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Abstract. Interactive image retrieval is an emerging research topic with
the objective of integrating inputs from multiple modalities as query for
retrieval, e.g., textual feedback from users to guide, modify or refine im-
age retrieval. In this work, we study the problem of composing images
and textual modifications for language-guided retrieval in the context of
fashion applications. We propose a unified Joint Visual Semantic Match-
ing (JVSM) model that learns image-text compositional embeddings by
jointly associating visual and textual modalities in a shared discrimina-
tive embedding space via compositional losses. JVSM has been designed
with versatility and flexibility in mind, being able to perform multiple
image and text tasks in a single model, such as text-image matching and
language-guided retrieval. We show the effectiveness of our approach in
the fashion domain, where it is difficult to express keyword-based queries
given the complex specificity of fashion terms. Our experiments on three
datasets (Fashion-200k, UT-Zap50k, and Fashion-iq) show that JVSM
achieves state-of-the-art results on language-guided retrieval and addi-
tionally we show its capabilities to perform image and text retrieval.

1 Introduction

Text-based image retrieval methods have been the foundation of many advances
and developments in different domains, such as search engines, organization
of documents, and more recently natural language processing-based technolo-
gies. On the opposite spectrum, content-based image retrieval approaches have
demonstrated great success in various tasks in the past decade, such as image
search, face recognition and verification, and fashion product recommendation.
Given the growing maturity of these two research fields, in the recent years we
are witnessing the cross-pollination and conjunction of these areas. One of the
main motivations is that documents often contain multimodal material, includ-
ing images and text.

A user-friendly retrieval interface should entail the flexibility to ingest various
forms of information, such as image (Figure 1, top) or text (Figure 1, middle),

* Work done during an internship with Amazon.
B Corresponding author.



2 Y. Chen and L. Bazzani

Fig. 1. Different image retrieval pipelines: 1) image-to-image retrieval which focuses
on retrieving visually similar images but it includes images with other types of heels, 2)
text-to-image retrieval by specifying the type of heels (no visual similarity guaranteed)
and 3) language-guided retrieval of image, where the modification text is used to obtain
images visually similar to the original one but replacing one aspect (type of heels).

and empowers users to interact with the system (Figure 1, bottom). Interac-
tive retrieval is therefore becoming the core technology for improving the online
shopping experience via automated shopping assistants, which help the user to
search or discover products to purchase. Interactions can be found in different
forms: relevance [26] (e.g., similar/dissimilar inputs), drawing or region selec-
tion [44, 22] (e.g., sketching, spatial layout, in-painting, clicking), and textual
feedback [15, 46, 1, 36, 9] (e.g. attributes, language, including speech to text).

In this work, we explore the textual form of interaction with a specific focus
on language-guided retrieval via modification text [36] for images in the fashion
domain. As sketched in Figure 1, the idea is to augment the query image with a
modification text describing how to modify the image, then the method should
retrieve visually similar images as defined by the modification, e.g., by replacing
wedge heels with block heels. Our main motivation is that refining the search
results with modification text in form of natural language or attribute-like de-
scriptions is the key for a user-friendly interactive search experience, especially
in the context of fashion where visual cues are important and it is typically
difficult to express keyword-based queries given the specificity of fashion terms.
We present a unified Joint Visual Semantic Matching (JVSM) approach that has
the capability of learning image-text compositional embeddings. JVSM has been
designed with versatility and flexibility in mind, being able to perform multiple
retrieval tasks in a single model, including language-guided retrieval of image or
text, and text-image matching.

Existing image retrieval models are generally optimized for the image-to-
image retrieval task, which has its limitations given that images are often asso-
ciated to multimodal information. To bridge the gap between the textual and im-
agery modalities, recent work considers learning visual semantic embeddings [5],
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such that image and text are semantically comparable in a shared common space.
In this way, it is possible to train image retrieval models to perform text-image
matching tasks. In order to provide retrieval methods the ability to deal with
language guidance, recent work [36] proposes to compose image and modification
text as search input query, which allows to refine the search results tailored to
the additional textual input.

To the best of our knowledge, JVSM is the first attempt to jointly learn
image-text embeddings as well as compositional embeddings in a unified embed-
ding space, which enables us to perform language-guided retrieval of image or
text, and text-image matching with a single model. The key technical challenges
that we tackle in this work are: (1) learning a visual semantic embedding space
shared by image and text; and (2) learning the mapping functions that allow to
compose image and modified text for refining image retrieval results. Although
these two aspects have been examined separately in [5] and [36], the problem
of how to jointly address them in a unified solution for fashion search has not
been systematically investigated or addressed. Another advantage of the pro-
posed framework is that it can be trained using privileged information, which is
exclusively available at training time, and it functions to constrain the solution
space for the image-text compositions.

JVSM is trained using an extension of the visual semantic embedding loss [5]
with two new loss components that act in the compositional embedding space.
The objective of those loss components is to encourage synergistic alignment
between the compositional embeddings and the target images, target textual de-
scriptions to be retrieved. We demonstrate the benefits of JVSM with respect to
the state-of-the-art methods by conducting a comprehensive evaluation on three
fashion datasets: Fashion-200k [11], UT-Zap50K [43, 42], and Fashion-iq [10].

The contributions of our work are summarized in the following:

– We present a unified model (JVSM) to learn a visual semantic embedding
space and compositional functions that allow to compose image and mod-
ification text. The key novelty of JVSM lies in its versatility to perform
multiple image and text retrieval tasks using a single unified model, includ-
ing language-guided retrieval of image or text, and text-image matching.

– We introduce novel loss formulations which define a unified embedding space
where image embeddings, text embeddings and compositional embeddings
are synergistically tied and optimized to be fully comparable.

– We demonstrate that JVSM can ingest textual information in different forms
of composition: attribute-like modifications (e.g., “replace wedge heels with
block heels”) and natural language form (e.g., “the dress I am searching for
has a floral pattern and is shorter”).

– We show that JVSM effectively uses privileged information that is only avail-
able at training time. The advantages are not only boosts in performance,
but also its task-agnostic property, i.e., to be flexibly used for processing
different inputs, which is desirable in many retrieval interfaces.

– We advance the state-of-the-art of language-guided retrieval and text-image
matching on different fashion datasets.



4 Y. Chen and L. Bazzani

2 Related Work

Interactive Retrieval aims at incorporating user feedback into an image re-
trieval system to guide, modify or refine the image retrieval results tailored to
the users’ expectations. User feedback can be given in different formats such as
modification text [36, 35], attribute [15, 46, 1, 27], natural language [9, 10], spatial
layout [22], and sketch [44]. Since text naturally serves as an effective modal-
ity to express users’ fine-grained intentions for interactive retrieval, we focus on
language-guided retrieval. In this problem, compositional learning [23, 24, 14, 31,
3, 13] plays a fundamental role to integrate various forms of textual feedback
(e.g., attribute-based modification text, and natural language) with the imagery
modality [36, 10]. Vo et al. [36] proposes residual gating to modify the image
only when the attribute feedback is relevant. Guo et al. [10] propose a multi-
turn model with a simple compositional module and a new fashion dataset for
natural language-based interactive retrieval (Fashion-iq). In this work, we tackle
single-turn retrieval with a multi-task learning model: JVSM, which facilitates a
user-friendly retrieval interface to process both unimodal and multimodal inputs.

Text-Image Matching, also known as a text-to-image or image-to-text re-
trieval [6, 40, 38, 5, 37, 4, 45, 19], aims at learning a cross-modal visual-semantic
embedding space, in which closeness represents the semantic similarity between
image and text. Typically, a two-branch network is designed to learn the projec-
tions of image and text into a common embedding space via metric learning [5,
37, 45]. Existing works along this line of research generally study the design of
network architectures [4, 19] or the formulation of learning constraints [40, 5, 37,
45]. Compared to these works, JVSM has the advantage of using the semanti-
cally meaningful association of image and text as a form of auxiliary supervision
to guide the learning of another task, such as language-guided retrieval. Instead
of building multiple task-specific models inefficiently, JVSM underpins a task-
agnostic retrieval interface to flexibly ingest various forms of information (e.g.,
image, text, or their combination), which is the first attempt in the literature.

Learning Using Privileged Information [33, 32] is originally proposed
as a learning paradigm to use additional information only available at training
time with the purpose of improving model performance on related tasks [30, 17,
20, 21, 12, 41, 7, 16, 18, 2]. It is first considered for image retrieval [30] and web
image recognition [20, 8] based upon the SVM+ formulation, but now is ubiq-
uitous in many machine learning models. Most deep learning models use some
kind of privileged information from a secondary task to guide the learning of a
model for the primary task. To mention a sample of recent methods, Hoffman et
al. [12] use depth images to guide the learning of RGB image representation for
object detection. Yang et al. [41] leverage on bounding boxes and image captions
for multi-object recognition. Lee et al. [18] use labelled synthetic images to con-
strain the learning on unlabelled real-world images for semantic segmentation.
We propose to use text associated to images in form of attribute-like descriptions
as privilege information to constrain the solution space for image-text compo-
sitions. Rather than train extra privileged networks heavily as previous works,
JVSM retains the same model size to be more efficiently trained.
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Fig. 2. Proposed Joint Visual Semantic Matching model. The reference and target
image-text pairs are fed into the VSE model while the modification text is fed into
an LSTM with individual semantic projection layers. The embedding of the reference
image is composed with the modification text as the image-text compositional em-
beddings, which are further tied synergistically to the image embeddings and text
embeddings in a common embedding space, by jointly optimizing a visual-semantic
matching loss (Section 3.1) and two compositional matching loss (Section 3.2). At test
time, different types of embeddings are fully comparable in the share space, thus facili-
tating to process both unimodal (e.g., image, or text) and multimodal (e.g., image with
text) inputs for flexible retrieving either images or text descriptions in the database.

3 Proposed Approach

We focus on building a versatile model that tackles a primary task of single-
turn language-guided retrieval, which facilitates an auxiliary task of text-image
matching. In our primary task, we are given a reference image and a modification
text that describes what content should be modified in the image. The objective
of our primary task is to learn an image-text compositional embedding that
encodes the information required to retrieve the target image of interest, which
should reflect the changes specified by the modification text.

To achieve this goal, we leverage on an auxiliary task of learning a visual
semantic embedding space to align image embeddings and text embeddings. In
this auxiliary task, we are given an image which is associated to its related
text (e.g., attribute-like description: “sandals with block heels”). The objective
is to build an embedding space where image and text are close to each other
if they represent the same image-text pair, while being far away if they are
a negative pair. The auxiliary text which describes the content of the related
image is considered as privileged information and it is used exclusively during
training of the model to learn a more expressive visual-semantic embedding space
that minimises the cross-modal gap between the vision and language domain. As
privileged information is not always available for all the examples in the training
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set, e.g., an image may not have a description associated to it, we propose soft
semantic matching to overcome such issue which we discuss in Section 3.2.

JVSM integrates the aforementioned two tasks in a unified multi-task learning
framework. The proposed model consists of four trainable modules as shown in
Figure 2: (1) the visual embedding module (blue CNN blocks), (2) the textual
embedding module (green LSTM blocks), (3) the semantic projection modules
(PI , PT and P ′T blocks), and (4) the compositional module (orange block). For
optimization, the model is trained with three loss functions (yellow blocks): (a)
the visual semantic embedding loss, (b) the compositional image matching loss,
and (c) the compositional text matching loss.

Section 3.1 describes the model components for the auxiliary task of learn-
ing a generic visual semantic embedding space used for text-image matching.
Section 3.2 describes the components for learning the image-text compositional
embedding space used for language-guided retrieval.

3.1 Visual Semantic Embedding

The property that we would like to obtain from learning a Visual Semantic
Embedding (VSE) space is to encode the semantic similarity between visual data
(i.e., input images) and textual data (i.e., attribute-like descriptions). The main
advantage is that pairwise image and text are closely aligned, therefore it enables
JVSM to perform text-image matching. To achieve this goal, we construct our
VSE model as a two-branch neural networks for image-text matching similarly
to [37, 45]. As Figure 2 shows, the VSE model consists of three basic components.

Visual Embedding Module. A standard Convolutional Neural Network
(CNN) pre-trained on ImageNet projects the input images to image embeddings.
In our experiments, we used MobileNet and remove the classification layer as the
backbone network for its quality-speed trade-off.

Textual Embedding Module. This module encodes words from tokenized
sentences (attribute-like descriptions or modification text) into text embeddings.
We defined it as an LSTM which is trained from scratch. In the case of attribute-
like descriptions, sentences are interpreted as privileged information, since it
provides additional useful information that is available only during training but
not at at test time as discussed in the previous section.

Semantic Projection Layers. The projection layers are responsible to
project the image and text embeddings to the common visual-semantic embed-
ding space, where image and text can be compared. PI and PT in Figure 2 are
defined as linear mappings of the outputs of the visual embedding and textual
embedding modules. We define as v and t the feature representation of the visual
module and textual module after the respective projection modules PI and PT .

We train the VSE model by optimizing for the bi-directional triplet ranking
loss [38], formally defined as follows:

Lvse = [d(v, t)− d(v, t−) + m]+ + [d(v, t)− d(v−, t) + m]+ (1)

where the positive (negative) textual embedding for an image v is denoted as
t (t−), the positive (negative) visual embedding for a text t as v (v−), d(·, ·)
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Fig. 3. Sketch of the common visual-semantic embedding space where: 1) the reference
text t and image v are encouraged to be close to each other; 2) the composition of the
image-modification text pair c on the left side is encouraged to be close to the target
image v+ and text t+; 3) the negative composition c− is encouraged to be far from
the target image v+ and text t+.

denotes the L2 distance, [·]+=max(0, ·), and m is the margin between positive
and negative pairs.

Negative sample selection (t− and v−) plays a fundamental role for train-
ing [39, 5]. When using the hardest negative mining method proposed in [5], we
observed that the loss only decreases with a very small learning rate, thus lead-
ing to slow convergence. Inspired by the robust face embedding learning [29], we
adopt mini-batch semi-hard mining with the conditions d(v, t) < d(v, t−) for
t− and d(v, t) < d(v−, t) for v−, which select the semi-hard negative samples
to ensures more stable and faster convergence.
Remark. The key intuition of introducing the VSE space is to ensure that
image and text are semantically tied in a shared embedding space (Figure 3).
This is beneficial for further learning an image-text compositional embedding:
(1) the two-branch networks are jointly optimized to associate each image with
its corresponding semantic information, thus leading to a more discriminative
and expressive embedding space; (2) within this VSE space, we can formulate
objectives that align image-text compositional embeddings to the visual and
textual modalities jointly; (3) it enables JVSM to perform text-image matching,
as well as language-guided retrieval of either image or text.

3.2 Image-Text Compositional Embedding

After pre-training the model with the VSE loss, the image-text compositional
module has the objective of learning encodings of reference image and the respec-
tive modification text to retrieve either the target image or text, which should
contain the changes specified by the text.
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We encode the reference and target image into the embeddings v and v+

using the visual embedding module followed by the semantic projection layer
PI as showed in Figure 2. The modification text is encoded into the vector
tm via the textual embedding module and a new projection layer P ′T which is
initialized with PT pre-trained using the VSE loss. Optionally, some training
examples contains auxiliary privileged information in the form of attribute-like
descriptions, which are encoded into t via the textual embedding module and
its semantic projection PT .

In order to compose the visual and textual representations into new semantic
representations that resemble the visual representations of the target image, we
use the state-of-the-art Text Image Residual Gating (TIRG) model proposed
in [36]. The main advantage of TIRG is that it leverages on gated residual con-
nections to modify the image feature based on the text feature, while retaining
the original image feature in the case that the modification text is not impor-
tant. We define as c = fc(v, tm) the compositional embedding, which is the
result of applying TIRG fc(·, ·) on the visual embedding v and the modification
text embedding tm.

We train JVSM using Lvse and two proposed loss functions defined on the
compositional embedding space: the compositional image matching loss and the
compositional text matching loss. We define the compositional image matching
loss as bi-directional triplet ranking loss as follows:

Lim = [d(c,v+)− d(c−,v+) + m]+ + [d(c,v+)− d(c,v−) + m]+ (2)

where c− is the negative TIRG composition of the image embedding v− and
its modification text t− selected via semi-hard mining. The goal of Eq. 2 is
to encourage alignment between the compositional embedding and the target
image, while pushing away other negative compositional and image embeddings.

The compositional text matching loss has access to the privileged information
and is defined as follows:

Ltm = [d(c, t+)− d(c−, t+) + m]+ + [d(c, t+)− d(c, t−) + m]+ (3)

The goal of Eq. 3 is to encourage alignment between the compositional embed-
ding and the target text while pushing away other negative compositional and
text embeddings.

The final loss function of JVSM is the combination of the VSE loss and the
proposed compositional losses: L = Lvse + Lim + Ltm. The intuition underlying
the proposed loss function is depicted in Figure 3: 1) the reference text t (privi-
leged information) and image v are encouraged to be close to each other; 2) the
composition of the positive image-modification text pair c on the left side should
be as close as possible to the target image v+ and text t+; 3) the composition
of the negative image-modification text pair c− on the right side should be as
far as possible to the target image v+ and text t+.

In the case that privileged information (i.e., image and description pairs) is
available for every training example, we use the same semi-hard mining proce-
dure for negative sample selection defined for the VSE model in Section 3.1.
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However, in many applications it is often the case that privileged information,
used in the compositional text matching loss, is not available for all training ex-
amples (e.g., the Fashion-iq dataset). In order to overcome such issue, we propose
a soft semantic matching procedure. First we sample a minibatch of k sentences
{t1, t2, . . . , tk}, and compute the set of distances between c and every ti, that
is, d1;i = ||c − ti||. As the target image embedding v+ is supposed to match
the missing t+ under the constraint of Eq. 1, its semantic distances with respect
to other sentences can serve as references, measured by d2;i = ||v+ − ti||. By
minimizing Ltm = ||d1 − d2||2, relative distances with respect to sentences are
encouraged to be similar for c and v+.

Note that semi-hard and soft semantic matching give comparable results
when the dataset is fully annotated. However, it is not possible to perform semi-
hard matching when image-text pairs are not available for a all training samples
(e.g., either the image or text is missing). Therefore using semi-hard matching in
this scenario would require to discard a significant percentage of training samples
(the ones containing image only and text only) which significantly decreases
performance compared to soft semantic matching.

4 Experiments

We study the performance of JVSM against the state-of-the-art on the task
of language-guided retrieval of image using three fashion datasets: Fashion-
200k [11], UT-Zap50K [43, 42] and Fashion-iq [10]. We explored two types of
modification text: 1) provided in the form of attribute-like modifications as pro-
posed in [36] (Fashion-200k and UT-Zap50K) and 2) provided in the form of
natural language feedback as presented in [9] (Fashion-iq). Results are measured
in terms of the standard recall at K (R@K) defined as the percentage of test
queries for which we correctly retrieved the targets in the top-K retrieved sam-
ples.

In addition, we perform an ablation study to understand how the different
losses have impact on the results. Moreover, we show the flexibility of the pro-
posed method on (1) language-guided retrieval of text (a complementary version
of language-guided retrieval of image); and (2) text-image matching.

4.1 Implement Details

The backbone CNN of the visual embedding module is mobilenet-v1 pretrained
on ImageNet, which represents one of the best trade-offs between quality and
speed. This CNN can be easily replaced with more powerful but slower networks.
We used the final layer before the classifier, with dimensionality of 1024. We
performed data augmentation of the input images consisting of random flipping.
As for the textual embedding module, we used a single-layer LSTM with 1024
units. The projections PI , PT and P ′T are linear layers with 512 units, that is
the dimensionalty of the joint embedding space. The visual embedding module is
finetuned, while all other networks are trained from scratch. Training consists of
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Table 1. Language-guided retrieval performance (%) on Fashion-200k. ∗ indicates our
implementation of TIRG.

Method R@1 R@10 R@50

Han et al. [11] 6.3 19.9 38.3
Show and Tell [34] 12.3 40.2 61.8
Relationship [28] 13.0 40.5 62.4
FiLM [25] 12.9 39.5 61.9
TIRG [36] 14.1 42.5 63.8
TIRG∗ [36] 15.1 41.9 62.0

JVSM (ours) 19.0 52.1 70.0

two stages: we first train the VSE model using Lvse, and then we train the JVSM
model using L = Lvse+Lim+Ltm. We empirically found that the proposed two-
stage training protocol helps to converge to a better minimum with lower loss
value compared to optimizing directly the final loss L.

4.2 Fashion-200k

Fashion-200k [11] is a popular dataset of fashion products consisting of about
200k images. Images are accompanied by 4,404 concepts that were automatically
extracted from product descriptions which we used as privileged information. We
followed the protocol for creating queries as [11] and modification text as [36]:
pairs of products with one word difference are selected as reference-target pairs
and therefore the modification text has one word of difference (e.g., “replace
blue with yellow”). We used the same experimentation protocol of [36] on how
to create training and testing splits.

Table 1 shows the results of our method compared with the most recent state-
of-the-art methods which are available in the empirical Odissey of Vo et al. [36].
These numbers indicate that TIRG was the best performing methods on Fashion-
200k when compared to other methods in [36]. However, JVSM significantly
outperforms TIRG by a margin of +4.9, +9.6 and +6.2 at different recalls. This
shows the importance of properly leveraging on privileged information during
training.

Denoted as TIRG∗ in Table 1 is our implementation of TIRG using the same
backbone networks as our method. The relative difference between the original
version of TIRG and our implementation is marginal. Therefore we can use
our implementation of TIRG as reference method to enable the evaluation on
the UT-Zap50K and Fashion-iq datasets which were not used in the original
paper [36].

Figure 4 shows some qualitative results on Fashion-200k. The first three rows
report success cases on the categories dress, jacket and skirt where the provided
modification is on color, style and length, respectively. The second last row shows
a failure case: JVSM is able to focus on the right concept (from beaded to lace)
while preserving the color from the query (black dress). One can notice that
the ground truth (ranked by JVSM at position 793) is ambiguous in this case,
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Fig. 4. Qualitative results of language-guided retrieval on Fashion-200k. The query
image (blue contour) and modification text are on the left. The retrieved images are
on the right and ranked from left to right (ground-truth is in green contour).

because two properties are changed at the same time (color and style) although
the change of color was not specified in the modification text. This demonstrates
the limitation of the protocol of automatically generating the modification text
from single attributes as proposed in [36]. Therefore, it motivates us to carry
out a proper evaluation using modification text generated by human annotators
as provided by the Fashion-iq dataset [10] (see Section 4.4). The last row shows
another failure case where the ground-truth annotation is wrong since the target
image is defined as multicolor, while it has clearly a single color. JVSM is anyway
able to retrieve relevant multicolor dresses in the first ranks.

4.3 UT-Zap50K

The UT-Zap50K [43, 42] dataset consists of 50,025 images divided in 4 cate-
gories (shoes, sandals, slippers and boots), further annotated with 8 fine-grained
attribute-like descriptions including category, sub-category, heel height, insole,
closure, gender, material and toe style. The dataset was introduced for the task
of pairwise comparisons of images, however given the presence of attribute-like
annotations, it suits well with the task of language-guided retrieval. Thus it is
possible to create the modification text in the same way as described for the
Fashion-200k dataset. We generated the training and testing splits with 80%
and 20% of the data, respectively.
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Table 2. Language-guided retrieval performance (%) on UT-Zap50k. ∗ indicates our
implementation of TIRG.

Method R@1 R@10 R@50

TIRG∗ [36] 4.5 25.4 56.4
JVSM (ours) 10.6 37.1 63.5

Fig. 5. Qualitative results of language-guided retrieval on UT-Zap50K (first two rows)
and Fashion-iq (last three rows). See text for comments on the results.

Table 2 shows the results of the proposed method in comparison with the
approach which was best performing on the Fashion-200k dataset. Our method
outperforms TIRG by a margin of +6.1, +11.7 and +7.1 at different recalls.
Leveraging privileged information during training is the key to such improve-
ment. Figure 5 (first two rows) shows the qualitative results on high heels shoes
and sandals where the provided modification text is on material and style, re-
spectively. The target images are on second and fifth position for the two cases.
In addition, JVSM is able to retrieve relevant images for the given modifications
on other ranks too.

4.4 Fashion-iq

The Fashion-iq dataset [10] was proposed for multi-turn dialog-based image re-
trieval. It consists of 77,684 images of 3 categories (dress, shirt and top&tee). A
subset of 49,464 images are annotated with side information derived from prod-
uct descriptions, i.e., attributes, which we use as privileged information. More-
over, 60,272 pairs of images are also annotated with relative captions, which
are natural language descriptions of the difference between reference and target
images. Therefore, they can be used as modification text to retrieve a target
image given the reference image and the relative caption. Since not every image
is annotated with attribute information, it becomes important to use the soft
semantic matching procedure presented in Section 3.2, otherwise the size of the
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Table 3. Language-guided retrieval performance (%) on Fashion-iq. ∗ indicates our
implementation of TIRG.

Method
Dress Shirt Toptee

R@10 R@50 R@10 R@50 R@10 R@50

TIRG* [36] 7.3 18.1 10.1 21.8 10.5 23.8
1-turn [10] 7.7 23.9 5.0 17.3 5.2 17.3
JVSM (ours) 10.7 25.9 12.0 27.1 13.0 26.9

training set would be significantly smaller thus affecting the results. We used
the training and validation splits proposed in [10] and we train a JVSM model
for each individual category.

The results of the Fashion-iq dataset are reported in Table 3. We compare
JVSM with TIRG∗ and report the results from the paper which introduced the
dataset [10], named “1-turn”. Note that we do not include results for multi-
ple turns, since our model is neither trained nor adapted to perform multi-turn
dialog-based retrieval and thus it would an unfair comparison. The proposed
method outperforms both methods on all three categories, showing the effec-
tiveness of our approach on natural language-based modifications.

Figure 5 (last three rows) shows the qualitative results for the dress category.
Since modification text is created by human annotators, one can notice that
they are more realistic and expressive (multiple modifications) compared to the
Fashion-200k and UT-Zap50K datasets, where a single attribute at a time was
modified. This setup is closer to a real-world scenario where the user is allowed to
express the modifications in textual form, which can include abstract concepts.
JVSM is able to learn multiple and more articulated modifications, such as the
concept of “animal print” and “different pattern” in the third row and the forth
row of Figure 5, which was not possible on other datasets. A failure case is shown
in the last row of Figure 5. In this case the modification text (“fit and flare”)
includes quite a broad list of solutions, in which JVSM is able to capture a subset
of them (e.g., at rank 4 and 6), however not the one labelled by the annotator.

4.5 Ablation Study and Other Tasks

In this section, we explore the advantages of using the proposed compositional
losses in JVSM by an ablation study. Importantly, we show the flexibility of
JVSM, trained for language-guided retrieval of image, to perform (1) language-
guided retrieval of text, and (2) text-image matching (that is, text-to-image
retrieval). In the case of language-guided retrieval of text, we are given the
same inputs as our primary task of language-guided retrieval of image, however
we retrieve the target text descriptions accompanied the target images. In the
case of text-to-image retrieval, we are given a sentence which is encoded into
its textual embedding and used to retrieve the most similar visual embeddings.
Potentially, JVSM is able to perform other tasks in the joint space (e.g., retrieve
images given an image, or retrieve compositions given an image). We did not
explore them due to the lack of relevant groundtruth in test set.
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Table 4. Ablation study on Fashion200k showing different tasks (see text for details).

Method
Language-guided Language-guided Text-to-image
retrieval of image retrieval of text retrieval
R@1 R@10 R@50 R@1 R@10 R@50 R@1 R@10 R@50

baseline TIRG∗(Lim) 15.1 41.9 62.0 18.1 32.3 51.8 - - -
baseline VSE (Lvse) - - - - - - 22.7 48.7 69.4
Lvse + Lim 15.6 44.0 63.7 34.2 46.9 65.5 21.3 49.8 70.4
Lvse + Lim + Ltm 19.0 52.1 70.0 50.4 66.7 82.9 23.4 51.7 72.4

Table 4 reports our ablation study on Fashion-200k. We trained different
models: (1) the baseline Lim for language-guided retrieval of either image or
text, or Lvse for image-text matching; (2) Lvse + Lim; and (3) our final loss
Lvse + Lim + Ltm. We can notice that adding Lim to Lvse improves the results
(+2.1% of R@10) for the task of language-guided retrieval of images (first 3
columns). We obtain a more significant improvement when further adding Ltm

(+3.4% of R@1). This demonstrates the benefits of introducing an auxiliary task
and the use of privilege information.

Table 4 (middle 3 columns) reports the results for language-guided retrieval
of text. We observe a significant improvement by adding our loss components.
In addition, we find that language-guided retrieval of text is more effective than
language-guided retrieval of image. This result is expected: when a rich textual
description of the image is available, text is more discriminative than image due
to the concrete language semantics specified discretely.

Table 4 (last 3 columns) reports the results for text-to-image retrieval. The
results show a similar behavior that we have seen for language-guided retrieval
tasks with improvements by adding both compositional losses. It is worth noting
that the primary task helps the auxiliary task of text-image matching. We think
that textual modifications encode how two images differ, and thus this relative
information helps to reshape the embedding space to be more discriminative.

5 Conclusion

We presented a novel multi-task model: JVSM, which to the best of our knowl-
edge is the first attempt to construct a visual-semantic embedding space and
compositional functions that allow to compose image and modification text.
JVSM underpins a user-friendly retrieval interface to perform both language-
guided retrieval of either image or text, and text-image matching. We demon-
strated the benefits of JVSM with respect to the state-of-the-art methods by
conducting a comprehensive evaluation on the fashion domain achieving new
state-of-the-art for language-guided retrieval, and provided interesting obser-
vation in multiple retrieval tasks. Promising future directions include learning
spatial-aware image-text embeddings, and integrating various forms of interac-
tion (e.g., clicks or sketches) to learn multimodal embeddings.
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