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Abstract. In this paper, we investigate the problem of learning disen-
tangled representations. Given a pair of images sharing some attributes,
we aim to create a low-dimensional representation which is split into two
parts: a shared representation that captures the common information
between the images and an exclusive representation that contains the
specific information of each image. To address this issue, we propose a
model based on mutual information estimation without relying on image
reconstruction or image generation. Mutual information maximization
is performed to capture the attributes of data in the shared and exclu-
sive representations while we minimize the mutual information between
the shared and exclusive representation to enforce representation disen-
tanglement. We show that these representations are useful to perform
downstream tasks such as image classification and image retrieval based
on the shared or exclusive component. Moreover, classification results
show that our model outperforms the state-of-the-art models based on
VAE/GAN approaches in representation disentanglement.

Keywords: Representation learning, representation disentanglement, mu-
tual information maximization and minimization

1 Introduction

Deep learning success involves supervised learning where massive amounts of la-
beled data are used to learn useful representations from raw data. As labeled data
is not always accessible, unsupervised learning algorithms have been proposed
to learn useful data representations easily transferable for downstream tasks.
A desirable property of these algorithms is to perform dimensionality reduc-
tion while keeping the most important attributes of data. For instance, methods
based on deep neural networks have been proposed using autoencoder approaches
[15, 20, 21] or generative models [1, 8, 12, 22, 25, 30]. Nevertheless, learning high-
dimensional data can be challenging. Autoencoders present difficulties to deal
with multimodal data distributions and generative models rely on computation-
ally demanding models [11, 19, 29] which are particularly complicated to train.
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Recent work has focused on mutual information estimation and maximization
to perform representation learning [2, 16, 27, 28]. As mutual information maxi-
mization is shown to be effective to capture the salient attributes of data, another
desirable property is to be able to disentangle these attributes. For instance, it
could be useful to remove some attributes of data that are not relevant for a
given task such as illumination conditions in object recognition.

In particular, we are interested in learning representations of data that shares
some attributes. Learning a representation that separates the common data at-
tributes from the remaining data attributes could be useful in multiple situa-
tions. For example, capturing the common information from multiple face images
could be advantageous to perform pose-invariant face recognition [33]. Similarly,
learning representations containing the common information across satellite im-
age time series is useful for image classification and segmentation [32].

In this paper, we propose a method to learn disentangled representations
based on mutual information estimation. Given an image pair (typically from
different domains), we aim to disentangle the representation of these images
into two parts: a shared representation that captures the common information
between images and an exclusive representation that contains the specific in-
formation of each image. An example is shown in Figure 1. To capture the
common information, we propose a novel method called crossed mutual infor-
mation estimation and maximization. Additionally, we propose an adversarial
objective to minimize the mutual information between the shared and exclusive
representations in order to achieve representation disentanglement. The follow-
ing contributions are made in this work:

– Based on mutual information estimation (see Section 3), we propose a method
to learn disentangled representations without relying on more costly image
reconstruction or image generation models.

– In Section 4, we present a novel training procedure which is divided into
two stages. First, the shared representation is learned via crossed mutual in-
formation estimation and maximization. Secondly, mutual information max-
imization is performed to learn the exclusive representation while minimizing
the mutual information between the shared and exclusive representations.
We introduce an adversarial objective to minimize the mutual information
as the method based on statistics networks described in Section 3 is not
suitable for this purpose.

– In Section 5, we perform several experiments on two synthetic datasets: a)
colored-MNIST [23]; b) 3D Shapes [5] and two real datasets: c) IAM Hand-
writing [26]; d) Sentinel-2 [9]. We show that the obtained representations are
useful at image classification and image retrieval outperforming the state-of-
the-art models based on VAE/GAN approaches in representation disentan-
glement. We perform an ablation study to analyze the components of our
model. We also show the effectiveness of the proposed adversarial objective
in representation disentanglement via a sensitivity analysis. In Section 6, we
show the conclusions of our work.
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Image domain Representation disentanglement

Image X Image Y Shared information: Exclusive information: Exclusive information:
Digit number Background color Digit color

Fig. 1: Representation disentanglement example. Given images X and Y on the
left, our model aims to learn a representation space where the image information
is split into the shared information (digit number) and the exclusive information
(background/digit color) on the right.

2 Related work

Generative adversarial networks (GANs) The GAN model [12, 13] can
be thought of as an adversarial game between two players: the generator and
the discriminator. In this setting, the generator aims to produce samples that
look like drawn from the data distribution Pdata while the discriminator receives
samples from the generator and the dataset to determine their source (dataset
samples from Pdata or generated samples from Pgen). The generator is trained
to fool the discriminator by learning a distribution Pgen that converges to Pdata.

Mutual information Recent work has focused on mutual information esti-
mation and maximization as a means to perform representation learning. Since
the mutual information is notoriously hard to compute for high-dimensional
variables, some estimators based on deep neural networks have been proposed.
Belghazi et al. [2] propose a mutual information estimator which is based on the
Donsker-Varadhan representation of the Kullback-Leibler divergence. Instead,
Hjelm et al. [16] propose an objective function based on the Jensen-Shannon
divergence called Deep InfoMax. Similarly, Ozair et al. [28] use the Wasserstein
divergence. Mutual information maximization based methods learn representa-
tions without training decoder functions that go back into the image domain
which is the prevalent paradigm in representation learning.

Representation disentanglement Disentangling data attributes can be use-
ful for several tasks that require knowledge of these attributes. Creating repre-
sentations where each dimension is independent and corresponds to a particu-
lar attribute have been proposed using VAE variants [15, 20] and GAN-based
models [7]. Another definition of disentangled representation is presented by
image-to-image translation models [34, 6, 24, 17, 18, 31, 3, 11] where the goal is to
separate the content and style of images. For instance, consider a collection of
data grouped by a shared attribute (e.g. face images grouped by identity). These
disentanglement models aim to create a representation domain that captures the
shared information (e.g. identity) and the exclusive information (e.g. pose) sep-
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arately. In contrast to models requiring some supervision to perform disentan-
glement [34, 24, 17], weakly-supervised learning models have been developed to
reduce label cost. In order to perform content and style disentanglement, Jha et
al. [18] use a cycle-consistency constraint combined with the VAE framework [21]
and Bouchacourt et al. [3] extend the VAE framework for grouped observations.
More related to our work, Gonzalez-Garcia et al. [11] have recently proposed a
model based on VAE-GAN image translators, cross-domain autoencoders and
gradient reversal layers [10] to disentangle the attributes of paired images into
shared and exclusive representations. A similar approach is proposed by Sanchez
et al. [32] to separate the spatial and temporal information of image time series.

In this work, we aim to learn disentangled representations of paired data by
splitting the representation into a shared part and an exclusive part. We propose
a model based on mutual information estimation to perform representation learn-
ing using the method of Hjelm et al. [16] instead of generative or autoencoding
models. Additionally, we introduce an adversarial objective [12] to disentangle
the information contained in the shared and exclusive representations which is
more effective than the gradient reversal layers [10]. We compare our model with
the models proposed by Jha et al. [18] and Gonzalez-Garcia et al. [11] on the
synthetic datasets and the generative models [21, 32] on the real datasets. We
show that we achieve better results in representation disentanglement.

3 Mutual information

Let X ∈ X and Z ∈ Z be two random variables. Assuming that p(x, z) is the
joint probability density function of X and Z and that p(x) and p(z) are the
corresponding marginal probability density functions, the mutual information
between X and Z can be expressed as follows

I(X,Z) =

∫
X

∫
Z
p(x, z) log

(
p(x, z)

p(x)p(z)

)
dxdz (1)

From Equation 1, the mutual information I(X,Z) can be written as the Kullback-
Leibler divergence between the joint probability distribution PXZ and the prod-
uct of the marginal distributions PXPZ , i.e. I(X,Z) = DKL (PXZ ‖ PXPZ). In
this work, we use the mutual information estimator Deep InfoMax [16] where
the objective function is based on the Jensen-Shannon divergence instead, i.e.
I(JSD)(X,Z) = DJS (PXZ ‖ PXPZ). We employ this method since it proves to be
stable and we are not interested in the precise value of mutual information but
in maximizing it. The estimator is shown in Equation 2 where Tθ : X × Z → R
is a deep neural network of parameters θ called the statistics network.

Î
(JSD)
θ (X,Z) = Ep(x,z)

[
− log

(
1+e−Tθ(x,z)

)]
−Ep(x)p(z)

[
log
(

1+eTθ(x,z)
)]

(2)

Hjelm et al. [16] propose an objective function based on the estimation and
maximization of the mutual information between an image X ∈ X and its feature
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Fig. 2: Model overview. a) First, the shared representation is learned. Images
X and Y are passed through the shared representation encoders to extract the
representations SX and SY . The statistics networks maximize the mutual infor-
mation between the image X and the representation SY (and between Y and
SX); b) Then, the exclusive representation is learned. The image X is passed
through the exclusive representation encoder to obtain the representation EX .
The statistics networks maximize the mutual information between the image
X and its representation RX = [SX , EX ] while the discriminator minimize the
mutual information between representations SX and EX . The same operation is
performed to learn EY . Best viewed in color and zoom-in.

representation Z ∈ Z which is called global mutual information. The feature
representation Z is extracted by a deep neural network of parameters ψ, Eψ :
X → Z. Equation 3 displays the global mutual information objective.

Lglobal
θ,ψ (X,Z) = Î

(JSD)
θ (X,Z) (3)

Additionally, Hjelm et al. [16] propose to maximize the mutual information be-
tween local patches of the image X represented by a feature map Cψ(X) of the
encoder Eψ = fψ ◦ Cψ and the feature representation Z which is called local
mutual information. Equation 4 shows the local mutual information objective.

Llocal
φ,ψ (X,Z) =

∑
i

Î
(JSD)
φ (C

(i)
ψ (X), Z) (4)

4 Method

Let X and Y be two images belonging to the domains X and Y respectively. Let
RX ∈ RX and RY ∈ RY be the corresponding representations for each image.
The representation is split into two parts: the shared representations SX and SY
which contain the common information between the images X and Y and the ex-
clusive representations EX and EY which contain the specific information of each
image. Therefore the representation of image X can be written as RX=[SX , EX ].
Similarly, we can write RY =[SY , EY ] for image Y . For instance, let us consider
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the images shown in Figure 1. In this case, the shared representations SX and
SY contain the digit number information while the exclusive representations EX
and EY correspond to the background and digit color information.

To address this representation disentanglement, we propose a training pro-
cedure which is split into two stages. We think that a natural way to learn these
disentangled representations can be done via an incremental approach. The first
stage learns the common information between images and creates a shared rep-
resentation (see Section 4.1). Knowing the common information, it is easy then
to identify the specific information of each image. Therefore, using this learned
shared representation, a second stage is performed to learn the exclusive rep-
resentation (see Section 4.2) which captures the remaining information that is
missing in the shared representation. The model overview is shown in Figure 2.

4.1 Shared representation learning

Let Esh
ψX

: X → SX and Esh
ψY

: Y → SY be the encoder functions to extract
the shared representations SX and SY from images X and Y , respectively. We
estimate and maximize the mutual information between the images and their
shared representations via Equations 3 and 4 using the global statistics networks
T sh
θX

and T sh
θY

and the local statistics networks T sh
φX

and T sh
φY

. In constrast to Deep
InfoMax [16], to enforce to learn only the common information between images
X and Y , we swap the shared representations to compute the crossed mutual
information as shown in Equation 5 where global and local mutual information
terms are weighted by constant coefficients αsh and βsh. Swapping the shared
representations is a key element of the proposed method as it enforces to remove
the exclusive information of each image (see Section 5.3).

Lsh
MI = αsh(Lglobal

θX ,ψY
(X,SY )+Lglobal

θY ,ψX
(Y, SX))

+ βsh
(
Llocal
φX ,ψY (X,SY )+Llocal

φY ,ψX (Y, SX)
) (5)

Additionally, images X and Y must have identical shared representations, i.e.
SX = SY . A simple solution is to minimize the L1 distance between their shared
representations as follows

L1 = Ep(sx,sy) [|SX − SY |] (6)

The objective function to learn the shared representations is a linear combination
of the previous terms as shown in Equation 7, where γ is a constant coefficient.

max
{ψ,θ,φ}X,Y

Lshared = Lsh
MI − γL1 (7)

4.2 Exclusive representation learning

So far, our model is able to extract the shared representations SX and SY . Let
Eex
ωX : X → EX and Eex

ωY : Y → EY be the encoder functions to extract the
exclusive representations EX and EY from images X and Y , respectively. To
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learn these representations, we estimate and maximize the mutual information
between the image X and its corresponding representation RX which is com-
posed of the shared and exclusive representations i.e. RX=[SX , EX ]. The same
operation is performed between the image Y and RY =[SY , EY ] as shown in
Equation 8 where αex and βex are constant coefficients. Mutual information is
computed by the global statistics networks T ex

θX
and T ex

θY
and the local statistics

networks T ex
φX

and T ex
φY

. Since the shared representation remains fixed, we enforce
the exclusive representation to include the information which is specific to the
image and is not captured by the shared representation.

Lex
MI = αex(Lglobal

θX ,ωX
(X,RX)+Lglobal

θY ,ωY
(Y,RY ))

+ βex
(
Llocal
φX ,ωX (X,RX)+Llocal

φY ,ωY (Y,RY )
) (8)

On the other hand, the representation EX must not contain information captured
by the representation SX when maximizing the mutual information between X
and RX . Therefore, the mutual information between EX and SX must be min-
imized. While mutual information estimation and maximization via Equation
2 works well, using statistics networks fails to converge when performing mu-
tual information estimation and minimization. It is straightforward to see that
minimizing Equation 2 makes the statistics networks diverge. Therefore, we pro-
pose to minimize the mutual information between SX and EX (i.e. I(SX , EX))
via a different implementation of Equation 2 using an adversarial objective
[12] as shown in Equation 9. Minimizing I(SX , EX) is equivalent to minimiz-
ing DJS (PSXEX ‖ PSXPEX ) which can be achieved in an adversarial manner.
Therefore, a discriminator DρX defined by a neural network of parameters ρX
is trained to classify representations drawn from PSXEX as fake samples and
representations drawn from PSXPEX as real samples. Samples from PSXEX are
obtained by passing the image X through the encoders Esh

ψX
and Eex

ωX to extract
(SX , EX). Samples from PSXPEX are obtained by shuffling the exclusive repre-
sentations of a batch of samples from PSXEX . The encoder function Eex

ωX strives
to generate exclusive representations EX that combined with SX look like drawn
from PSXPEX . By minimizing Equation 9, we minimize the Jensen-Shannon di-
vergence DJS (PSXEX ‖ PSXPEX ) and thus the mutual information between EX
and SX is minimized. A similar procedure to generate samples of the product
of the marginal distributions from samples of the joint probability distribution
is proposed in [4, 20]. In these models, an adversarial objective is used to make
each dimension independent of the remaining dimensions of the representation.
Instead, we use an adversarial objective to make the dimensions of the shared
part independent of the dimensions of the exclusive part.

LXadv = Ep(sx)p(ex) [logDρX (SX , EX)] + Ep(sx,ex) [log (1−DρX (SX , EX))] (9)

Equation 10 shows the objective function to learn the exclusive representation
which is a linear combination of the previous terms where λadv is a constant
coefficient.

max
{ω,θ,φ}X,Y

min
{ρ}X,Y

Lex = Lex
MI − λadv(LXadv + LYadv) (10)
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Image X Image Y

(a)

Image X Image Y

(b)

Image X Image Y

(c)

Image X Image Y

(d)

Fig. 3: Image pair samples (best viewed in color). (a) Colored-MNIST; (b) 3D
Shapes; (c) IAM; (d) Sentinel-2.

4.3 Implementation details

Concerning the model architecture, we use DCGAN-like encoders [30], statistics
networks used by Deep InfoMax [16] and a discriminator defined by a fully-
connected network with 3 layers. Every network is trained from scratch using
batches of 64 image pairs. We use Adam optimizer with a learning rate value of
0.0001. Concerning the loss coefficients, we use αsh = αex = 0.5, βsh = βex = 1.0,
γ = 0.1. The coefficient λadv is analyzed in Section 5.3. The training algorithm is
executed on a NVIDIA Tesla P100. More details about the architecture, hyper-
parameters and optimizer are provided in the supplementary material section.

5 Experiments

5.1 Datasets

We perform representation disentanglement on the following datasets: a) Colored-
MNIST: Similarly to Gonzalez-Garcia [11], we use a colored version of the
MNIST dataset [23]. The colored background MNIST dataset (MNIST-CB)
is generated by modifying the color of the background and the colored digit
MNIST dataset (MNIST-CD) is generated by modifying the digit color. The
background/digit color is randomly selected from a set of 12 colors. Two images
with the same digit are sampled from MNIST-CB and MNIST-CD to create an
image pair; b) 3D Shapes: The 3D Shapes dataset [5] is composed of 480000
images of 64×64×3 pixels. Each image corresponds to a 3D object in a room
with six factors of variation: floor color, wall color, object color, object scale,
object shape and scene orientation. These factors of variation have 10, 10, 10,
8, 4 and 15 possible values respectively. We create a new dataset which con-
sists of image pairs where the object scale, object shape and scene orientation
are the same for both images while the floor color, wall color and object color
are randomly selected; c) IAM: The IAM dataset [26] is composed of forms of
handwritten English text. Words contained in the forms are isolated and labeled
which can be used to train models to perform handwritten text recognition or
writer identification. To train our model we select a subset of 6711 images of
64×256×1 pixels corresponding to the top 50 writers. Our dataset is composed
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of image pairs where both images correspond to words written by the same per-
son; d) Sentinel-2: Similarly to [32], we create a dataset composed of optical
images of size 64×64 from the Sentinel-2 mission [9]. A 100GB dataset is cre-
ated by selecting several regions of interest on the Earth’s surface. Image pairs
are created by selecting images from the same region but acquired at different
times. Further details about the dataset creation can be found on the supple-
mentary material. Some dataset image examples are shown in Figure 3. For all
the datasets, we train our model to learn a shared representation of size 64.
An exclusive representation of size 8, 64 and 64 is respectively learned for the
colored-MNIST, 3D Shapes and IAM datasets. During training, when data comes
from a single domain the number of networks involved can be halved by sharing
weights (i.e. ψX=ψY , θX=θY , etc). For example, the reported results for the
3D Shapes, Sentinel-2 and IAM datasets are obtained using 3 networks (shared
representation encoder, global and local statistics networks) to learn the shared
representation and 4 networks (discriminator, exclusive representation encoder,
global and local statistics networks) to learn the exclusive representation.

5.2 Representation disentanglement evaluation

To evaluate the learned representations, we perform several classification ex-
periments. A classifier trained on the shared representation should be good for
classifying the shared attributes of the image as the shared representation only
contains the common information while it should achieve a performance close to
random for classifying the exclusive attributes of the image. An analogous case
occurs when performing classification using the exclusive representation. We use
a simple architecture composed of 2 hidden fully-connected layers of few neurons
to implement the classifier (more details in the supplementary material).

In the colored-MNIST dataset case, a classifier trained on the shared rep-
resentation must perform well at digit number classification while the accuracy
must be close to 8.33% (random decision between 12 colors) at background/digit
color classification since no exclusive information is included in the shared rep-
resentation. Similarly, using the exclusive representations to train a classifier, we
expect the classifier to predict correctly the background/digit color while achiev-
ing a digit number accuracy close to 10% (random decision between 10 digits)
as the exclusive representations contains no digit number information. Results
are shown in Tables 1 and 2. We note that the learned representations by our
model achieve the expected behavior. The same experiment is performed using
the learned representations from the 3D Shapes dataset. A classifier trained on
the shared representation must correctly classify the object scale, object shape
and scene orientation while the accuracy must be close to random for the floor,
wall and object colors (10%, random decision between 10 colors). Differently,
a classifier trained on the exclusive representation must correctly classify the
floor, wall and object colors while it must achieve a performance close to ran-
dom to classify the object scale (12.50%, random decision between 8 scales),
object shape (25%, random decision between 4 shapes) and scene orientation
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Table 1: Background color and digit
number accuracy using the shared rep-
resentation SX and the exclusive repre-
sentation EX for classification.

Feature
Background Digit Distance

color number to ideal

Ideal SX 8.33% 100.00% 0.0000
SX (ours) 8.22% 94.48% 0.0563
SX ([11]) 99.56% 95.42% 0.9581
SX ([18]) 97.45% 88.15% 1.0097

Ideal EX 100.00% 10.00% 0.0000
EX (ours) 99.99% 13.20% 0.0321
EX ([11]) 99.99% 71.63% 0.6164
EX ([18]) 95.83% 21.90% 0.1607

Table 2: Digit color and number ac-
curacy using the shared representa-
tion SY and the exclusive represen-
tations EY for classification.

Feature
Digit Digit Distance
color number to ideal

Ideal SY 8.33% 100.00% 0.0000
SY (ours) 8.83% 94.27% 0.0623
SY ([11]) 29.81% 95.06% 0.2641
SY ([18]) 8.62% 88.15% 0.1214

Ideal EY 100.00% 10.00% 0.0000
EY (ours) 99.92% 13.75% 0.0383
EY ([11]) 99.83% 74.54% 0.6471
EY ([18]) 8.46% 21.90% 1.0304

Table 3: Accuracy on the 3D Shapes factors using the disentangled representa-
tions SX and EX for classification.

Feature
Floor Wall Object Object Object Scene Distance
color color color scale shape orientation to ideal

Ideal SX 10.00% 10.00% 10.00% 100.00% 100.00% 100.00% 0.0000
SX (ours) 9.96% 10.08% 9.95% 99.99% 99.99% 99.99% 0.0020
SX ([11]) 99.92% 99.81% 96.67% 99.99% 99.99% 99.99% 2.6643
SX ([18]) 95.80% 98.30% 93.07% 97.77% 99.78% 97.39% 2.6223

Ideal EX 100.00% 100.00% 100.00% 12.50% 25.00% 6.66% 0.0000
EX (ours) 95.10% 99.79% 96.17% 17.25% 30.73% 6.79% 0.1955
EX ([11]) 99.99% 99.99% 99.94% 99.06% 99.98% 99.81% 2.5477
EX ([18]) 99.43% 99.72% 99.28% 43.30% 63.65% 20.99% 0.8535

(6.66%, random decision between 15 orientations). Accuracy results using the
shared and exclusive representations are shown in Table 3.

For the colored-MNIST and 3D Shapes datasets, we compare our representa-
tions to the representations obtained from the models proposed by Jha et al. [18]
and Gonzalez-Garcia et al. [11] using their code. In their models, even though the
exclusive factors at image generation are controlled by the exclusive represen-
tation, the classification experiment shows that representation disentanglement
is not correctly performed as the shared representation contains exclusive in-
formation and vice versa. In all the cases, the representations of our model are
much closer in terms of accuracy to the ideal disentangled representations than
the representations from the models of [18, 11]. We compute the distance to the
ideal representation as the L1 distance between the accuracies on data attributes.
As representations obtained from generative models are determined by an objec-
tive function defined in the image domain, disentanglement constraints are not
explicitly defined in the representation domain. Therefore, representation disen-
tanglement is deficiently achieved in generative models. Moreover, our model is
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Table 4: Writer and word accuracy.
Feature Writer Word

Ideal feature SX 100.00% ∼ 1.00%
Ideal feature EX ∼ 2.00% 100.00%
Feature SX (ours) 61.64% 9.94%
Feature EX (ours) 10.80% 20.88%
Feature fX ([21]) 13.77% 20.30%

Table 5: Writer and word accuracy us-
ing N nearest neighbors.

Feature Writer Word

Feature SX (N = 1) 62.65% 15.78%
Feature SX (N = 5) 64.06% 12.96%
Feature EX (N = 1) 19.68% 19.84%
Feature EX (N = 5) 16.87% 19.69%

Query

Query

Query

Query

Query

Query

Nearest neighbors

Nearest neighbors

Nearest neighbors

Nearest neighbors

Nearest neighbors

Nearest neighbors

Fig. 4: Image retrieval on the colored-MNIST, 3D Shapes and IAM datasets (best
viewed in color and zoom-in). Retrieved images using the shared representations
(on the top) and the exclusive representations (on the bottom).

less computationally demanding as it does not require decoder functions to go
back into the image domain. Training our model on the colored-MNIST dataset
takes 20 min/epoch while the model of [11] takes 115 min/epoch. Additionally,
our mutual information approach is more stable during training without requir-
ing excessive hyperparameter tuning as models based on image generation.

For the IAM dataset, as the shared representation must capture the writer
style, it must be useful to perform writer recognition while the exclusive repre-
sentation must be useful to perform word classification. Accuracy results based
on these representations can be seen in Table 4. Reasonable results are obtained
at writer recognition while less satisfactory results are obtained at word classifi-
cation as it is a more difficult task. To provide a comparison, we use the latent
representation of size 128 learned by a VAE model [21] (as the models of [18,
11] fail to converge) to train a classifier for the mentioned classification tasks.
Table 4 shows that the shared representation outperforms the VAE represen-
tation for writer recognition and the exclusive representation achieves a similar
performance for word classification.

Additionally, we perform image retrieval experiments using the learned rep-
resentations. In the colored-MNIST dataset, using the shared representation of
a query image retrieves images containing the same digit independently of the
background/digit color. In contrast, using the exclusive representation of a query
image retrieves images corresponding to the same background/digit color inde-
pendently of the digit number. A similar case occurs for the 3D Shapes dataset.
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Table 6: MNIST ablation study. Accu-
racy using the representation SX .

Feature
Background Digit Distance

color number to ideal

Ideal SX 8.33% 100.00% 0.0000
Baseline 8.22% 94.48% 0.0563
Non-SSR 99.99% 89.57% 1.0209
γ = 0 8.49% 92.36% 0.0780

αsh = 0 11.11% 94.83% 0.0795

βsh = 0 8.51% 80.59% 0.1958

Table 7: IAM ablation study. Accu-
racy using the representation SX .

Method Word Writer
Distance
to ideal

Ideal SX ∼ 1.00% 100.00% 0.0000
Baseline 9.94% 61.64% 0.4730
Non-SSR 20.88% 58.94% 0.6094
γ = 0 10.51% 55.39% 0.5412

αsh = 0 11.36% 61.50% 0.4886

βsh = 0 13.63% 50.28% 0.6235
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Fig. 5: Different values of λadv are used to learn the exclusive representation.
Results are plotted in terms of factor accuracy as a function of λadv. Solid curves
correspond to the obtained values and dotted curves correspond to the expected
behavior of an ideal exclusive representation (best viewed in color). (a) Colored-
MNIST; (b) 3D Shapes; (c) IAM datasets.

In the IAM dataset, using the shared representations retrieves words written
by the same person or similar style. While using the exclusive representation
seems to retrieve images corresponding to the same word. Some image retrieval
examples using the shared and exclusive representations are shown in Figure 4.
As image retrieval is useful for clustering attributes, we also perform writer and
word recognition on the IAM dataset using N ∈ {1, 5} nearest neighbors based
on the disentangled representations. We achieve similar results to those obtained
using a neural network classifier as shown in Table 5.

5.3 Analysis of the objective function

Ablation study To evaluate the contribution of each element of the model
during the shared representation learning, we remove it and observe the impact
on the classification accuracy on the data attributes. As described in Section
4.3, our baseline setting is the following: αsh = 0.5, βsh = 1.0, γ = 0.1 and
swapped shared representations SX/SY (SSR). We perform the ablation study
and show the results for the colored-MNIST and IAM datasets in Tables 6 and
7. Swapping the shared representations plays a crucial role in representation
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disentanglement avoiding these representations to capture exclusive information.
When the shared representations are not swapped (non-SSR), the accuracy on
exclusive attributes considerably increases meaning the presence of exclusive
information in the shared representations. Removing the L1 distance between
SX and SY (γ = 0) slightly reduces the accuracy on shared attributes. Removing
the global mutual information term (αsh = 0) slightly increases the presence
of exclusive information in the shared representation. Finally, using the local
mutual information term is important to capture the shared information as the
accuracy on shared attributes considerably decreases when setting βsh = 0.
Similar results are obtained by setting αex = 0 or βex = 0 during the exclusive
representation learning. In general, all loss terms lead to an improvement in
representation disentanglement.

Sensitivity analysis As the parameter λadv weights the term that minimizes
the mutual information between the shared and exclusive representations, we em-
pirically investigate the impact of this parameter on the information captured
by the exclusive representation. In order to train our model, we use different
values of λadv ∈ {0.0, 0.005, 0.010, 0.025, 0.05}. Then, exclusive representations
are used to perform classification on the attributes of data. Results in terms of
accuracy as a function of λadv are shown in Figure 5. For λadv = 0.0 no represen-
tation disentanglement is performed, then the exclusive representation contains
shared information and achieves a classification performance higher than random
for the shared attributes of data. While increasing the value of λadv the exclu-
sive representation behavior (solid curves) converges to the expected behavior
(dotted curves). However, values higher than 0.025 decrease the performance
classification on exclusive attributes of data.

5.4 Satellite applications

We show that our model is particularly useful when large amounts of unlabeled
data are available and labels are scarce as in the case of satellite data. We train
our model to learn the shared representations of our Sentinel-2 dataset which
contains 100GB of unlabeled data. Then, a classifier is trained on the EuroSAT
dataset [14] (27000 Sentinel-2 images of size 64×64 labeled in 10 classes) using
the learned representations of our model as inputs. Using the shared represen-
tation makes the classifier robust to time-related conditions (seasonal changes,
atmospheric conditions, etc.). We achieve an accuracy of 93.11% outperform-
ing the performance obtained using the representations of the VAE model [21]
(87.64%), the BicycleGAN model [35] (87.59%) and the VAE-GAN model pro-
posed by Sanchez et al. [32] (92.38%).

As another interesting application, we found that Equation 5 could be used
to measure the similarity between the center pixels of image patches X and
Y in terms of mutual information. Some examples are shown in Figure 6. As
can be seen, using this similarity measure we are able to distinguish the river,
urban regions and agricultural areas. We think this could be useful for further
applications such as unsupervised image segmentation and object detection.
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1.00

0.00

Fig. 6: Pixel similarity. The mutual information is computed between a given
pixel (blue point) and the remaining image pixels via Equation 5.

6 Conclusions

We have proposed a novel method to perform representation disentanglement on
paired images based on mutual information estimation using a two-stage training
procedure. We have shown that our model is less computationally demanding and
outperforms the state-of-the-art models [11, 18] to produce disentangled repre-
sentations. We have performed an ablation study to demonstrate the usefulness
of the key elements of our model (swapped shared representations, local and
global statistics networks) and their impact on disentanglement. Additionally,
we have empirically proven the disentangling capability of our model by ana-
lyzing the role of λadv during training. We have also demonstrated the benefits
of our model on a challenging setting where large amounts of unlabeled paired
data are available as in the Sentinel-2 case. We have shown that our model out-
performs state-of-the-art models [21, 35, 32] relying on image reconstruction or
image generation at image classification. We have also shown that the crossed
mutual information objective could be useful for unsupervised image segmenta-
tion and object detection. Finally, we think that our model could be useful for
image-to-image translation models to constrain the representations to separate
content and style. We leave the development of such algorithm for future work.
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