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1 Exp 1: Qualitative results on the Line-Circle dataset

Figure [1] visualizes detected lines on the Line-Circle dataset from the local-
only, global-only and local+global models. Using the global information learned
by our HT-THT block combined with the local information provided by the
convolutional layers, we propose a local4global approach that can predict both
the direction of the lines and their extent.

2 Exp 3.(a): Qualitative results using Wireframe subsets

Figure [2| visualizes detected wireframes from our HT-LCNN (9.3M) and LCNN
(9.7M) [1] trained on various Wireframe subsets [3]. We display the top 100 line
segments. In the first example, our HT-LCNN is better than LCNN in detecting
wireframes of windows on various subsets. However, our HT-LCNN is not able to
ignore the shadow of objects, compared to LCNN, as shown in the last example.
In general, HT-LCNN outperforms LCNN when training data is limited.

3 Exp 3.(b): Qualitative comparison with the
state-of-the-art on the Wireframe dataset

Figure[3| visualizes detected line segments from different approaches on the Wire-
frame dataset [3]. We follow [5] to set up thresholds for LSD [4] and WF-Parser
[3], and select the top 100 line segments for other methods (HT-HAWP, HT-
LCNN, HAWP[6], LCNN [7], AFM [5], MCMLSD [1] and Linelet [2].) Learning-
based models predict line segments more precisely than the non-learning meth-
ods. In general, our models with HT-THT block perform competitively with the
state-of-the-art.
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Fig.1: Exp 1: Visualization of detected lines on the toy Line-Circle dataset. The
local+global model successfully removed the circle pixels and retains the pixels along
the line. Combing local and global information detects not only the direction of the
lines but also their extent.
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Fig.2: Exp 3.(a): Visualization of detected wireframes from HT-LCNN (9.3M) and
LCNN (9.7M) [7] trained on various Wireframe subsets [3]. Our HT-LCNN can more
precisely detect the wireframes of the windows than LCNN, as shown in the first
example. However, our HT-LCNN generates more false-positive predictions from the
shadow of objects, when compared to LCNN, as shown in the last example.
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Fig.3: Exp 3.(b): Visualization of detected line segments on the Wireframe dataset
[3]. We show predictions from our HT-HAWP, HT-LCNN, and seven other leading
methods: HAWP[6], LCNN [7], AFM [5], WF-Parser [3], MCMLSD [I], Linelet [2] and
LSD []). (Continued on the next page.)
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Fig.3: Exp 3.(b): Visualization of detected wireframes (line segments) on the Wire-
frame dataset [3]. We show predictions from our HT-HAWP, HT-LCNN and seven
other leading methods (HAWP[6], LCNN [7], AFM [5], WF-Parser [3], MCMLSD [1],
Linelet [2] and LSD [4]). In general, learning-based methods are able to detect line seg-
ments more precisely, while MCMLSD, Linelet and LSD generate more false-positive
predictions. The HT-LCNN and HT-HAWP predictions preserve both global structures
and local details, and show competitive performance with the leading methods.
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