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Abstract. This study proposes a privacy-preserving Visual SLAM frame-
work for estimating camera poses and performing bundle adjustment
with mixed line and point clouds in real time. Previous studies have pro-
posed localization methods to estimate a camera pose using a line-cloud
map for a single image or a reconstructed point cloud. These methods of-
fer a scene privacy protection against the inversion attacks by converting
a point cloud to a line cloud, which reconstruct the scene images from
the point cloud. However, they are not directly applicable to a video se-
quence because they do not address computational efficiency. This is a
critical issue to solve for estimating camera poses and performing bun-
dle adjustment with mixed line and point clouds in real time. Moreover,
there has been no study on a method to optimize a line-cloud map of a
server with a point cloud reconstructed from a client video because any
observation points on the image coordinates are not available to prevent
the inversion attacks, namely the reversibility of the 3D lines. The exper-
imental results with synthetic and real data show that our Visual SLAM
framework achieves the intended privacy-preserving formation and real-
time performance using a line-cloud map.
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1 Introduction

Localization and mapping from images are fundamental problems in the field
of computer vision. They have been exhaustively studied for robotics and aug-
mented/mixed reality (AR/MR) [5, 20, 31]. These applications are divided into
three main types, where the 6 degree-of-freedom (DOF) camera pose is: (i) in
unmeasured regions to be estimated simultaneously with the 3D map through
either Structure from Motion (SfM) [1, 4] or Visual SLAM [10, 11, 24]; (ii) in
measured regions to be estimated by solving 2D–3D matching between the im-
age and the 3D map and (iii) in both of measured and unmeasured regions, a
camera passes through the entire regions. Because of the complexity of this field
in computer vision, this study focuses on the literature regarding the applications
of (ii) and (iii).

∗ The authors assert equal contribution and joint first authorship.
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Fig. 1. Example of LC-VSLAM application.

Recent studies have revealed a risk of privacy preservation that 3D points and
their descriptors can be inverted to synthesize the original scene images [27]. To
prevent this privacy risk, Speciale et al. proposed a privacy-preserving method
which converts a 3D point cloud to a 3D line cloud to make the inversion at-
tack difficult [33, 34]. However, in the case of camera pose estimation of a single
image, the problem after the conversion changes from three 2D point–3D point
correspondences (p3P) [12, 17, 29] to six 2D point–3D line correspondences (p6L)
[33], which causes the amount of computation to increase and the accuracy to
deteriorate. Moreover, for the corresponding search with 2D points, the compu-
tational cost and the matching error ratio for a 3D line are higher than those for
a 3D point. Hence, it is difficult to directly apply the localization method with
p6L to a real-time application with a video sequence, such as Visual SLAM.

For SfM and Visual SLAM, bundle adjustment (BA) is utilized to optimize
camera pose and 3D points [40, 42]. In a standard BA, the parameters are opti-
mized by minimizing the error function with distances between the reprojected
points and the corresponding 2D points. However, there are two new problems
for BA with regard to a line-cloud map from a server. First, BA for the line-cloud
map demands an additional definition of every new error function between a 2D
point on a client image and the corresponding 3D line from a server. Second, to
ensure the irreversibility of a line cloud to the original point cloud, it is inevitable
to integrate the line cloud with the point cloud and to globally optimize them
without the 2D point coordinates on the keyframes of the line cloud.

To overcome these difficulties, we propose a Visual SLAM framework for real-
time relocalization, tracking, and BA with a map mixed with lines and points
(Fig. 1 and 2), which we call Line-Cloud Visual SLAM (LC-VSLAM). The main
contributions of this study are three-fold.

• Efficient relocalization and tracking with 3D points reconstructed by Visual
SLAM of a client.

• Motion-only, rigid-stereo, local, and global bundle adjustments for mixed
line and point clouds.

• Creation of unified framework for various types of projection models, such
as perspective, fisheye, and equirectangular.

First, matching between local 3D points reconstructed with Visual SLAM
by a client and a line cloud enables fast and accurate relocalization (Sec. 3.2).
Moreover, discretizing the 3D line to 3D points speeds up the 2D–3D matching
to achieve real-time tracking (Sec. 3.3).

Second, we propose four types of bundle adjustments for mixed line and
point clouds, motion-only, rigid-stereo, local, and global BAs, depending on the
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optimization parameters. The 3D lines are simultaneously optimized with the
camera poses and 3D points by defining the covariance of the 3D line with that
of the original 3D point, whose value in the direction of the line is infinite. The
covariance is used to calculate the reprojection error between the 3D line and
the corresponding 2D point (or line). In the global BA, a whole map which has
already included a line cloud from a server is optimized by adding the virtual
observations of 3D lines on the line-cloud keyframes (Sec. 3.4).

Finally, we propose a unified framework that can be applied to various types
of projection models by reason of the matching efficiency, where 3D lines are dis-
cretized to 3D points (Sec. 3.3). The reprojection error between the 3D line and
the virtual observation is defined as the difference between the normal vectors of
the planes consisting of the lines and the origin of the local camera coordinates
(Sec. 3.4).

In Section 2, we summarize the related work. In Section 3, we explain the
details of the proposed framework. In Section 4, we present the experimental
results. Finally, in Section 5, we present our conclusions.

2 Related Works

2.1 Visual SLAM

Visual SLAM is broadly utilized for environment mapping, localization in robotics,
and camera tracking frameworks in AR/MR applications. The Visual SLAM al-
gorithms are generally divided into three kinds of methods: feature-based [5, 20,
24, 25], direct [10, 11, 26], and learning-based [6, 38, 39, 43–45]. The feature-based
methods pertain to camera tracking and scene mapping with feature points ex-
tracted from images [2, 3, 23, 30]. The direct methods, in contrast, focus on mini-
mization of photometric errors indicating the difference of the intensity between
two frames.

Recently, a combination of Convolutional Neural Networks (CNNs) and ei-
ther of the aforementioned kinds of algorithms (feature-based or direct) has been
under extensive investigation. The feature-based methods use CNN-based archi-
tectures in conventional algorithms to detect and describe their feature points [6,
38, 44]. For the direct methods, CNN-based depth prediction techniques are uti-
lized for the initialization of depth estimation [39, 43]. As opposed to the fusion
of conventional Visual SLAM and learning-based methods, end-to-end track-
ing and mapping methods based on Deep Neural Networks (DNNs) have been
recently studied [45].

The feature-based methods can localize frames in a prebuilt map quickly
and accurately [14, 32]. These characteristics are required for our LC-VSLAM
to localize camera pose against a prebuilt 3D line cloud, to track camera tra-
jectory, and to simultaneously expand the map. Therefore, we constructed the
LC-VSLAM algorithm based on the feature-based Visual SLAM.
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2.2 Map Representation with Line Cloud

In conventional AR/MR applications, each client downloads a prebuilt map cre-
ated by other clients from a server and performs localization/tracking based on
the map. In this case, the clients share only the 3D point cloud and its optional
attributes (e.g., color, descriptor, and visibility of each point and camera poses).
However, Pittaluga et al. proved that fine images at arbitrary viewpoints can be
restored only with the sparse point cloud and its optional attributes [27]. They
referred to this restoration as an inversion attack.

To address this problem, Speciale et al. proposed a map representation based
on a 3D line cloud [33]. They also formulated a method to localize an image in
the prebuilt line cloud. The line cloud is built by converting each 3D point to
a 3D line that has a random orientation and passes through the original point.
It is quite difficult to directly restore the original point cloud from the line
cloud because the point coordinates can be reparameterized arbitrarily on the
corresponding line.

To the best of our knowledge, there has been no study on how to track cam-
era poses continuously in real time with a 3D line cloud. As a straightforward
method, the camera pose of every frame can be estimated successively using
the p6L solver proposed in [33]. However, the p6L solver has a much larger
computational cost than the typical p3P solvers [12, 17, 29]. In contrast, some
methods achieve Visual SLAM using edges in a scene as landmarks like feature
points [7, 19, 28]. These methods build 3D lines based on the structure and color
distribution in a scene. That is, the 3D lines explicitly represent the scene struc-
tures. Our method, however, to be resistant against inversion attacks, avoids
such explicitness by utilizing the randomly oriented 3D line cloud.

2.3 Bundle Adjustment for Map Optimization

Conventional Visual SLAM and SfM methods largely utilize pose graph opti-
mization (PGO) [16, 21, 35] and bundle adjustment (BA) [22, 40, 42] for accurate
pose estimation and map construction. PGO can be almost directly applied to
loop closure for a line cloud, but the conventional BA cannot. This is because a
reprojection error that constrains a 3D line and a 2D feature point has not been
defined. For the Visual SLAM methods based on structural edges, point-to-line
distances between a 2D line and two endpoints of a reprojected 3D line segment
are used as a reprojection error between 2D and 3D lines [7, 28]. However, this
formulation targets the structure-based edges, i.e., the 3D lines which explic-
itly represent the scene structures; thus, they cannot be applied to tracking and
mapping with a prebuilt map of randomly oriented 3D lines.

We therefore propose a reprojection constraint between randomly oriented
3D lines and 2D feature points in order to conduct BA for the map representation
with mixed line and point clouds. In its formulation, an error ellipse of each 3D
line is decided according to the covariance of the corresponding 3D point before
being converted to the 3D line. The error ellipse of the 3D line has not been
considered in the previous study [33]. Furthermore, the proposed algorithms do
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Fig. 2. Overview of LC-VSLAM system. It should be noted here that the three threads
run in parallel: tracking, local mapping, and loop closure.

not depend on the difference of projection models. Hence, the real-time LC-
VSLAM framework can be realized in various types of projection models.

3 Proposed Method

3.1 System Overview

The proposed LC-VSLAM system consists of four modules: relocalization, track-
ing, local mapping, and loop closure (Fig. 2). The system works to estimate the
parameters set for the following camera poses and 3D mapping:

(1) Camera pose of the current client frame Pc,
(2) Camera poses of client keyframes Pkc,
(3) Camera poses of server keyframes for 3D lines Pks,
(4) 3D lines L,
(5) 3D points reconstructed only from 2D points X,
(6) 3D points reconstructed from 3D lines and 2D points X′.

First, for relocalization in a line cloud, the system performs a standard Visual
SLAM [24, 45] for video sequence input I1:t to reconstruct the local 3D points
of the current keyframe Xckf (Sec. 3.2). The camera poses of the keyframes in
the line cloud Pkc are calculated with Xckf by computing Sim(3) with four 3D
point3D line (P4L) [37] or three 3D point3D point (P3P) [9, 18, 41] correspon-
dences after the candidate detection based on DBOW [14]. Then, the camera
poses Pkc and the reconstructed 3D points X′ are optimized in the rigid-stereo
bundle adjustment (Sec. 3.4). The loop detection performs a similar processing
operation (Sec. 3.2). After the relocalization in the line cloud, the other three
LC-VSLAM modules (tracking, local mapping, and loop closure) start.

The tracking module continuously estimates the camera pose for the current
frame. The tentative camera pose is estimated by assuming a linear motion of
the camera. In the 2D point3D line matching, 3D lines are discretized to 3D
points to improve the computational efficiency (Sec. 3.3). Using all the corre-
spondences of the 2D point3D point and the 2D point3D line, the motion-only
bundle adjustment optimizes the camera pose of the current frame Pc and the
reconstructed 3D points X′ (Sec. 3.4).
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Fig. 3. Overview of relocalization and loop detection with a line cloud.

In the local mapping module, 3D points X,X′ are newly created or restored
using the keyframes with the camera pose estimated in the tracking module,
according to the 2D point2D point and the 2D point3D line correspondences.
Subsequently, the local bundle adjustment optimizes the camera poses of the
client keyframes Pkc and the reconstructed 3D points X,X′ simultaneously (Sec.
3.4).

For correcting errors of the 3D lines and points, the loop-closure module
detects the loops in the same manner as relocalization. After the pose graph op-
timization [16, 35], the global bundle adjustment optimizes all of the parameters
for the map Pkc,Pks,X,X′,L by introducing the virtual observations of the 3D
lines on the line-cloud keyframes (Sec. 3.4).

3.2 Relocalization and Loop Detection with a Line Cloud

In this study, we assume that the visibility of 3D lines L from a server for the
keyframes Pks is known. Hence, for the global localization problem using a line-
cloud, we utilize a bag-of-words strategy such as DBOW [14], in the same manner
as in a standard Visual SLAM [24, 45] to efficiently detect loop candidates. After
the loop candidate detection, the geometric verification with a RANSAC-based
solver rejects the outliers of their descriptor matches [13]. As shown in Figure
3(a), the increase in the computational cost of the p6L solver [33], compared to
that of the typical p3P solvers, prevents real-time processing due to requiring
more points to solve a minimal problem [12, 17, 29]. Therefore, we utilize local
3D points of the current keyframe Xckf , which are reconstructed by a standard
Visual SLAM of a client, to match with the 3D lines L [Fig. 3(b)]. More con-
cretely, we utilize four 3D point-3D line correspondences (P4L) to calculate the
relative Sim(3) pose ∆PSim3

kc . The P4L solver [37] is more efficient than the p6L
one. (The p6L solver cannot be directly applied to the Sim(3) estimation for the
scale drift-aware loop closure [35].)

In cases where 3D points have already been reconstructed in the line-cloud
map (e.g., relocalization after tracking loss and loop detection after exploring
the line cloud), both 3D lines and points are utilized for the Sim(3) estimation.
To be more precise, we use P4L if NPL/NPP > 4/3 and P3P otherwise, where
NPL and NPP represent the numbers of 3D point-3D line and the 3D point-3D
point correspondences, respectively. After the initial estimation, the pose graph
optimization is conducted with the relative camera pose [16, 35], and the rigid-
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(a) Perspective projection model (b) Equirectangular projection model

Fig. 4. Overview of matching between 2D points and discretized 3D lines.

stereo BA optimizes the camera pose Pckf
kc and the reconstructed 3D points X′

(Sec. 3.4).

3.3 2D–3D Matching with 3D Lines and Points

Real-time tracking with a line cloud requires a fast search between correspond-
ing 2D points and 3D lines as well as between 2D and 3D points for standard
feature-based methods [24]. However, especially for the equirectangular projec-
tion model, efficient search is difficult because the reprojected 3D lines are not
straight to correspond the 3D points in the image coordinates. Hence, in our
system, a 3D line is discretized to 3D points, and they are reprojected onto the
image. This discretization strategy brings about an advantage of efficient search
for corresponding 2D points that narrows search ranges of distances and image
coordinates. Moreover, this method can be directly applied to various types of
projection models, such as the perspective and equirectangular models. Figure
4 shows the overview of this 2D point-3D line matching.

3.4 Bundle Adjustments with a Line Cloud

To achieve bundle adjustments with a line cloud, first we define the information
matrix of a 3D line with the covariance matrix of the original 3D point. Next,
we also define error metrics between a 2D point (or line) and a 3D line. Finally,
utilizing the error metrics, we introduce new error functions for each bundle
adjustment.

Definition: A prebuilt map contains the 3D lines L = {pL,dL}. They are con-
verted from the 3D points XL, whose covariance matrix is defined as ΣXL . The
vectors pL,dL represent the base point and the directional vector, respectively.
To conceal the information regarding the coordinates in the direction d of the
original 3D points XL, we introduce an information matrix of the 3D line L:

ΩL = {(I− ddT)ΣXL(I− ddT)}+, (1)

where A+ is the pseudo-inverse matrix of A [Fig. 5(a)]. The information value
of ΩL in the direction d is zero.
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In a standard BA [Fig. 5(b)], a reprojection error for optimizing camera poses
and 3D points is defined as

epP(Pkc,X,x) := ∥π(Pkc,X)− x∥2ΩX
, (2)

where π(·) is the projection function, x is the observation points from which the
3D points X are reconstructed, ΩX = Σ−1

X , and ∥e∥2ΩX
= eTΩXe.

BA with a line cloud, however, requires an error metric between a 2D point
x′ and a 3D line L, where x′ is the observation points from which the 3D points
X′ are reconstructed. Hence, as shown in Figure 5(c), we define the error metric
using the 3D point X′, which is initially reconstructed as the intermediate point
between the viewing direction of x′ and L, as

epL(Pkc,X
′,x′,pL) := epP(Pkc,X

′,x′) + ∥X′ − pL∥2ΩL
. (3)

The first term of Eq. (3) is the standard reprojection error, which is the constraint
between the 2D point x′ and the reconstructed 3D point X′, while the second
term is the constraint between the 3D point X′ and the 3D line L. Through this
error metric, the 3D line L and the camera pose Pkc can constrain each other.

Furthermore, the prebuilt line-cloud map may contain errors such as scale
drift, which additional observations by other clients can correct. However, obser-
vation points on the image coordinates should be dropped when a user uploads
a line cloud to a server because they can recover the corresponding 3D points.
As a result, there is no constraint between the 3D lines L and their keyframe
camera poses Pks for a BA.

Here, we introduce the virtual observation v, which is the projection of the
initial 3D line L0 onto the keyframe. Strictly speaking, v is represented by the
normal vector nv of the plane defined by the camera center and L0. Similarly, for
the current state, the normal vector of the plane defined by the camera center and
the 3D line L is represented as nL(Pks,L). We define the error metric between
the 3D lines L and the virtual observation v with their normals as

evL(Pks,L,v) := ∥1− nL(Pks,L) · nv∥2ΩvL
. (4)
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It should be noted that Eq. (4) is directly applicable to other projection models,
such as the equirectangular model, because it is defined in the local camera
coordinates.

Figure 6 shows the optimization parameters in each BA with a line cloud:
(a) Motion-only BA, (b) Rigid-stereo BA, (c) Local BA and (d) Global BA.
LC-VSLAM, as the standard Visual SLAM, reconstructs 3D points as X, which
are corresponded with 3D lines L in relocalization and loop detection. The cor-
responded 3D points X are identified as X′ for the optimization. Utilizing the
above error metrics, the four bundle adjustments with a line cloud are defined
as follows.

Motion-only BA: A tracking thread estimates the camera pose for each input
frame. For real-time tracking, as shown in Figure 6(a), the motion-only BA
optimizes only the camera pose of the current frame Pc and the reconstructed
3D points X′ with fixed 3D points X and lines L as

P∗
c ,X

′∗ = arg min
P∗

c ,X
′∗

∑
j

epP(Pc,X
j ,xj) +

∑
k

epL(Pc,X
′k,x′k,pk

L), (5)

where j, k indicate the indices of the 3D points X,X′ which are visible from the
current frame, respectively. The first term pertains to the constraints between
the camera pose of the current keyframe Pc and the 3D points X′ that have
been already reconstructed with the previous frames. The second one refers to
those between the camera pose Pc and the 3D lines L.

Rigid-stereo BA: For relocalization and loop detection, the local 3D points
X, which are merged as X′ after matching with the 3D lines L, have already
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been reconstructed and locally optimized with the local keyframes. As shown in
Figure 6 (b), the rigid-stereo BA can optimize the camera pose of the current
keyframe Pckf

kc and the 3D points X′ as

Pckf∗
kc ,X′∗ = arg min

Pckf
kc

,X′

∑
i

∑
j

epL(∆PiPckf
kc ,X′j ,x′i,j ,pj

L) (6)

where ∆Pi = const. is the relative camera pose between the current keyframe
and the i-th neighboring keyframe which shares the 3D points (∆Pi = I if
i = ckf).

Local BA: The rigid-stereo BA is a special case of the local BA. In the local
mapping thread, new keyframes of the client Pkc are inserted, and the 3D points
X are newly reconstructed from only their 2D points. Hence, as shown in Figure
6 (c), the camera pose of the local keyframes Pkc and their 3D points X and X′

are optimized as

P∗
kc,X

∗,X′∗ = arg min
Pkc,X,X′

∑
i

∑
j

epP(P
i
kc,X

j ,xi,j)

+
∑
i

∑
k

epL(P
i
kc,X

′k,x′i,k,pk
L). (7)

Global BA: After loop detection and pose graph optimization [16, 35], the
camera poses and 3D structures, which include the 3D lines L and the camera
poses of their keyframes Pks, are globally optimized with the virtual observation
v and its error metric evL as

P∗
kc,P

∗
ks,X

∗,X′∗,L∗ = arg min
Pkc,Pks,X,X′,L

∑
i

∑
j

epP(P
i
kc,X

j ,xi,j)

+
∑
i

∑
k

epL(P
i
kc,X

′k,x′i,k,pk
L) +

∑
i′

∑
l

evL(P
i′
ks,L

l,vi′,l), (8)

where i, i′ are the indices of all client and server keframes, respectively, and l is
the index of the 3D line L.

4 Experiments

4.1 Experimental Setting

The performance of LC-VSLAM was tested to quantitatively and qualitatively
evaluate from multiple perspectives (see the algorithm in Sec. 3). We have carried
out all experiments with a Core i9-9900K (8 cores @ 3.60GHz) with a 64 GB
RAM. Considering its practical usability, we evaluated the performance from the
following viewpoints.

Tracking time: We evaluated the tracking time of each frame to confirm the
real-time performance of the proposed framework. Based on the mean tracking
time, we compared LC-VSLAM with p6L, which applies a single-shot localization
algorithm in the 3D line cloud to every frame [33].
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Accuracy of camera pose estimation: We evaluated the accuracy of cam-
era poses after a local map was registered to a prebuilt map for LC-VSLAM
and the previous method. First, a local 3D point-cloud map was created by a
client, and geometrically registered to a global 3D line-cloud map downloaded
from the server using the estimated 3D transformation between them. After the
registration, the camera pose accuracy was evaluated using the latest keyframe
of the registered local map in the coordinates system of the global map.

Comparison to a conventional Visual SLAM system: The foregoing per-
spectives were evaluated run on the synthetic dataset generated by the CARLA
Simulator [8] and the real image dataset KITTI [15]. We also compared three
camera types (perspective, fisheye, and equirectangular) in the evaluation to
confirm that the proposed algorithms work well for various types of projection
models.

4.2 Implementation Details

We implemented the LC-VSLAM system based on OpenVSLAM [36] by inte-
grating the four dedicated modules as follows: (i) add the data structure of a line,
such as line direction and covariance, (ii) add the P4L solver and the rigid-stereo
BA [Eq. (6)] to the modules of the loop detector and the relocalizer, (iii) adapt
the one-to-many feature matching to the many-to-many one, and (iv) replace
the cost functions in the motion-only, local, and global BAs with those of [Eqs.
(5), (7), and (8)].

4.3 Dataset and Prebulit Map Creation

All the evaluation was performed on our new CARLA dataset because there
are no publicly available benchmarks for evaluating LC-VSLAM. The dataset
should satisfy the following two requirements to evaluate the effectiveness of LC-
VSLAM: (i) a sequence pair contains sufficient overlaps and loops to allocate a
sequence for a prebuilt map and the other for an input of LC-VSLAM to evalu-
ate the tracking and the loop closure, and (ii) image sequences of various types
of camera models are available to evaluate the versatility on projection mod-
els. KITTI camera stereo dataset [15] is one of the publicly available datasets
for evaluating accuracy of Visual SLAM systems and meets the requirement
(i). However, in the dataset, the baseline is very short, and the image pairs
are synchronized, which make tracking too easy. The KITTI dataset contains
only perspective projection images, and thus does not meet the requirement
(ii). Therefore, we performed all quantitative evaluations on our new CARLA
datataset, and verified the LC-VSLAM’s applicability to real image datatasets
on the KITTI stereo dataset. Our Desk and Campus datasets were used to qual-
itatively evaluate the effectiveness of the LC-VSLAM on real scenes.
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Table 1. Tracking time of each frame, mean absolute pose errors (APE) for translation
[m] and rotation [deg] of the single-shot localization by p6L [33] and LC-VSLAM. The
image resolution is 640× 360.

Tracking time [ms] APE for trans. [m] / rot. [deg]

p6L [33] 140.3 0.7815 / 0.5896
LC-VSLAM (ours) 31.09 0.1979 / 0.2841

Table 2. Mean absolute pose errors (APE) for translation [m] and rotation [deg] of
synthetic images by the CARLA simulator and KITTI dataset. Lower is better.

CARLA KITTI

Prebuilt map Perspective Fisheye Equirectangular Perspective

3D points 3.290 / 0.6273 2.883 / 0.4402 3.079 / 0.2375 3.801 / 1.012
3D lines (ours) 3.651 / 0.8416 3.177 / 0.5941 3.075 / 0.2766 4.488 / 1.309

CARLA Dataset: We used the CARLA simulator [8] to create a dataset for
evaluating the accuracy of our tracking and bundle adjustment methods, which
utilize a line cloud as a prebuilt map (see the supplementary material for details).
The simulator allows synthesis of photo-realistic images with the camera poses
of outdoor scenes. Hence, to evaluate the tracking time, we generated an image
sequence pair (#01) which almost overlaps each other with small displacements.
Additionally, we created eight pairs of mid-scale image sequences (#02-09) for
each camera type to evaluate the localization accuracy and created three pairs
of large-scale image sequences with loop-closure points (#10-12) to evaluate
the effectiveness of the global bundle adjustment. The sequence pairs (#02-12)
satisfy the predifined requirements and each pair partially overlaps each other,
exclusive of the #01 pair because there is no loop-closure point between the
sequences. This dataset will be publicly available.

KITTI Dataset To evaluate the effectiveness of LC-VSLAM, we selected two
sequences of the KITTI stereo dataset also meeting the requirement (i), #00
and #05. We prebuilt maps with the odd-numbered images of the left camera
and input the even-numbered images of the right camera to LC-VSLAM. The
prebuilt maps were constructed as follows: (I) perform a standard Visual SLAM
to estimate initial camera poses and 3D points, (II) replace the estimated camera
poses with the ground truth, (III) perform a bundle adjustment to correct the
errors found in the ground truth and to refine the positions of the 3D points.

Campus and Desk Datasets We also created two datasets for qualitative
evaluations. The sequences of Campus dataset (Scene A and B) were captured
by cameras with wide-angle and fisheye lenses (Panasonic LUMIX GX7MK3)
and a panoramic camera (RICOH THETA Z1) independently. Their common
camera path included both indoor and outdoor scenes. The sequences of Desk
dataset were captured by a camera with a wide angle lens, and a pair of successive
sequences was processed to assure the privacy protection by means of removing
two personal objects in the original image and changing the displays.
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Table 3. Mean APE and RPE for trans. [m] of LC-VSLAM with/without the pose
graph optimization (PGO) and the global bundle adjustment (Global BA) for each
camera device data.

Perspective Fisheye Equirectangular

None 24.06 / 1.292 10.16 / 1.064 14.28 / 3.682
Only PGO 3.301 / 1.151 1.670 / 0.8039 9.640 / 2.790

PGO & Global BA 3.018 / 1.100 1.593 / 0.8525 8.320 / 2.404

4.4 Quantitative Evaluation

We quantitatively evaluated the tracking time of each frame and means of the
absolute pose errors (APE) for translation and rotation of the single-shot lo-
calization by the proposed LC-VSLAM and p6L [33] on the sequence pair #01
(Table 1). In 640 × 360 image resolution, the tracking time for LC-VSLAM is
31.09 ms (≈32[fps]), much faster than the 140.3 ms for p6L, which can be defined
as real time.

LC-VSLAM also achieves a better result in APE, 0.1979/0.2841 [m]/[deg],
than p6L does: 0.7815/0.5896 [m]/[deg]. This means the proposed method out-
performs p6L in its tracking speed and localization accuracy because LC-VSLAM
can utilize the continuity of input images. Moreover, Table 2 shows the APE for
translation and rotation on synthetic images via the CARLA simulator for each
camera device (#02-09) and on real images of the KITTI stereo datatset for per-
spective cameras. LC-VSLAM can estimate camera poses using a 3D line map
with accuracy similar to using a 3D point map for all the camera types. In the
case of fisheye projection, the estimation error is relatively larger than that of
other projection models. These results verify the accuracy and the efficiency of
the LC-VSLAM.

To evaluate the effectiveness of the global bundle adjustment with a line
cloud, we compared the localization accuracy of LC-VSLAM with and without
the pose graph optimization (PGO) and the global bundle adjustment on the
sequence pairs of the CARLA dataset (#10-12). Table 3 shows the mean APE
and the relative pose errors (RPE) for translation on three sequences. The PGO
corrects the estimation errors, especially for the APE, as with a standard Visual
SLAM, and our global BA can refine the PGO results.

4.5 Qualitative Evaluation

We applied the proposed framework to various scenes, and confirmed that the
algorithms work effectively. The images of Figure 7 show the scenes with a pre-
built 3D line cloud (blue), a reconstructed 3D point cloud (black), and keyframes
(green or red), which were all made from the video sequences captured with the
panoramic camera (Scene A of Campus dataset). The order from the first (left)
to the last (right) columns represents an example of the reconstruction process.

LC-VSLAM localizes and tracks the camera in the prebuilt 3D line-cloud
map soon after each sequence starts. Additionally, mapping as well as tracking
continuously perform well even in the area outside of the prebuilt map. In other
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1st floor

2nd floor

Slightly drifted

Current frame
Loop connection

Drift is corrected 

(a) Relocalization (b) Before loop closure (c) After loop closure

Fig. 7. Example of a reconstructed 3D map in case of a equirectangular model, which
includes a prebuilt 3D line cloud (blue), a reconstructed 3D point cloud (black), and
keyframes (green or red). (See all the other results in the supplementary material.)

words, the prebuilt map can be extended effectively with the LC-VSLAM pro-
cessing on the client. Finally, a loop connection point is correctly found when
the camera goes back to the prebuilt map area.

Furthermore, in the tracking process of our framework, 3D points may be
subsequently restored near 3D lines in a prebuilt map. In a case wherein an
object to be protected against inversion attack is present in the prebuilt map
but does not in a sequence that a client captures, it is necessary to guarantee
that the 3D points of the concealed privacy objects are not restored near the
corresponding 3D lines. Figure 1 shows a typical example of the case with the
Desk dataset and that privacy related to an object that only exists in the prebuilt
map is protected.

The foregoing results lead us to believe that the proposed LC-VSLAM frame-
work works well for various scenes and cameras.

5 Conclusions

In this paper, we proposed a privacy-preserving Visual SLAM framework for
real-time tracking and bundle adjustment with a line-cloud map, which we refer
to as LC-VSLAM. In the framework, we have presented efficient methods of
relocalization and tracking by utilizing 3D points reconstructed by a Visual
SLAM client and discretizing 3D lines to 3D points. For optimization in terms
of both 3D points and lines, we proposed four types of bundle adjustments by
introducing error metrics for 3D lines. These methods are applicable to various
types of projection models, such as perspective and equirectangular models.
The experiments on videos captured with various types of cameras verified the
effectiveness and the real-time performance of LC-VSLAM. Thus, the proposed
framework enables real-time tracking/mapping with a line-cloud map in practical
applications such as AR and MR. The protective function of scene privacy is in
place for map sharing among multiple users.

For future studies, we will refine the formulation for the error metric of the
virtual observation v. In this study, ΩvL was set as a constant value because the
methodology is not trivial to convert the information matrix of the 3D line L to
that of the cosine distance between their plane normals. The refined formulation
will enable a more accurate global optimization with prebuilt line clouds.
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