: Efficient decision-
based black-box adversarial attacks on face recognition. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. pp. 7714–7722
(2019)

13. Feng, Y., Chen, B., Dai, T., Xia, S.: Adversarial attack on deep product quantiza-
tion network for image retrieval. In: AAAI (2020)

14. Feng, Y., Wu, B., Fan, Y., Li, Z., Xia, S.: Efficient black-box adversarial at-
tack guided by the distribution of adversarial perturbations. arXiv preprint
arXiv:2006.08538 (2020)

15. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. ICLR (2015)

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. pp. 770–778 (2016)

17. Karmon, D., Zoran, D., Goldberg, Y.: Lavan: Localized and visible adversarial
noise. ICML (2018)

18. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Tech. rep., Citeseer (2009)

19. Legge, G.E., Foley, J.M.: Contrast masking in human vision. Josa 70(12), 1458–
1471 (1980)

20. Li, T., Wu, B., Yang, Y., Fan, Y., Zhang, Y., Liu, W.: Compressing convolutional
neural networks via factorized convolutional filters. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 3977–3986 (2019)



16 Y. Fan and B. Wu, et al.

21. Li, Y., Wu, B., Feng, Y., Fan, Y., Jiang, Y., Li, Z., Xia, S.: Toward adversarial
robustness via semi-supervised robust training. arXiv preprint arXiv:2003.06974
(2020)

22. Li, Y., Yang, X., Wu, B., Lyu, S.: Hiding faces in plain sight: Disrupting ai face
synthesis with adversarial perturbations. arXiv preprint arXiv:1906.09288 (2019)

23. Liu, A., Huang, T., Liu, X., Xu, Y., Ma, Y., Chen, X., Maybank, S., Tao, D.: Spa-
tiotemporal attacks for embodied agents. In: European Conference on Computer
Vision (2020)

24. Liu, A., Liu, X., Fan, J., Ma, Y., Zhang, A., Xie, H., Tao, D.: Perceptual-sensitive
gan for generating adversarial patches. In: 33rd AAAI Conference on Artificial
Intelligence (2019)

25. Liu, A., Wang, J., Liu, X., Cao, b., Zhang, C., Yu, H.: Bias-based universal adver-
sarial patch attack for automatic check-out. In: European Conference on Computer
Vision (2020)

26. Luo, B., Liu, Y., Wei, L., Xu, Q.: Towards imperceptible and robust adversarial
example attacks against neural networks. In: AAAI (2018)

27. Modas, A., Moosavi-Dezfooli, S.M., Frossard, P.: Sparsefool: a few pixels make a
big difference. In: CVPR. pp. 9087–9096 (2019)

28. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: 2016 IEEE European Sym-
posium on Security and Privacy (EuroS&P). pp. 372–387. IEEE (2016)

29. Sarikaya, R., Hinton, G.E., Deoras, A.: Application of deep belief networks for
natural language understanding. IEEE/ACM Transactions on Audio, Speech and
Language Processing (TASLP) 22(4), 778–784 (2014)

30. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks.
IEEE Transactions on Evolutionary Computation (2019)

31. Sun, Y., Liang, D., Wang, X., Tang, X.: Deepid3: Face recognition with very deep
neural networks. arXiv preprint arXiv:1502.00873 (2015)

32. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: CVPR. pp. 2818–2826 (2016)

33. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
Fergus, R.: Intriguing properties of neural networks. ICLR (2014)

34. Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., Liu, W.: Cosface:
Large margin cosine loss for deep face recognition. In: CVPR. pp. 5265–5274 (2018)

35. Wu, B., Chen, W., Fan, Y., Zhang, Y., Hou, J., Liu, J., Zhang, T.: Tencent ml-
images: A large-scale multi-label image database for visual representation learning.
IEEE Access 7, 172683–172693 (2019)

36. Wu, B., Ghanem, B.: lp-box admm: A versatile framework for integer programming.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) (2018)

37. Wu, B., Shen, L., Zhang, T., Ghanem, B.: Map inference via l2-sphere linear pro-
gram reformulation. International Journal of Computer Vision pp. 1–24 (2020)

38. Xu, K., Liu, S., Zhao, P., Chen, P.Y., Zhang, H., Erdogmus, D., Wang, Y., Lin,
X.: Structured adversarial attack: Towards general implementation and better in-
terpretability. ICLR (2019)

39. Xu, Y., Wu, B., Shen, F., Fan, Y., Zhang, Y., Shen, H.T., Liu, W.: Exact adversarial
attack to image captioning via structured output learning with latent variables. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 4135–4144 (2019)

40. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped vari-
ables. Journal of the Royal Statistical Society: Series B (Statistical Methodology)
68(1), 49–67 (2006)



Sparse Adversarial Attack via Perturbation Factorization 17

41. Zhao, P., Liu, S., Wang, Y., Lin, X.: An admm-based universal framework for
adversarial attacks on deep neural networks. In: 2018 ACMMM. pp. 1065–1073.
ACM (2018)


	Sparse Adversarial Attack via Perturbation Factorization

