
Appendix

This supplementary material is organized as follows: in section A, we provide
a brief description of an other approach to take into account self similarities in
sparse models. In Section B, we provide implementation details that are use-
ful to reproduce the results of our paper (note that the code is also provided).
In Section C, we present additional quantitative results that were not included
in the main paper for space limitation reasons; we notably provide the SSIM
quality metric [16] for grayscale, color, and demosaicking experiments; the SSIM
score is sometimes more meaningful than PSNR (note that the conclusions pre-
sented in the main paper remain unchanged, except for grey image denoising,
where our method becomes either closer or better than NLRN, whereas it was
slightly behind in PSNR); we also present ablation studies and provide additional
baselines for demosaicking and denoising. Section D is devoted to the proof of
Proposition 1, and finally in Section E, we present additional qualitative results
(which require zooming on a computer screen). Finally, in section F we included
Visualizations of parameters learned by our model to provide better intuition
regarding our approach.

A Centralised Sparse Representation

A different approach to take into account self similarities in sparse models is
the CSR approach of [4]. This approach is easier to turn into a differentiable
algorithm than the LSSC method, but we have empirically observed that it does
not perform as well. Nevertheless, we believe it to be conceptually interesting,
and we provide a brief description below. The idea consists of regularizing each
code αi with the function

Ψi(αi) = ‖αi‖1 + γ‖αi − βi‖1, (1)

where βi is obtained by a weighted average of prevous codes. Specifically, given

some codes α
(k)
i obtained at iteration k and a similarity matrix Σ, we compute

β
(k)
i =

∑
j

Σij∑
lΣil

α
(k)
j , (2)

and the weights β
(k)
i are used in (1) in order to compute the codes α

(k+1)
i .

Note that the original CSR method of [4] uses similarities of the form Σij =
exp

(
− 1

2σ2 ‖Wαi −Wαj‖22
)
, but other similarities functions may be used.

Even though [4] does not use a proximal gradient descent method to solve
the problem regularized with (1), the next proposition shows that it admits a
closed form, which is a key to turn CSR into a differentiable algorithm. To the
best of our knowledge, this expression is new; its proof is given in the appendix.

2 Lecouat B., Ponce J., Mairal J.

Proposition 1 (Proximal operator of the CSR penalty). Consider Ψi
defined in (1). Then, for all u in Rp,

ProxλΨi [u] = Sλ
(
Sλγ (u− βi − λ sign(βi)) + βi + λ sign(βi)

)
,

where Sλ is the soft-thresholding operator, see Figure 1.

Despite the apparent complexity of the for-
mula, it remains a continuous function of the
input and is differentiable almost everywhere,
hence compatible with end-to-end training.
Qualitatively, the shape of the proximal map-
ping has a simple interpretation. It pulls
codes either to zero, or to the code weighted
average βi.

Fig. 1: ProxλΨi for various λ, γ, β
At each iteration, the similarity matrix is updated along with the codes

βi. The proximal operator can then easily be plugged into our framework. We
reported performance of the CSR approach in the main paper for grayscale
denoising, color denoising and demosaicking. Performance of the CSR approach
are reported in Tables 1, 2, 3. We observe that it performs significantly better
than the baseline SC but is not as effective as GroupSC overall.

Table 1: Color denoising on CBSD68, training on CBSD400 for all methods except
CSCnet (Waterloo+CBSD400). Performance is measured in terms of average PSNR.
SSIMs are reported in the appendix.

Method Trainable Params
Noise level (σ)

5 10 15 25 30 50

CBM3D [2] 7 - 40.24 - 33.49 30.68 - 27.36

CSCnet [15] 186k - - 33.83 31.18 - 28.00
CNLNet[9] - - - 33.69 30.96 - 27.64
FFDNET [20] 486k - - 33.87 31.21 - 27.96
CDnCNN [18] 668k 40.50 36.31 33.99 31.31 - 28.01
RNAN [21] 8.96M - 36.60 - - 30.73 28.35

SC (baseline) 119k 40.44 - 33.75 30.94 - 27.39
CSR (ours) 119k 40.53 - 34.05 31.33 - 28.01
GroupSC (ours) 119k 40.58 36.40 34.11 31.44 30.58 28.05

B Implementation Details and Reproducibility

Training details. During training, we randomly extract patches 56 × 56 whose
size equals the window size used for computing non-local self-similarities. We

Trainable Non-Local Sparse Models for Image Restoration 3

Table 2: Grayscale Denoising on BSD68, training on BSD400 for all methods except
CSCnet (Waterloo+BSD400). Performance is measured in terms of average PSNR.
SSIMs are reported in the appendix.

Method Trainable Params
Noise Level (σ)

5 15 25 50

BM3D [2] 7 - 37.57 31.07 28.57 25.62
LSSC [12] 7 - 37.70 31.28 28.71 25.72
BM3D PCA [3] 7 - 37.77 31.38 28.82 25.80

TNRD [1] - - 31.42 28.92 25.97
CSCnet [15] 62k 37.84 31.57 29.11 26.24
CSCnet(BSD400) [15]2 62k 37.69 31.40 28.93 26.04
LKSVD [14] 45K - 31.54 29.07 26.13
NLNet [9] - - 31.52 29.03 26.07
FFDNet [20] 486k - 31.63 29.19 26.29
DnCNN [18] 556k 37.68 31.73 29.22 26.23
N3 [13] 706k - - 29.30 26.39
NLRN [10] 330k 37.92 31.88 29.41 26.47

SC (baseline) 68k 37.84 31.46 28.90 25.84
CSR (ours) 68k 37.88 31.64 29.16 26.08
GroupSC (ours) 68k 37.95 31.71 29.20 26.17

apply a mild data augmentation (random rotation by 90◦ and horizontal flips).
We optimize the parameters of our models using ADAM [6] with a minibatch size
of 32. All the models are trained for 300 epochs for denoising and demosaicking.
The learning rate is set to 6× 10−4 at initialization and is sequentially lowered
during training by a factor of 0.35 every 80 training steps, in the same way
for all experiments. Similar to [15], we normalize the initial dictionary D0 by
its largest singular value, which helps the LISTA algorithm to converge faster.
We initialize the matrices C,D and W with the same value, similarly to the
implementation of [15] released by the authors. 1 Since too large learning rates
can make the model diverge (as for any neural network), we have implemented a
backtracking strategy that automatically decreases the learning rate by a factor
0.8 when the loss function increases too much on the training set, and restore
a previous snapshot of the model. Divergence is monitored by computing the
loss on the training set every 20 epochs. Training the GroupSC model for color
denoising takes about 2 days on a Titan RTX GPU.

Accelerating inference. In order to make the inference time of the non-local
models faster, we do not update similarity maps at every step: we update patch
similarities every 1/f steps, where f is the frequency of the correlation updates.
We summarize in Table 4 the set of hyperparameters that we selected for the
experiments reported in the main tables.

1 The implementation of CSCnet [15] is available here
https://github.com/drorsimon/CSCNet/.

4 Lecouat B., Ponce J., Mairal J.

Table 3: Demosaicking. Training on CBSD400 unless a larger dataset is specified
between parenthesis. Performance is measured in terms of average PSNR. SSIMs are
reported in the appendix.

Method Trainable Params Kodak24 BSD68 Urban100

LSSC 7 - 41.39 40.44 36.63

IRCNN [19] (BSD400+Waterloo [11]) - 40.54 39.9 36.64
Kokinos [7] (MIT dataset [5]) 380k 41.5 - -
MMNet [8] (MIT dataset [5]) 380k 42.0 - -
RNAN [21] 8.96M 42.86 42.61 -

SC (ours) 119k 42.34 41.88 37.50
CSR (ours) 119k 42.25 - -
GroupSC (ours) 119k 42.71 42.91 38.21

Table 4: Hyper-parameters chosen for every task.

Experiment Color denoising Gray denoising Demosaicking Jpeg Deblocking

Patch size 7 9 7 9
Dictionary size 256 256 256 256
Nr epochs 300 300 300 300
Batch size 32 32 32 32
K iterations 24 24 24 24
Middle averaging 3 3 3 3

Correlation update
frequency f

1/6 1/6 1/8 1/6

C Additional Quantitative Results and Ablation Studies

C.1 Results on Other Datasets and SSIM Scores

We provide additional grayscale denoising results of our model on the datasets
BSD68, Set12, and Urban100 in terms of PSNR and SSIM in Table 5. Then,
we present additional results for color denoising in Table 6, for demosaicking in
Table 5, and for jpeg artefact reduction in Table 7. Note that we report SSIM
scores for baseline methods, either because they report SSIM in the correspond-
ing papers, or by running the code released by the authors.

C.2 Inference Speed and Importance of Similarity Refinements

In table 9, we provide a comparison of our model in terms of speed. We compare
our model for demosaicking and color denoising with the methods NLRN. This
study shows how to balance the trade-off between speed and accuracy. Whereas
the best model in accuracy achieves 31.71dB in PSNR with about 30s per image,
a “light” version can achieve 31.67dB in only 2.35s per image. This ablation
study also illustrates the need of similarity refinements during the iterations.

Trainable Non-Local Sparse Models for Image Restoration 5

Table 5: Grayscale denoising results on different datasets. Training is performed on
BSD400. Performance is measured in terms of average PSNR (left number) and SSIM
(right number).

Dataset Noise BM3D
DnCNN

556k
NLRN
330k

GroupSC
68k

Set12
15 32.37/0.8952 32.86/0.9031 33.16/0.9070 32.85/0.9063
25 29.97/0.8504 30.44/0.8622 30.80/0.8689 30.44/0.8642
50 26.72/0.7676 27.18/0.7829 27.64/0.7980 27.14/0.7797

BSD68
15 31.07/0.8717 31.73/0.8907 31.88/0.8932 31.70/0.8963
25 28.57/0.8013 29.23/0.8278 29.41/0.8331 29.20/0.8336
50 25.62/0.6864 26.23/0.7189 26.47/0.7298 26.18/0.7183

Urban100
15 32.35/0.9220 32.68/0.9255 33.45/0.9354 32.72/0.9308
25 29.70/0.8777 29.91/0.8797 30.94/0.9018 30.05/0.8912
50 25.95/0.7791 26.28/0.7874 27.49/0.8279 26.43/0.8002

Table 6: Color denoising results on different datasets. Training is performed on
CBSD400. Performance is measured in terms of average PSNR (left number) or SSIM
(right number).

Dataset Noise
CDnCNN

668k
GroupSC

119k

Kodak24

15 34.84/0.9233 35.00/0.9275
25 32.34/0.8812 32.51/0.8867
50 29.15/0.7985 29.19/0.7993

CBSD68

15 33.98/0.9303 34.11/0.9353
25 31.31/0.8848 31.44/0.8917
50 28.01/0.7925 28.05/0.7974

Urban100

15 34.11/0.9436 34.14/0.9461
25 31.66/0.9145 31.69/0.9178
50 28.16/0.8410 28.23/0.8513

Table 7: Jpeg artefact reduction on Classic5 with training on CBSD400. Perfor-
mance is measured in terms of average PSNR.

Quality
factor

AR-CNN [17] TNRD[1] DnCNN-3 [18] GroupSC

10 29.04/0.7929 29.28/0.7992 29.40/0.8026 29.61/ 0.8166
20 31.16/0.8517 31.47/0.8576 31.63/0.8610 31.78/ 0.8718
30 32.52/0.8806 32.78/0.8837 32.91/0.8861 33.06/ 0.8959
40 33.34/0.8953 - 33.75/0.9003 33.91/ 0.9093

When they are no updates the model perfoms on average 0.15 dB lower than
with 4 updates.

6 Lecouat B., Ponce J., Mairal J.

Table 8: Demosaicking results. Training on CBSD400 unless a larger dataset is spec-
ified between parenthesis. Performance is measured in terms of average PSNR (left)
and SSIM (right).

Method Params Kodak24 BSD68 Urban100

IRCNN (BSD400+Waterloo) 107k 40.54/0.9807 39.96/0.9850 36.64/0.9743
GroupSC (CBSD400) (ours) 118k 42.71/0.9901 42.91/0.9938 38.21/0.9804

Table 9: Inference time (s) per image / PSNR (in dB) for gray denoising task with
σ = 15, computed on BSD68. Inference time is measured using a Titan RTX gpu.

Middle
averaging (6)

fΣ̂
Stride between image blocks

s = 56 s = 48 s = 24 s = 12

7

∞ 1.30 / 31.29 1.75 / 31.57 6.00 / 31.58 22.57 / 31.59
12 1.41 / 31.36 1.85 / 31.64 6.57 / 31.66 24.44 / 31.66
8 1.51 / 31.37 2.90 / 31.65 7.06 / 31.68 26.05 / 31.68
6 1.59 / 31.38 2.15 / 31.65 7.48 / 31.68 27.60 / 31.69

3

∞ 1.30 / 31.29 1.75 / 31.57 6.00 / 31.58 22.57 / 31.59
12 1.45 / 31.36 1.95 / 31.65 6.82 / 31.66 25.40 / 31.67
8 1.63 / 31.38 2.17 / 31.66 7.61 / 31.68 27.92 / 31.70
6 1.77 / 31.39 2.35 / 31.67 8.25 / 31.69 30.05 / 31.71

NLRN 330k 23.02 / 31.88

C.3 Influence of Patch and Dictionary Sizes

We measure in Table 10 the influence of the patch size and the dictionary size for
grayscale image denoising. For this experiment, we run a lighter version of the
model groupSC in order to accelerate the training. The batch size was decreased
from 25 to 16, the frequency of the correlation updates was decreased from 1/6 to
1/8 and the intermediate patches are not approximated with averaging. These
changes accelerate the training but lead to slightly lower performances when
compared with the model trained in the standard setting. As can be seen in the
table, better performance can be obtained by using larger dictionaries, at the cost
of more computation. Note that all other experiments conducted in the paper
use a dictionary size of 256. Here as well, a trade-off between speed/number of
parameters and accuracy can be chosen by changing this default value.

C.4 Number of Unrolled Iterations

We also investigated the impact of the depth of the model on the performance.
To do so, we conducted a denoising experiment using the light version of our
model with a model with various number of unrolled steps. When changing the
depth from K=12, to 36, we only measure a difference of 0.02dB.

Trainable Non-Local Sparse Models for Image Restoration 7

Table 10: Influence of the dictionary size and the patch size on the denoising
performance. Grayscale denoising on BSD68. Models are trained on BSD400. Models
are trained in a light setting to accelerate training.

Noise (σ) Patch size n=128 n=256 512

5
k=7 37.91 37.92 -
k=9 37.90 37.92 37.96
k=11 37.89 37.89 -

15
k=7 31.60 31.63 -
k=9 31.62 31.67 31.71
k=11 31.63 31.67 -

25
k=7 29.10 29.11 -
k=9 29.12 29.17 29.20
k=11 29.13 29.18 -

Table 11: Influence of the number of unrolled iterations.Grayscale denoising
on BSD68. Models are trained on BSD400. Models are trained in a light setting to
accelerate training.

Model Unrolled iterations

SC 28.90 28.91 28.90
GroupSC (light) 29.10 29.12 29.12

D Proof of Proposition 1

The proximal operator of the function Ψi(u) = ‖u‖1 + γ‖u−βi‖1 for u in Rp is
defined as

ProxλΨi [z] = arg min
u∈Rp

1

2
‖z− u‖2 + λ‖u‖1 + λγ‖u− βi‖1

The optimality condition for the previous problem is

0 ∈ O(
1

2
||z− u||22) + ∂(λ||u||1) + ∂(λγ||u− βi||1)

⇔ 0 ∈ u− z + λ∂||u||1 + λγ∂||u− βi||1
We consider each component separately. We suppose that βi[j] 6= 0, otherwise
Ψi(u)[j] boils down to the `1 norm. And we also suppose λ, γ > 0.

Let us examine the first case where u[j] = 0. The subdifferential of the `1
norm is the interval [−1, 1] and the optimality condition is

0 ∈ u[j]− z[j] + [−λ, λ] + λγ sign(u[j]− βi[j])

⇔ z[j] ∈ [−λ, λ]− λγ sign(βi[j])

Similarly if u[j] = βi[j]

z[j] ∈ βi[j] + λ sign(βi[j]) + [−λγ, λγ]

8 Lecouat B., Ponce J., Mairal J.

Finally let us examine the case where u[j] 6= 0 and u[j] 6= βi[j]: then,
∂||u||1 = sign(u[j]) and ∂||u− βi||1 = sign(u[j]− βi[j]). The minimum u[j]∗ is
obtained as

0 = u[j]− z[j] + λ sign(u[j]) + λγ sign(u[j]− βi[j])

⇔ u[j]∗ = z[j]− λ sign(u[j]∗)− λγ sign(u[j]∗ − βi[j])

We study separately the cases where u[j] > β[j], 0 < u[j] < β[j] and u[j] < 0
when βi[j] > 0 and proceed similarly when βi < 0. With elementary operations
we can derive the expression of z[j] for each case. Putting the cases all together
we obtain the formula.

E Additional Qualitative Results

We show qualitative results for jpeg artefact reduction, color denoising, grayscale
denoising, and demosaicking in Figures 3, 4, 5, respectively.

Original image Ground truth Jpeg ARCNN SC (ours)
GroupSC

(ours)
Fig. 2: Jpeg artefact reduction results for 2 images from the Classic5 dataset. Best seen
in color by zooming on a computer screen.

Trainable Non-Local Sparse Models for Image Restoration 9

Original image Ground truth
Noisy image
σ = 25

CBM3D CDnCNN
GroupSC

(ours)

Fig. 3: Color denoising results for 3 images from the Kodak24 dataset. Best seen in
color by zooming on a computer screen. Artefact reduction compared to CDnCNN can
be seen in the top and bottom pictures (see in particular the flower’s pistil).

Original image Ground truth
Noisy image
σ = 25

BM3D DnCNN
GroupSC

(ours)
Fig. 4: Grey denoising results for 3 images from the BSD68 dataset. Best seen by
zooming on a computer screen. GroupSC’s images are slightly more detailed than
DnCNN on the top and middle image, whereas DnCNN does subjectively slightly
better on the bottom one. Overall, these two approaches perform similarly on this
dataset.

F Parameters visualization

We present in this section some visualizations of the
learned parameters of our model GroupSC for a de-
noising task(models are trained on BSD400 dataset).
We reported in Figure 7 learned dictionaries D and W
(model trained with C = D). We observe that dictio-
naries D and W are coupled, patterns are generally
sharper for the atoms of the C dictionary. We reported
in Figure 8 the sequence of regularization parameters
(Λk)k=0,1...K−1 for denoising, and (Λσ0 , . . . , Λσn). for
blind denoising. Finally, we reported in Figure 6 the
learned weights κ for comparing patches as described
in the method section.

Fig. 6: Weights κ for
comparing patches.

10 Lecouat B., Ponce J., Mairal J.

Original image Ground truth Corrupted SC IRCNN
GroupSC

(ours)
Fig. 5: Color denoising results for 3 images from the Urban100 dataset. Best seen in
color by zooming on a computer screen. On the three images, our approach groupSC
exhibits significantly less artefacts than IRCNN and our baseline SC.

D W

Fig. 7: Learned dictionnaries of groupSC for denoising.

Sequence of regularization parameters
Λi of a non-blind models.

Set of regularization parameters
(Λσ0 , . . . , Λσn)

of a blind model.

Fig. 8: Learned regularization parameters of groupSC for denoising and blind denoising.
Models are trained on BSD400.

Trainable Non-Local Sparse Models for Image Restoration 11

References

1. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: A flexible framework
for fast and effective image restoration. IEEE Transactions on Pattern Analysis
and Nachine Intelligence 39(6), 1256–1272 (2016)

2. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D
transform-domain collaborative filtering. IEEE Transactions on Image Processing
16(8), 2080–2095 (2007)

3. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: BM3D image denoising with
shape-adaptive principal component analysis (2009)

4. Dong, W., Zhang, L., Shi, G., Li, X.: Nonlocally centralized sparse representation
for image restoration. IEEE transactions on Image Processing 22(4), 1620–1630
(2012)

5. Gharbi, M., Chaurasia, G., Paris, S., Durand, F.: Deep joint demosaicking and
denoising. ACM Transactions on Graphics (TOG) 35(6), 1–12 (2016)

6. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2013)
7. Kokkinos, F., Lefkimmiatis, S.: Deep image demosaicking using a cascade of convo-

lutional residual denoising networks. In: Proc. European Conference on Computer
Vision (ECCV) (2018)

8. Kokkinos, F., Lefkimmiatis, S.: Iterative joint image demosaicking and denoising
using a residual denoising network. IEEE Transactions on Image Processing (2019)

9. Lefkimmiatis, S.: Non-local color image denoising with convolutional neural net-
works. In: Proc. Conference on Computer Vision and Pattern Recognition (CVPR)
(2017)

10. Liu, D., Wen, B., Fan, Y., Loy, C.C., Huang, T.S.: Non-local recurrent network for
image restoration. In: Proc. Advances in Neural Information Processing Systems
(NeurIPS) (2018)

11. Ma, K., Duanmu, Z., Wu, Q., Wang, Z., Yong, H., Li, H., Zhang, L.: Waterloo
exploration database: New challenges for image quality assessment models. IEEE
Transactions on Image Processing 26(2), 1004–1016 (2016)

12. Mairal, J., Bach, F.R., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse mod-
els for image restoration. In: Proc. International Conference on Computer Vision
(ICCV) (2009)

13. Plötz, T., Roth, S.: Neural nearest neighbors networks. In: Proc. Advances in
Neural Information Processing Systems (NeurIPS) (2018)

14. Scetbon, M., Elad, M., Milanfar, P.: Deep k-svd denoising. arXiv preprint
arXiv:1909.13164 (2019)

15. Simon, D., Elad, M.: Rethinking the CSC model for natural images. Advances in
Neural Information Processing Systems (NeurIPS) (2019)

16. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image
quality assessment. In: Asilomar Conference on Signals, Systems & Computers
(2003)

17. Yu, K., Dong, C., Loy, C.C., Tang, X.: Deep convolution networks for compression
artifacts reduction (2015)

18. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser:
Residual learning of deep cnn for image denoising. IEEE Transactions on Image
Processing 26(7), 3142–3155 (2017)

19. Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep cnn denoiser prior for image
restoration. In: Proc. Conference on Computer Vision and Pattern Recognition
(CVPR) (2017)

12 Lecouat B., Ponce J., Mairal J.

20. Zhang, K., Zuo, W., Zhang, L.: Ffdnet: Toward a fast and flexible solution for cnn-
based image denoising. IEEE Transactions on Image Processing 27(9), 4608–4622
(2018)

21. Zhang, Y., Li, K., Li, K., Zhong, B., Fu, Y.: Residual non-local attention networks
for image restoration. In: Proc. International Conference on Learning Representa-
tions (ICLR) (2019)

