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1 Implementation details

In this section, we provide the architecture details, the learning hyperparameters
and the optimizer for each experiment.

1.1 Colored-MNIST experiment

Dataset creation The following 12 colors in RGB format are used to create
the colored-MNIST dataset: (255.0, 0.0, 0.0), (255.0, 128.0, 0.0), (255.0, 255.0,
0.0), (128.0, 255.0, 0.0), (0.0, 255.0, 0.0), (0.0, 255.0, 128.0), (0.0, 255.0, 255.0),
(0.0, 128.0, 255.0), (0.0, 0.0, 255.0), (128.0, 0.0, 255.0), (255.0, 0.0, 255.0), (255.0,
0.0, 128.0). These colors are randomly selected to change the background/digit
color. The training dataset is used to train our model and the classifiers while
the test dataset is used to compute the classification accuracy.

Shared representation learning In order to learn the shared representation,
we use Adam optimizer with a learning rate of 0.0001, β1 = 0.9 and β2 = 0.999
during 50000 iterations. We use a batch size of 64 image pairs of size 28× 28× 3
at each iteration. Concerning the constant coefficients to weight the terms of the
objective function Lshared, we use αsh = 0.5, βsh = 1.0 and γ = 0.1. The size of
the shared representation is 64.

During this stage, the shared representation encoders and the statistics net-
works are learned. The shared representation encoders EshψX

and EshψY
are imple-

mented as convolutional neural networks described in Table 1 with zdim = 64.
The architecture of the global statistics networks T shθX and T shθY is shown in Table
2. The global statistics network shares some layers with the shared representa-
tion encoder. To compute the mutual information, the global statistics network
takes as input two output layers from the shared representation encoder:

– ShGInput0: the output of the Conv2 layer from the shared representation
encoder
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– ShGInput1: the output of the Output0 layer from the shared representation
encoder

The architecture of the local statistics networks T shφX
and T shφY

is shown in
Table 3. Similarly, the local statistics network shares some layers with the shared
representation encoder by taking as input the output of the Conv2 layer and the
output of the Output0 layer from the shared representation encoder.

Table 1: Representation encoder architecture.

ID Layer Kernel Stride Activation Normalization Output

Input0 Input - - None None 28× 28× 3
Conv0 Convolutional 4× 4 1× 1 LeakyReLU None 25× 25× 64
Conv1 Convolutional 4× 4 2× 2 LeakyReLU BatchNorm 11× 11× 128
Conv2 Convolutional 4× 4 2× 2 LeakyReLU BatchNorm 4× 4× 256
Flat0 Flatten - - None None 4096

Output0 Dense - - None None zdim

Table 2: Global statistics network architecture.

ID Layer Kernel Stride Activation Normalization Output

ShGInput0 Input - - None None 4× 4× 256
ShGFlat0 Flatten - - None None 4096

ShGInput1 Input - - None None 64
ShGConcat0 Concatenation: - - None None 4160

ShGFlat0 +
ShGInput1

ShGDense0 Dense - - ReLU None 512
ShGDense1 Dense - - ReLU None 512

ShGOutput0 Dense - - None None 1
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Table 3: Local statistics network architecture.

ID Layer Kernel Stride Activation Normalization Output

ShLInput0 Input - - None None 4× 4× 256
ShLInput1 Input - - None None 64

ShLConcat0 Tile+concatenation: - - None None 4× 4× 320
ShLInput0 +

ShLInput1
ShLConv0 Convolutional 1× 1 1× 1 ReLU None 4× 4× 512
ShLConv1 Convolutional 1× 1 1× 1 ReLU None 4× 4× 512

ShLOutput0 Convolutional 1× 1 1× 1 None None 4× 4× 1

Exclusive representation learning To learn the exclusive representation, we
use Adam optimizer with a learning rate of 0.0001, β1 = 0.9 and β2 = 0.999
during 10000 iterations. We use a batch size of 64 image pairs at each iteration.
Concerning the constant coefficients to weight the terms of the objective function
Lexclusive, we use αex = 0.5, βex = 1.0 and λadv = 0.05. The size of the exclusive
representation is 8.

During this stage, the exclusive representation encoders, the statistics net-
works and the discriminator are learned. The exclusive representation encoders
EexωX

and EexωY
are implemented as convolutional neural networks using the archi-

tecture shown in Table 1 with zdim = 8. The architecture of the global statistics
networks T exθX and T exθY is shown in Table 4. To compute the mutual information,
the global statistics network takes two inputs:

– ExGInput0: the concatenation of the outputs of the Conv2 layer from the
shared and exclusive representation encoders

– ExGInput1: the concatenation of the outputs of the Output0 layer from the
shared and exclusive representation encoders

The architecture of the local statistics networks T exφX
and T exφY

is shown in
Table 5 and takes the same inputs as the global statistics network.

In order to perform representation disentanglement, we use a discriminator
DρX in an adversarial setting. The discriminator architecture is implemented
as a dense neural network which takes as input the shared and exclusive rep-
resentations (the outputs of the Output0 layer from the shared and exclusive
representation encoders) as can be seen in Table 6.

Classification To perform classification using the learned representations, we
use Adam optimizer with a learning rate of 0.0001, β1 = 0.9 and β2 = 0.999 dur-
ing 10000 iterations. We use a batch size of 64 images at each iteration. Regarding
the classifier architecture, we use a very simple model as can be seen in Table
7 where zdim = 64 when learning from the shared representations and zdim = 8
when learning from the exclusive representations. The first layer is composed of
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Table 4: Global statistics network architecture.

ID Layer Kernel Stride Activation Normalization Output

ExGInput0 Input - - None None 4× 4× 512
ExGFlat0 Flatten - - None None 8192

ExGInput1 Input - - None None 72
ExGConcat0 Concatenation - - None None 8264

ExGFlat0 +
ExGInput1

ExGDense0 Dense - - ReLU None 512
ExGDense1 Dense - - ReLU None 512

ExGOutput0 Dense - - None None 1

Table 5: Local statistics network architecture.

ID Layer Kernel Stride Activation Normalization Output

ExLInput0 Input - - None None 4× 4× 512
ExLInput1 Input - - None None 72

ExLConcat0 Tile + concatenation: - - None None 4× 4× 584
ExLInput0 +
ExLInput1

ExLConv0 Convolutional 1× 1 1× 1 ReLU None 4× 4× 512
ExLConv1 Convolutional 1× 1 1× 1 ReLU None 4× 4× 512

ExLOutput0 Convolutional 1× 1 1× 1 None None 4× 4× 1

C = 32 neurons while the next layers are composed of N neurones corresponding
to number of classification classes (N = 10 for digit number classification and
N = 12 for digit/background color classification). We use the same architecture
to train a classifier using the disentangled representations from the models pro-
posed by Gonzalez-Garcia et al. [11] (their model uses different representation
dimensions: zdim = 8 × 8 × 512 when learning from the shared representations
and zdim = 128 when learning from the exclusive representations) and Jha et al.
[18].
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Table 6: Discriminator network architecture.

ID Layer Kernel Stride Activation Normalization Output

DInput0 Input - - None None 64
DInput1 Input - - None None 8

DConcat0 Concatenation - - None None 72
DInput0 + DInput1 - -

DDense0 Dense - - ReLU None 1000
DDense1 Dense - - ReLU None 200

DOutput0 Dense - - None None 1

Table 7: Classifier architecture.

ID Layer Kernel Stride Activation Normalization Output

CInput0 Input - - None None zdim
CDense0 Dense - - ReLU BatchNorm C
CDense0 Dense - - ReLU BatchNorm N

COutput0 Dense - - Softmax None N
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1.2 3D Shapes experiment

Shared representation learning To learn the shared representation, we use
Adam optimizer with a learning rate of 0.0001, β1 = 0.9 and β2 = 0.999 during
50000 iterations. We use a batch size of 64 image pairs of size 64×64×3 at each
iteration. Concerning the constant coefficients to weight the objective function
Lshared, we use αsh = 0.5, βsh = 1.0 and γ = 0.1. The size of the shared
representation is 64.

As the image size is higher than in the previous case, the network architec-
tures are slightly modified. Moreover, since data comes from a single domain we
can share weights (i.e. ψX=ψY , θX=θY , etc) to reduce the number of networks.
The shared representation encoder EshψX

is defined by a convolutional neural net-
works which is shown in Table 8 with zdim = 64. The architecture of the global
statistics network T shθX is shown in Table 9. The global statistics network takes
as input:

– ShGInput0: the output of the Conv3 layer from the shared representation
encoder

– ShGInput1: the output of the Output0 layer from the shared representation
encoder

The architecture of the local statistics network T shφX
is shown in Table 10. Sim-

ilarly, the local statistics network shares the same layers as the global statistics
network with respect to the shared representation encoder by taking as input
the output of the Conv3 layer and the output of the Output0 layer from the
shared representation encoder.

Table 8: Representation encoder architecture.

ID Layer Kernel Stride Activation Normalization Output

Input0 Input - - None None 64× 64× 3
Conv0 Convolutional 4× 4 1× 1 LeakyReLU None 61× 61× 64
Conv1 Convolutional 4× 4 2× 2 LeakyReLU BatchNorm 29× 29× 128
Conv2 Convolutional 4× 4 2× 2 LeakyReLU BatchNorm 13× 13× 256
Conv3 Convolutional 4× 4 2× 2 LeakyReLU BatchNorm 5× 5× 512
Flat0 Flatten - - None None 12800

Output0 Dense - - None None zdim
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Table 9: Global statistics network architecture.

ID Layer Kernel Stride Activation Normalization Output

ShGInput0 Input - - None None 5× 5× 512
ShGConv0 Convolutional 3× 3 1× 1 ReLU None 3× 3× 64
ShGConv1 Convolutional 3× 3 1× 1 None None 1× 1× 32
ShGFlat0 Flatten - - None None 32

ShGInput1 Input - - None None 64
ShGConcat0 Concatenation: - - None None 96

ShGFlat0 +
ShGInput1

ShGDense0 Dense - - ReLU None 512
ShGDense1 Dense - - ReLU None 512

ShGOutput0 Dense - - None None 1

Table 10: Local statistics network architecture.

ID Layer Kernel Stride Activation Normalization Output

ShLInput0 Input - - None None 5× 5× 512
ShLInput1 Input - - None None 64

ShLConcat0 Tile + Concatenation: - - None None 5× 5× 576
ShLInput0 +
ShLInput1

ShLConv0 Convolutional 1× 1 1× 1 ReLU None 5× 5× 512
ShLConv1 Convolutional 1× 1 1× 1 ReLU None 5× 5× 512

ShLOutput0 Convolutional 1× 1 1× 1 None None 5× 5× 1

Exclusive representation learning To learn the exclusive representation,
we use Adam optimizer with a learning rate of 0.0001, β1 = 0.9 and β2 =
0.999 during 10000 iterations. We use a batch size of 32 image pairs at each
iteration. Concerning the constant coefficients to weight the objective function
Lexclusive, we use αex = 0.5, βex = 1.0 and λadv = 0.01. The size of the exclusive
representation is 64.

During this stage, the exclusive representation encoder, the statistics net-
works and the discriminator are learned. The exclusive representation encoder
EexωX

is defined by a convolutional neural networks using the architecture shown
in Table 8 with zdim = 64. The architecture of the global statistics network T exθX
is shown in Table 11. The global statistics network takes two inputs to compute
the mutual information:

– ExGInput0: the concatenation of the outputs of the Conv3 layer from the
shared and exclusive representation encoders
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– ExGInput1: the concatenation of the outputs of the Output0 layer from the
shared and exclusive representation encoders

The architecture of the local statistics networks T exφX
is shown in Table 12.

The local statistics network takes the same inputs as the global statistics network
to compute the mutual information.

Table 11: Global statistics network architecture.

ID Layer Kernel Stride Activation Normalization Output

ExGInput0 Input - - None None 5× 5× 1024
ExGConv0 Convolutional 3× 3 1× 1 ReLU None 3× 3× 64
ExGConv1 Convolutional 3× 3 1× 1 None None 1× 1× 32
ExGFlat0 Flatten - - None None 32

ExGInput1 Input - - None None 128
ExGConcat0 Concatenation - - None None 160

ExGFlat0 +
ExGInput1

ExGDense0 Dense - - ReLU None 512
ExGDense1 Dense - - ReLU None 512

ExGOutput0 Dense - - None None 1

Table 12: Local statistics network architecture.

ID Layer Kernel Stride Activation Normalization Output

ExLInput0 Input - - None None 5× 5× 1024
ExLInput1 Input - - None None 128

ExLConcat0 Tile + Concatenation: - - None None 5× 5× 1152
ExLInput0 +
ExLInput1

ExLConv0 Convolutional 1× 1 1× 1 ReLU None 5× 5× 512
ExLConv1 Convolutional 1× 1 1× 1 ReLU None 5× 5× 512

ExLOutput0 Convolutional 1× 1 1× 1 None None 5× 5× 1

A discriminator DρX is used to minimize the mutual information between
the shared and exclusive representations. The discriminator architecture is im-
plemented as a dense neural network which takes as input these representations
(the outputs of the Output0 layer from the shared and exclusive representation
encoders) as can be seen in Table 13.
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Table 13: Discriminator network architecture.

ID Layer Kernel Stride Activation Normalization Output

DInput0 Input - - None None 64
DInput1 Input - - None None 64

DConcat0 Concatenation - - None None 128
DInput0 + DInput1 - -

DDense0 Dense - - ReLU None 1000
DDense1 Dense - - ReLU None 200

DOutput0 Dense - - None None 1

Classification To perform classification using the learned representations, we
use Adam optimizer with a learning rate of 0.0001, β1 = 0.9 and β2 = 0.999
during 10000 iterations. We use a batch size of 64 images at each iteration. As
previously, we use the classifier architecture shown in Table 7 with zdim = 64.
The first layer is composed of C = 32 neurons while the next layers are composed
of N neurones corresponding to number of classification classes (N = 10 to
classify the floor color, wall color and the object color, N = 8 to classify the
object scale, N = 4 to classify the object shape and N = 15 to classify the
scene orientation). We use the same architecture to train a classifier using the
disentangled representations from the models proposed by Gonzalez-Garcia et
al. [11] (their model uses different representation dimensions: zdim = 8× 8× 512
when learning from the shared representations and zdim = 128 when learning
from the exclusive representations) and Jha et al. [18].

1.3 IAM experiment

Dataset creation In order to perform our disentanglement experiments, we
use a subset of the IAM dataset. We select 150 words for each writer from the
top 50 writers resulting in a subset of 8750 images. This subset is split into two
parts: a) 6711 images to learn the shared and exclusive representations of our
model and b) 2039 images to train the classifiers. These 2039 images are in turn
split into train/test subsets: a) 1427 images to train the classifiers and b) 612 to
test and compute the classification accuracy. Each of these images corresponds
to one of 100 possible word classes.

All the images are binarized using the provided threshold and padded with
ones to have a shape of 64× 256× 1.

Shared representation learning In order to learn the shared representation,
we use Adam optimizer with a learning rate of 0.0001, β1 = 0.9 and β2 = 0.999
during 4150 iterations. We use a batch size of 64 image pairs of size 64× 256× 1
at each iteration. Concerning the constant coefficients to weight the objective
function Lshared, we use αsh = 0.5, βsh = 1.0 and γ = 0.01. The size of the
shared representation is 64.
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During this stage, the shared representation encoder and the statistics net-
works are learned. The shared representation encoders EshψX

is implemented as
convolutional neural networks described in Table 14 with zdim = 64. The archi-
tecture of the global statistics network T shθX is shown in Table 15. The architecture

of the local statistics network T shφX
is shown in Table 16. The global and local

statistics network share some layers with the shared representation encoder. The
statistics networks take as input:

– ShGInput0/ShLInput0: the output of the Conv3 layer from the shared rep-
resentation encoder

– ShGInput1/ShLInput1: the output of the Output0 layer from the shared
representation encoder

Table 14: Representation encoder architecture.

ID Layer Kernel Stride Activation Normalization Output

Input0 Input - - None None 64× 256× 1
Conv0 Convolutional 4× 4 1× 1 LeakyReLU None 61× 253× 64
Conv1 Convolutional 4× 4 2× 2 LeakyReLU BatchNorm 29× 125× 128
Conv2 Convolutional 4× 4 2× 2 LeakyReLU BatchNorm 13× 61× 256
Conv3 Convolutional 4× 4 2× 2 LeakyReLU BatchNorm 5× 29× 512
Flat0 Flatten - - None None 74240

Output0 Dense - - None None zdim

Table 15: Global statistics network architecture.

ID Layer Kernel Stride Activation Normalization Output

ShGInput0 Input - - None None 5× 29× 512
ShGConv0 Convolutional 3× 3 1× 1 ReLU None 3× 27× 64
ShGConv1 Convolutional 3× 3 1× 1 None None 1× 25× 32
ShGFlat0 Flatten - - None None 800

ShGInput1 Input - - None None 64
ShGConcat0 Concatenation - - None None 864
ShGDense0 Dense - - ReLU None 512
ShGDense1 Dense - - ReLU None 512

ShGOutput0 Dense - - None None 1
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Table 16: Local statistics network architecture.

ID Layer Kernel Stride Activation Normalization Output

ShLInput0 Input - - None None 5× 29× 512
ShLInput1 Input - - None None 64

ShLConcat0 Concatenation - - None None 5× 29× 576
ShLConv0 Convolutional 1× 1 1× 1 ReLU None 5× 29× 512
ShLConv1 Convolutional 1× 1 1× 1 ReLU None 5× 29× 512

ShLOutput0 Convolutional 1× 1 1× 1 None None 5× 29× 1

Exclusive representation learning To learn the exclusive representation, we
use Adam optimizer with a learning rate of 0.0001, β1 = 0.9 and β1 = 0.999
during 4150 iteration. We use a batch size of 64 image pairs at each iteration.
Concerning the constant coefficients to weight the objective function Lexclusive,
we use αex = 0.5, βex = 1.0 and λadv = 0.01. The size of the exclusive represen-
tation is 64.

The exclusive representation encoder EexωX
is defined by a convolutional neu-

ral networks using the architecture shown in Table 14 with zdim = 64. The
architecture of the global statistics network T exθX is shown in Table 17. The archi-
tecture of the local statistics network T exφX

is shown in Table 18. The statistics
networks take two inputs to compute the mutual information:

– ExGInput0/ExLInput0: the concatenation of the outputs of the Conv3 layer
from the shared and exclusive representation encoder

– ExGInput1/ExLInput1: the concatenation of the representations Output0
from the shared and exclusive representation encoder

The discriminator architecture is implemented as a dense neural network
which takes as input the shared and exclusive representations as can be seen in
Table 19.

Classification To perform classification using the learned representations, we
use Adam optimizer with a learning rate of 0.0001, β1 = 0.9 and β2 = 0.999
during 10000 iterations. We use a batch size of 64 images at each iteration. As
previously, we use the classifier architecture shown in Table 7 with zdim = 64.
The first layer is composed of C = 64 neurons while the next layers are composed
of N neurones corresponding to number of classification classes (N = 50 to
perform writer classification and N = 100 to perform word classification).

As the models of Gonzalez-Garcia et al. [11] and Jha et al. [18] fails to
converge we train a VAE model to provide a comparison. To learn the repre-
sentations, we use Adam optimizer with a learning rate of 0.0001, β1 = 0.9
and β2 = 0.999 during 50000 iterations. For fair comparison, the VAE model
is trained using the same encoder architecture of our model (see Table 14) and
the decoder architecture shown in Table 20. Using the previous setting, we train
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Table 17: Global statistics network architecture.

ID Layer Kernel Stride Activation Normalization Output

ExGInput0 Input - - None None 5× 29× 1024
ExGConv0 Convolutional 3× 3 1× 1 ReLU None 3× 27× 64
ExGConv1 Convolutional 3× 3 1× 1 None None 1× 25× 32
ExGFlat0 Flatten - - None None 800

ExGInput1 Input - - None None 128
ExGConcat0 Concatenation: - - None None 928

ExGFlat0 +
ExGInput1

ExGDense0 Dense - - ReLU None 512
ExGDense1 Dense - - ReLU None 512

ExGOutput0 Dense - - None None 1

Table 18: Local statistics network architecture.

ID Layer Kernel Stride Activation Normalization Output

ExLInput0 Input - - None None 5× 29× 1024
ExLInput1 Input - - None None 128

ExLConcat0 Tile + Concatenation: - - None None 5× 29× 1152
ExLInput0 +
ExLInput1

ExLConv0 Convolutional 1× 1 1× 1 ReLU None 5× 29× 512
ExLConv1 Convolutional 1× 1 1× 1 ReLU None 5× 29× 512

ExLOutput0 Convolutional 1× 1 1× 1 None None 5× 29× 1

a classifier using the VAE representations but using a different representation
dimension: zdim = 128.



Learning Disentangled Representations via Mutual Information Estimation 13

Table 19: Discriminator network architecture.

ID Layer Kernel Stride Activation Normalization Output

DInput0 Input - - None None 64
DInput1 Input - - None None 64

DConcat0 Concatenation - - None None 128
DInput0 + DInput1 - -

DDense0 Dense - - ReLU None 1000
DDense1 Dense - - ReLU None 200

DOutput0 Dense - - None None 1

Table 20: VAE decoder architecture.

ID Layer Kernel Stride Activation Normalization Output

VInput0 Input - - None None 128
VDense0 Dense - - None None 131072

VReshape0 Reshape - - LeakyReLU BatchNorm 8× 32× 512
VDeconv0 Deconvolutional 4× 4 2× 2 LeakyReLU BatchNorm 16× 64× 256
VDeconv1 Deconvolutional 4× 4 2× 2 LeakyReLU BatchNorm 32× 128× 128
VDeconv2 Deconvolutional 4× 4 2× 2 LeakyReLU BatchNorm 64× 256× 64
VDeconv3 Deconvolutional 4× 4 1× 1 None None 64× 256× 1

1.4 Sentinel-2 experiment

Dataset creation The Sentinel-2 mission provides optical imagery of the Earth’s
surface at high spatial resolution. Optical images are acquired at 13 spectral
bands using different spatial resolutions. L-1C processing is applied to optical
images. To organize the data acquired by the mission, the Earth surface is di-
vided into square tiles of approximately 100 km on each side.

In this paper, the following tiles are used to create our Sentinel-2 dataset:
11SLT, 19KDQ, 22LBP, 30SYJ, 30TXP, 36RYV, 37RDP, 37SCA, 39RUK, 41TLM,
31TCH, 20JPS, 31TCJ, 36RUU, 21HUB, 55HDU, 51JYN, 50TMK, 44QPE,
22KGU, 34HBH, 21HTU, 19HCT, 11SPS, 33SVD, 39RUM, 29TMF, 12SUC,
12SUF, 39QVE, 22LBR, 33TVF, 30SWC, 34SGH, 39SWV, 23KPQ, 31TFJ,
30STF, 51RUQ, 32SLB, 20GLT, 37MBU. For each tile, we extracted 12 op-
tical images (cloud coverage tolerance of 2%) between 2016 and 2018 keeping a
regular time-step between images.

For each tile, 100 non-overlapping patches of size 512×512 are extracted from
these images. Images are composed of the RBGI bands (Red (band 4), Green
(band 3), Blue (band 2) and Near infrared (band 8) bands) which correspond to
the bands at 10m spatial resolution. The training dataset size is around 100GB.
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Shared representation learning To learn the shared representation, we use
Adam optimizer with a learning rate of 0.0001, β1 = 0.9 and β2 = 0.999 during
200000 iterations. We use a batch size of 64 image pairs of size 64 × 64 × 4
at each iteration. Pairs of images of size 64 × 64 × 4 are extracted from our
dataset by selecting patches from the same region but acquired at different times.
Concerning the constant coefficients to weight the objective function Lshared, we
use αsh = 0.5, βsh = 1.0 and γ = 0.1.

We use the same model architecture employed to learn the representations
of the 3D Shapes dataset. The shared representation encoder EshψX

is defined by
a convolutional neural network described in Table 8. The architectures of the
global statistics network T shθX and the local statistics network T shφX

are shown in
Tables 9 and 10, respectively.

Classification To perform classification using the learned representations, we
use Adam optimizer with a learning rate of 0.0001, β1 = 0.9 and β2 = 0.999
during 10000 iterations. We use a batch size of 64 images of size 64 × 64 × 4
from the EuroSAT dataset at each iteration. As previously, we use the classifier
architecture shown in Table 7. The first layer is composed of C = 32 neurons
while the next layers are composed of N = 10 neurones corresponding to number
of classification classes (residential area, sea, river, highway, etc.). The confusion
matrix can be observed in Table 21.

Table 21: Confusion matrix. Classes: Annual crop:0, Forest:1, Herbaceous:2,
Highway:3, Industrial:4, Pasture:5, Permanent crop:6, Residential:7, River:8,
Sea/Lake:9.

0 1 2 3 4 5 6 7 8 9

0 0.94 0.00 0.01 0.01 0.00 0.02 0.02 0.00 0.00 0.00

1 0.00 0.99 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

2 0.00 0.01 0.89 0.00 0.00 0.01 0.07 0.00 0.00 0.00

3 0.02 0.00 0.02 0.88 0.01 0.01 0.03 0.01 0.03 0.00

4 0.00 0.00 0.01 0.01 0.97 0.00 0.00 0.01 0.00 0.00

5 0.01 0.01 0.04 0.01 0.00 0.91 0.02 0.00 0.00 0.00

6 0.04 0.00 0.11 0.02 0.01 0.02 0.80 0.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.98 0.00 0.00

8 0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.93 0.00

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
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2 Additional results

2.1 3D Shapes disentanglement experiment

In Figure 1, the learning curves of the classifiers of the 3D Shapes attribute are
displayed. As can be seen, using the shared representation of our model as input
to train a classifier on a shared attribute is useful achieving a high accuracy while
it provides no information when training a classifier on an exclusive attribute
achieving a low accuracy. Using the exclusive representation shows a similar
behavior.

Fig. 1: Learning curves of the 3D Shapes factors of variation using the shared
representations (red curves) and the exclusive representations (blue curves). Re-
sults are plotted in terms of factor accuracy over training steps. (a) Floor color
(exclusive factor); (b) Wall color (exclusive factor); (c) Object color (exclusive
factor); (d) Object scale (shared factor); (e) Object shape (shared factor); (f)
Scene orientation (shared factor).

2.2 3D Shapes ablation study

We include the results from the ablation experiment in the shared representation
learning stage for the 3D Shapes in Table 22. Similar to the colored-MNIST and
IAM dataset cases, switching the shared representations is an important element
as it enforces to keep the common information and remove the exclusive infor-
mation in the shared representation. As shown, when the shared representations
are not switched, the accuracy on exclusive attributes drastically increases (for
instance, the floor color accuracy increases from 9.96% to 93.09%) which means
the presence of exclusive information in the shared representation.
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Table 22: 3D Shapes ablation study. Accuracy using SX .

Method
Floor Wall Object Object Object Scene
color color color scale shape Orientation

Ideal feature SX 10.00% 10.00% 10.00% 100.00% 100.00% 100.00%
Baseline 9.96% 10.08% 9.95% 99.99% 99.99% 99.99%
Baseline (non-SSR) 93.09% 99.66% 95.89% 45.65% 59.55% 29.34%
Baseline (γ = 0) 10.75% 13.21% 12.53% 99.95% 99.99% 99.99%

Baseline (αsh = 0) 10.06% 10.14% 10.56% 99.95% 99.99% 99.99%

Baseline (βsh = 0) 9.97% 10.32% 9.99% 98.99% 98.98% 99.84%

2.3 IAM data organization

For the IAM dataset, in order to get the intuition of how the data is organized
in the shared representation space, we perform a dimensionality reduction via
the t-SNE algorithm. In Figure 2a, we plot the writer label corresponding to
each reduced shared representation. As shown, the shared representations are
organized in clusters of writers. Moreover, the shared representations seem to be
organized in accordance with the writer style as can be seen in Figure 2b.

(a) (b)

Fig. 2: A t-SNE visualization of the shared representations SX . a) Displaying the
writer label for 50 writers; b) Displaying the corresponding IAM image.

2.4 Mutual information distance

We train a model to learn the shared representations of our Sentinel-2 dataset
using the setting described in Section 1.4 but using image patches of size 9 ×
9× 4. In Figure 3, we show some additional examples of how the crossed mutual
information objective can be used to measure the distance between the pixels
of an image.
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Fig. 3: Pixel similarity based on mutual information. The mutual information is
computed between a given pixel (blue point) and the remaining image pixels.


