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Abstract. Semantic understanding of 3D objects is crucial in many ap-
plications such as object manipulation. However, it is hard to give a uni-
versal definition of point-level semantics that everyone would agree on.
We observe that people have a consensus on semantic correspondences
between two areas from different objects, but are less certain about the
exact semantic meaning of each area. Therefore, we argue that by provid-
ing human labeled correspondences between different objects from the
same category instead of explicit semantic labels, one can recover rich
semantic information of an object. In this paper, we introduce a new
dataset named CorresPondenceNet. Based on this dataset, we are able
to learn dense semantic embeddings with a novel geodesic consistency
loss. Accordingly, several state-of-the-art networks are evaluated on this
correspondence benchmark. We further show that CorresPondenceNet
could not only boost fine-grained understanding of heterogeneous objects
but also cross-object registration and partial object matching.

1 Introduction

Object understanding [26, 33, 52] is one of the holy grails in computer vision. Be-
ing able to fully understand object semantics is crucial for various applications
such as self-driving [8, 35] and attribute transfer [28]. Recently, significant ad-
vances have been made in both category-level and instance-level understanding
of objects [10, 25]. However, these datasets all require explicit semantic labels
with an “oracle” definition and are not suitable for point-level understanding of
objects.

One of the key problems with object semantic understanding lies in the am-
biguous definitions of semantics. In the past decades, researchers have proposed
keypoints [27, 29, 41, 44, 51] and skeletons [4] to explicitly define object seman-
tics. These methods have made success in tasks like human body parsing [22],
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What do these 
areas mean?

Hard to Tell But we know the 
correspondence!

Fig. 1: We observe that it is hard to tell the exact meanings of some areas on an
object, while correspondences between different objects are clear.

however, it is hard or even impossible to give consistent definitions of keypoints
or skeletons for a general object. Recently, part based representations of objects
are also adopted by researchers [10, 50, 33, 21], where an object is decomposed
into semantic parts by experts, with a predefined semantic label on each part.
The above methods all impose an explicit definition of object semantics, which
is inevitably biased or flawed since different people may hold different opinions
of what the semantics of an object are.

In this paper, we explore a brand new way to deal with this vagueness in ob-
ject semantic understanding. Instead of explicitly giving semantic components
and labels, we leverage human semantic correspondence consensus between ob-
jects to implicitly infer their semantic meanings. This is based on the observation
that while it is hard to tell the exact meanings of some sub-object areas, almost
everyone would agree on their semantic correspondence across different objects,
as shown in Figure 1. Consequently, comprehensive object understanding can be
achieved by collecting multiple unambiguous semantic correspondences from a
large population.

To that end, we introduce CorresPondenceNet (CPNet): a diverse and high-
quality dataset on top of ShapeNet [10] with cross-object, point-level 3D semantic
correspondence annotations. In this dataset, every annotator gives multiple sets
of semantic-consistent points across different intra-class objects, which we call
“correspondence sets”, as shown in Figure 2.

Using these correspondence sets, we are able to obtain dense semantic em-
beddings of an object, perform cross-object semantic registration and partial-
to-complete object matching. For dense semantic embedding prediction, a new
benchmark with mean Geodesic Error (mGE) is proposed. We leverage a novel
geodesic consistency loss to learn this embedding, where points in the same cor-
respondence set are pulled together in the embedding space, while points across
different correspondence sets get pushed according to their average geodesic dis-
tances. By considering geodesic relationships between different correspondence
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sets, points with similar semantics are more likely to be grouped together in the
embedding space.

In summary, our key contributions are as follows:

– We explore a new way towards 3D object semantic understanding of objects,
where explicit definitions are avoided but point-level semantic correspon-
dences across heterogeneous objects are leveraged.

– We introduce CPNet, the first human correspondence consensus based dataset
for 3D object understanding, which contains 100K+ high-quality semantic-
consistent points.

– Based on CPNet, we show several applications include dense semantic em-
bedding prediction, cross-object registration and partial-to-complete object
matching. We also propose a new benchmark on dense semantic embedding
prediction.

The rest of this paper is organized as follows: in Section 2, we discuss some
related works; in Section 3, we briefly discuss the importance of human corre-
spondence consensus and introduce our dataset with our annotation methods;
in Section 4, we discuss a detailed method on learning dense embeddings based
on our dataset; in Section 5, we show some other applications that are naturally
driven by our dataset.

2 Related Work

Datasets on Semantic Analysis Big data and deep learning have witnessed sev-
eral large 2D/3D datasets these years aiming to parse semantic information
from objects. In the world of 2D images, SPAIR-71k [32] proposes a large-scale
dataset with rich annotations on viewpoints, keypoints and segmentations, which
is mainly used for semantic matching between different images. Recently, Ham
et al. [19] and Taniai et al. [45] have introduced datasets with groundtruth cor-
respondences. Since then, PF-WILLOW and PF-PASCAL [19] have been used
for evaluation in many works. In addition, plenty of datasets on human pose
analysis [3, 2] have been proposed recently. These 2D image datasets have their
advantages in that they are relatively large and pertain diversity across different
scenes and objects.

On the other hand, there exists a rich set of 3D model datasets that try
to directly process meshes or point clouds. There are generally two types of
them: ones that focus on rigid models and some others that focus on non-rigid
models. For rigid model analysis, ShapeNet Core 55 [10] is proposed to help
object-level classification while ShapeNet part dataset [50] pushes it one step
forward with intra-object part classification. As a followup, PartNet [33] comes
up with a much more complete and manually defined hierarchical structures of
parts. Alternatively, dataset proposed by Dutagaci et al. [14] focuses on sparse
semantic keypoints on objects. For non-rigid (deformable) models, FAUST [7]
and TOSCA [9] provide dense correspondence labels for humans and animals,
respectively. These methods leverage the clear anatomy structure underlying
humans and animals and can be applied to pose transfer, pose synthesis, etc.
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Fig. 2: CPNet dataset. Each person annotates multiple sets of corresponding
points. Points in the same correspondence set are in the same color. It can be
seen that people could have his/her own understanding of semantic points as
long as they are consistent across different models within the same category.

Methods on Object Semantic Understanding In the last decade, plenty of meth-
ods have been proposed to find semantic correspondences between paired images.
Earlier methods like Okutomi et al. [34], Horn et al. [20] and Matas et al. [31]
propose to find semantic correspondences within the same scene. Semantic flows
like SIFT flow [30] and ProposalFlow [19] further explore to find dense corre-
spondence across different scenes. Kulkarni et al. [24] and Zhou et al. [53] utilize
a synthesis 3D model as a medium to enforce semantic cycle-consistency. Flo-
rence et al. [16] and Schmidt et al. [42] leverage an unsupervised method to learn
consistent dense embeddings across different objects.

When it comes to the domain of 3D shapes, Blanz et al. [6] and Allen et
al. [1] are the pioneers on finding 3D correspondence between human faces and
bodies. Recently, 3D dense semantic correspondence has been boosted by a vari-
ety of deep learning methods. Halimi et al. [18], Groueix et al. [17] and Roufosse
et al. [39] propose unsupervised methods on learning dense correspondences be-
tween humans and animals. Deep functional dictionaries [43] gives a small dic-
tionary of basis functions for each shape, a dictionary whose span includes the
semantic functions provided for that shape. Perhaps, closest to this paper, is
the method of Huang et al. [21]. It utilized expert-defined corresponding shape
parts to generate a synthetic dense point correspondence dataset and then ex-
tracts local descriptors by a neural network. However, it is ambiguous to clearly
define object parts while we do not leverage any expert-defined part labels. In
addition, their assumption of dense one-to-one correspondence within the same
part fails in many common objects.
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3 CorresPondenceNet

Understanding semantics from arbitrary objects is of great importance. However,
explicitly expressing semantics in a well defined format is extremely hard as the
definition of semantics is vague and diverse.

We observe that people are pretty sure about the correspondence between
two areas but less sure about what each area means in semantics. As shown in
Figure 1, almost everyone would agree on the lined correspondences between two
helmets. However, it is hard to tell the exact semantic meanings of the colored
areas.

Unlike all previous methods where an explicit definition of keypoints or parts
is given, we instead focus on sparse correspondences annotated by humans, based
on the assumption that all the corresponding points labeled by the same person
share the same semantic meaning.

Therefore, we propose a new dataset called CorresPondenceNet (CPNet).
CPNet has a collection of 25 categories, 2,334 models based on ShapeNetCore
with 104,861 points. Each model is annotated with a number of semantic points
from multiple annotators, as shown in Figure 2. Unlike other 2D or 3D keypoint
datasets which manually set a keypoint template and let annotators to follow,
semantic points in our dataset are not deliberately defined by anyone. The key
is that every annotator can have his/her own understanding of semantic points,
as long as they are consistent across different models within the same category.
In the following subsections, we discuss how we collect models, how we annotate
models and annotation types in details. Table 1 gives the detailed statistics of
our dataset.

3.1 Dataset Collections

Our dataset is based on ShapeNetCore [10]. ShapeNetCore is a subset of the full
ShapeNet dataset with single clean 3D models and manually verified category
and alignment annotations. There are 51,300 unique 3D models from 55 common
object categories in ShapeNetCore. We select 25 categories that are mostly seen
in daily life to build our dataset. To keep a balanced dataset, for each category
we keep at most 100 models. For those categories with less than 100 models, all
the models are selected.

3.2 Annotation Process

We hire 80 professional annotators in total. Each model is annotated by at least
10 persons to enrich the dataset.

Template Creation For each category, every annotator is allowed to create 1 to
6 templates with his/her own understanding of semantic points. To ensure a
broader range of point coverage, we plot a heatmap for each template to indi-
cate which region has been marked often by others. Annotators are encouraged
to mark semantic points in those regions that are less explored. As shown in
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Airplane Bathtub Bed Bench Bottle Bus Cap Car Chair Dishwasher Display Earphone Faucet

NP 5527 6033 6464 5421 4489 6404 949 7938 6140 5343 4509 904 1612
NA 10 10 10 10 10 10 10 10 10 10 10 10 10
NM 100 100 100 100 100 100 38 100 100 77 100 58 100

Cmin 35 40 40 30 41 50 20 64 50 60 20 14 10
Cmed 54 60 60 50 45 64 25 80 70 70 50 15 15
Cmax 72 96 80 70 46 81 30 82 78 84 51 21 22

Guitar Helmet Knife Lamp Laptop Motorcycle Mug Pistol Rocket Skateboard Table Vessel All

NP 2832 1500 2109 1683 2987 3878 7668 3358 2315 3822 4008 5214 104861
NA 10 10 10 10 10 10 10 10 10 10 10 10 -
NM 100 95 100 100 100 100 100 100 66 100 100 100 2334

Cmin 19 27 10 13 20 30 66 17 21 20 39 40 -
Cmed 30 35 12 15 30 40 77 35 32 40 40 54 -
Cmax 32 37 15 21 36 40 78 41 49 43 44 56 -

Table 1: CPNet statistics. NP gives the number of annotated points of each
category; NA gives the number of annotators for each category; NM is the num-
ber of models in each category; Cmin, Cmed, Cmax give minimum, median and
maximum number of correspondence sets per instance in each category.

Figure 3(a), red regions indicate frequent annotations while blue means the op-
posite. Therefore, annotators should avoid red regions in order to get a better
coverage.

Templates are then listed to guide the annotations of rest models, so that
he/she is able to keep the consistency. Consider an airplane as an example, if
one annotator marks the nose as No.1 semantic point, then he/she is supposed
to mark all the noses on other airplanes as No.1. It does not matter if another
annotator marks the nose as No.2 semantic point, or even neglecting it, as long
as the annotator keeps his/her own rules across all the models. For a certain
point that does not exist on all the models such as a point of propeller, one can
just skip the models without it. The annotator is free to choose any points from
his/her perspective.

Each annotator is asked to mark at most 16 semantic points per model. All
points are annotated on raw meshes, which is more accurate than those anno-
tated on point clouds. Moreover, it is straightforward to extend these annotations
to point clouds by sampling from the mesh while fixing the locations of semantic
points.

Handling Symmetries In case of any central/rotational symmetry, we extend our

single semantic point p
(n)
i,j to a single hyperpoint, which contains all the points

that are centrally/rotationally symmetric. This step is done manually by marking
out those symmetric points. During training, hyperpoint are treated as normal
points. When generating a positive/negative point pair, we randomly sample a
point within the hyperpoint.

Cross Validation As we mentioned before, we do not define semantic labels.
However, this makes strict vetting process impossible. In order to make our
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(a) (b)

Fig. 3: (a) Example coverage heatmaps. Red regions indicate frequent annota-
tions while blue means the opposite. We encourage annotators to annotate on
blue regions. (b) Correspondence sets across different airplanes. Ci, Cj
and Ck denote three semantic correspondence sets respectively.

dataset trustworthy, we introduce a cross-validation process. To be more specific,
for each annotated correspondence, we ask at-least ten other annotators to verify
if it is reasonable or not. If more than 80% annotators agree it is reasonable,
then this correspondence is kept, otherwise it is rejected. The rationale for cross-
validation lies in our prior that most people have a consistent common sense on
whether a given semantic correspondence exists across different objects.

3.3 Annotation Type

Denote all the models as M = {Mi}, whereMi represents a single model. Each

mdoel Mi is associated with a set of semantic points Pi = {p(n)i,j } where i, j, n
denote the j-th semantic point of the n-th annotator on the i-th model.

In addition, we ask each annotator to give consistent points across different

models, so that p
(n)
i1,j

and p
(n)
i2,j

have the same semantic meaning. Therefore, we
define a set of correspondence sets Ω = {Cj |j = 1, · · · , NΩ}, where each corre-
spondence set Cj = {pi,j |i = 1, · · · , NM} contains all the points with the same
semantic label. Note that we dropped the index of the annotator since distinct
point correspondence from the same person can be treated the same as those
from different persons.

Each annotated point contains attributes about (1) xyz coordinate, (2) color,
(3) face index and (4) uv coordinate. By providing these attributes, methods
based on either point clouds or meshes can be applied easily.

We thus release four different versions of our correspondence dataset for those
who are interested: 1) correspondences without any symmetries; 2) correspon-
dences with only central symmetries; 3) correspondences with only rotational
symmetries; 4) correspondences with both central and rotational symmetries.

4 Learning Dense Semantic Embeddings

We now propose a method on learning dense semantic embeddings from human
labeled correspondences across various intra-class models.
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4.1 Problem Statement

Given a set of 3D models M = {Mi|i = 1, · · · , NM} and a set of correspondence
sets Ω = {Cj |j = 1, · · · , NΩ} defined in Section 3.3, our goal is to produce a set
of pointwise embeddings for each model Mi. The embeddings encode semantic
information across different models and points with similar semantics are close
in embedding space. We define f as an embedding function, such that f(p) gives
the embedding for point p on the model. In practice, we approximate f with a
deep neural network and explain how to optimize f as follows.

4.2 Method Details

Learning

Embedding Space

Correspondence Labels

Fig. 4: Given correspondence sets, we pull the points in the same correspondence
set and push points from different correspondence sets adaptively, according to
their average geodesic distances. The blue and orange correspondence sets are
close so that they can stay close in embedding space, while the orange and green
ones are far away in average geodesic distance so their embeddings are pushed
further from each other.

Pull Loss It is natural to come up with a pull loss since we would like to ensure
the semantic consistency within every correspondence set. As illustrated in Fig-
ure 3(b), the points with the same color belong to the same correspondence set
and reveal similar semantic information. For one specific correspondence Ck like
the green line shown in Figure 3(b), we aim to pull the embedding vectors of the
points within it. Any two of points in the same correspondence set form a pos-
itive pair. The pairwise embedding distances are then summed over all positive
pairs to form our pull loss:

Lpull =
1

Npos

∑
k

∑
p,q∈Ck,p6=q

‖f(p)− f(q)‖2, (1)

where Npos is the number of all possible positive point pairs.
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Geodesic Consistency Loss The pull loss in Equation 1 enforces the points in the
same correspondence set to have similar embeddings. However, there is a trivial
solution where f outputs a constant embedding (e.g. 0) for all points, which is a
global optimum when minimizing Lpull only. Such a trivial solution is due to the
ignorance of an important principle: we ought to ensure that those points with
distinct semantics to have a large embedding distance. Therefore, a push loss
guided by geodesic consistency is proposed to fulfill this goal. We leverage a prior
to determine whether two different correspondence sets have distinct semantics:
if all pairs of points from these two sets have large geodesic distances on models,
they are more likely to reveal different semantic information.

Based on this insight, we design a distance measure d for a pair of corre-
spondence sets Ci and Cj :

d(Ci, Cj) =
1

NM

∑
k

∑
p,q∈Mk

dgeo(p, q), s.t. p ∈ Ci, q ∈ Cj , (2)

where dgeo(p, q) is the geodesic distance between point p and q. This distance
measure d represents the average geodesic distance between point pairs from
two correspondence sets.

Then, the push loss can be written as,

Lpush =
1

Nneg

∑
i 6=j

∑
p∈Ci

∑
q∈Cj

max{0,d(Ci, Cj)− ‖f(p)− f(q)‖2}, (3)

where Nneg is the number of all possible negative pairs formed by points from
different correspondence sets.

In Equation 3, the push loss is only activated when ‖f(p)− f(q)‖2 is smaller
than d(Ci, Cj). In other words, the larger d(Ci, Cj) is, the further f(p) and f(q)
are separated in the embedding space. This is based on the observation that
some points in two correspondence sets may have similar semantic information
(like the red and orange lines in Figure 3(b)) while some have totally different
meanings (like the orange and green lines in Figure 3(b)). Therefore, only for
those correspondence sets with a large average geodesic distance, a large distance
between their embeddings is expected.

Our final loss is,

L = Lpull + λLpush, (4)

where λ is a weight factor. Our method is summarized in Figure 4.

Hard Negative Mining In practice, negative pairs to be pushed are combinato-
rially more than positive pairs to be pulled, since negative pairs are sampled
from different correspondence sets. In such case, we borrow the idea from [12]
to utilize hard negative mining. Within each batch, only those negative pairs
with smallest embedding distances are taken into consideration, matching the
number of positive pairs.
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Algorithm 1 mean Geodesic Error calculation

Input: model set Ω, an embedding function f to be evaluated
Output: mean Geodesic Error (mGE) ε of f
ε = 0
for Ci in Ω do

for p, q in Ci do
x = arg minx∈Mq

‖f(x)− f(p)‖2, where
Mq denotes the model that point q lies on.

ε = ε+ dgeo(q, x)
end for

end for
ε = ε

NΩN2
M

4.3 Mean Geodesic Error

Since we are dealing with a new dense embedding prediction task, exist-
ing metrics on classification or part segmentation can not benchmark it well.
Therefore, we introduce mean Geodesic Error (mGE), a new metric on dense
correspondence, to evaluate predicted semantic embeddings. Unlike mean Eu-
clidean Error that is used in Huang at el. [21], geodesic distance is more suitable
for 3d objects as it is restricted to lie on object surfaces. mGE is calculated
individually for each category and measures how well the generated embedding
vectors fit with annotated correspondence sets. We also provide results for mean
Euclidean Error in the supplementary material. Algorithm 1 presents the calcu-
lation procedure of mGE for a given embedding function f . Intuitively, for each
annotated points on a model, we find their corresponding points that minimize
the embedding distance on other models. After that, the geodesic distances be-
tween these points and human labeled corresponding points are accumulated. It
is easy to verify that if all the embeddings are identical within the same corre-
spondence set but are distinct across different correspondence sets, mGE = 0,
which means that the predicted semantic embeddings are consistent with human
labels.

4.4 Experiments

In this section, we demonstrate that our proposed method can effectively learn
point-wise dense embeddings from human labeled correspondences. We evaluate
the embeddings with mGE error. Seven state-of-the-art neural network back-
bones are benchmarked. These backbones are point cloud [37, 38, 49], graph [48,
13] and voxel [11, 46] based neural networks. We additionally compare our ap-
proach, which is based on implicit correspondences, with that based on explicit
part-level supervision.

Evaluation and Results We split our dataset into train (70%), validation (15%)
and test (15%) set. Train and validation sets are used during training and all the
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Fig. 5: Predicted semantic embeddings for PointConv. Same colors indi-
cate similar embeddings.

results are reported on the test set. We use ADAM optimizer [23] with initial
learning rate α = 0.001, β1 = 0.9, β2 = 0.999 and batch size 4. The learning rate
is multiplied by 0.9 every 10 epochs and the hyperparameter λ in Equation 4 is
set to 1. The output point embedding vector is 128-dimensional for all neural
networks.

Table 2 gives mGE of all the compared architectures. SHOT fails to pre-
dict correct semantic correspondences across objects, whose performance is just
slightly better than random point embeddings. The reason is that SHOT only
considers local geometric properties, without aggregation of the global struc-
ture and semantic information. In contrast, all deep learning based methods
using our geodesic consistency loss achieve much smaller mGE. Among them,
DGCNN, PointNet, RS-Net and PointConv are relatively superior to the other
nets on extracting semantic correspondence information. The visualization of
learned embeddings by PointConv is shown in Figure 5. From Figure 5, we can
see that consistent pointwise embeddings are generated across heterogeneous
objects. We get reasonable dense embeddings of all points on objects by fitting
sparse correspondence annotations.

Comparison to Part-level Supervision To further illustrate the advantage of our
proposed semantic correspondence sets, we compare our method with that su-
pervised by part-level annotations.

We train a PointNet using correspondence labels and part labels respectively.
For PointNet trained on part labels, we use the same experiment settings for part
segmentation as the original paper [37] and extract features from the last but one
layer as point embeddings. Then given a point on a source model, we use embed-
dings to find its corresponding point on the target model and results are shown
in Figure 6. Qualitatively, we can see that when trained on our correspondence
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Airplane Bathtub Bed Bench Bottle Bus Cap Car Chair Dishwasher Display Earphone Faucet

PointNet 0.063 0.141 0.078 0.066 0.090 0.055 0.093 0.070 0.088 0.103 0.071 0.151 0.163
PointNet++ 0.053 0.170 0.118 0.071 0.138 0.118 0.123 0.075 0.114 0.148 0.112 0.122 0.179
RS-Net 0.052 0.153 0.121 0.091 0.082 0.059 0.101 0.064 0.097 0.145 0.081 0.115 0.167
PointConv 0.053 0.133 0.128 0.072 0.100 0.076 0.121 0.079 0.126 0.144 0.085 0.103 0.161

DGCNN 0.046 0.118 0.125 0.058 0.088 0.060 0.085 0.073 0.106 0.116 0.086 0.091 0.143
GraphCNN 0.069 0.153 0.126 0.089 0.166 0.099 0.122 0.112 0.147 0.157 0.132 0.136 0.163

Minkowski 0.085 0.149 0.150 0.112 0.147 0.113 0.155 0.102 0.162 0.177 0.179 0.116 0.185

SHOT 0.230 0.485 0.580 0.568 0.380 0.410 0.340 0.386 0.508 0.515 0.430 0.495 0.258

Random 0.308 0.492 0.564 0.544 0.431 0.404 0.484 0.401 0.515 0.507 0.483 0.599 0.355

Guitar Helmet Knife Lamp Laptop Motorcycle Mug Pistol Rocket Skateboard Table Vessel Average

PointNet 0.066 0.169 0.066 0.221 0.163 0.085 0.072 0.091 0.151 0.059 0.042 0.101 0.101
PointNet++ 0.083 0.180 0.079 0.226 0.182 0.089 0.106 0.117 0.153 0.095 0.093 0.140 0.123
RS-Net 0.061 0.166 0.064 0.243 0.170 0.074 0.063 0.098 0.133 0.072 0.103 0.120 0.108
PointConv 0.082 0.177 0.089 0.237 0.116 0.089 0.094 0.107 0.124 0.061 0.076 0.128 0.110

DGCNN 0.064 0.160 0.052 0.221 0.131 0.085 0.095 0.099 0.127 0.059 0.064 0.118 0.099
GraphCNN 0.115 0.178 0.117 0.245 0.160 0.121 0.132 0.115 0.170 0.089 0.098 0.191 0.136

Minkowski 0.123 0.195 0.100 0.252 0.203 0.140 0.151 0.126 0.154 0.101 0.112 0.154 0.146

SHOT 0.311 0.389 0.193 0.390 0.551 0.350 0.413 0.343 0.276 0.395 0.606 0.374 0.407

Random 0.329 0.410 0.426 0.452 0.547 0.369 0.488 0.408 0.315 0.396 0.544 0.377 0.446

Table 2: Mean Geodesic Error (mGE) results.

Fig. 6: Comparison between our method and part-level supervision.
Given a point on the source model, we find its closest point in embedding space on
the target model and post-process the founded correspondences with PMF [47]
to ensure bijectiveness. The corresponding points are in the same color.

labels, points of the same semantic have similar embeddings while part-level
supervision fails to give consistent semantic embeddings across objects. In addi-
tion, we compare them quantitatively using mGE, as shown in Table 3. Clearly,
PointNet trained on our correspondence labels achieves better performance. On
the contrary, with only part-level supervision, points in the same part are hard
to be distinguished from each other, resulting in inferior performance. Note that
the number of training data for part-level supervision (10240) is seven times
more than that for correspondence based supervision (1362).
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Air. Cap Car Chair Earphone Guitar Knife Lamp

PointNet 0.063 0.093 0.070 0.088 0.151 0.066 0.066 0.221

PointNet(Part) 0.166 0.271 0.245 0.227 0.140 0.083 0.065 0.282

Laptop Motor Mug Pistol Rocket Skate. Table Average

PointNet 0.163 0.085 0.072 0.091 0.151 0.059 0.042 0.099

PointNet(Part) 0.112 0.222 0.182 0.189 0.228 0.322 0.282 0.201

Table 3: Comparison of the results trained on human labeled corre-
spondences and part annotations using PointNet.

5 Other Applications

5.1 Cross-Object Registration

We demonstrate cross-object registration at category-level could benefit from
the learnt embeddings, as illustrated in Figure 7.

Fig. 7: Cross-object regis-
tration visualization.

Chair Airplane Mug Pistol
FPFH 77.1◦/0.285 41.3◦/0.163 25.9◦/0.14 9.1◦/0.095
SHOT 72.0◦/0.262 44.8◦/0.172 91.3◦/0.33 21.2◦/0.121
Part 20.1◦/0.155 24.4◦/0.147 80.6◦/0.35 67.75◦/0.306
Ours 14.6◦/0.157 37.0◦/0.225 17.1◦/0.137 5.3◦/0.089

Table 4: Comparison of cross-object regis-
tration.

Experiment Settings Given two shapes S and S′ in the same category with
aligned orientations and overlapped centroids, we randomly rotate and trans-
late S′. Both shapes are normalized in a unit sphere. The objective is to find
a rotation matrix R ∈ R3×3 and a translation vector t ∈ R3 that best align S
to S′. Initial rotation and translation on S′ are seen as ground truth. We use
RANSAC[15] with embeddings for global registration and ICP[5] to refine. As
a comparison, we also evaluate registration results from SHOT, FPFH[40] and
PointNet part segmentation embeddings. 840 shape pairs from 4 common cate-
gories of CPNet test set are evaluated under three levels of perturbation similar
to [36]: Easy(10◦, 0.1), Medium(20◦, 0.3), Hard(45◦, 0.5). Table 4 gives relative
rotational and translational errors. Our embeddings are robust in registration
and give reliable semantic correspondences.

5.2 Partial Object Matching

In real applications, occlusion and incompletion of 3D models are pretty com-
mon, which makes accurate semantic point matching a tough task.
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We conduct experiments to qualitatively show that the learnt embeddings
with our method can generalize well to partial objects and thus can be used to
find correspondences between partial and complete objects. Given our dataset,
we train the network with complete objects and apply the network on their
partial counterparts synthetically by removing some parts. Figure 8 shows the
embeddings of partial and complete object pairs. Our method predicts reliable
semantic embeddings even under severe erosion.

Fig. 8: Partial object matching. Each pair includes the complete and partial
scans of the different objects within the same category. Same colors indicate
same embeddings.

6 Conclusion

In this paper, we explored a new way towards semantic understanding of 3D
objects. Instead of explicitly defining semantic labels on an object, we leveraged
an observation that while semantic meanings on a single object can be ambigu-
ous and hard to depict, the correspondences of certain points across objects are
clear. We thus built a dataset named CorresPondenceNet (CPNet) based on
human labeled correspondences, and proposed a method on learning dense se-
mantic embeddings of objects. Mean Geodesic Error is introduced to evaluate
our method with various backbones. Some other applications like cross-object
registration and partial object matching are also introduced to better illustrate
CPNet’s potentiality in boosting general object semantic understandings.
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47. Vestner, M., Litman, R., Rodolà, E., Bronstein, A., Cremers, D.: Product manifold
filter: Non-rigid shape correspondence via kernel density estimation in the product
space. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 3327–3336 (2017)

48. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph cnn for learning on point clouds. ACM Transactions on Graphics (TOG)
38(5), 146 (2019)

49. Wu, W., Qi, Z., Li, F.: Pointconv: Deep convolutional networks on 3d point clouds.
CoRR abs/1811.07246 (2018), http://arxiv.org/abs/1811.07246

50. Yi, L., Kim, V.G., Ceylan, D., Shen, I., Yan, M., Su, H., Lu, C., Huang, Q., Sheffer,
A., Guibas, L., et al.: A scalable active framework for region annotation in 3d shape
collections. ACM Transactions on Graphics (TOG) 35(6), 210 (2016)

51. You, Y., Lou, Y., Li, C., Cheng, Z., Li, L., Ma, L., Lu, C., Wang, W.: Keypointnet:
A large-scale 3d keypoint dataset aggregated from numerous human annotations.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 13647–13656 (2020)

52. Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S., Barriuso, A., Torralba, A.: Se-
mantic understanding of scenes through the ade20k dataset. International Journal
of Computer Vision 127(3), 302–321 (2019)



18 Y. Lou et al.

53. Zhou, T., Krahenbuhl, P., Aubry, M., Huang, Q., Efros, A.A.: Learning dense corre-
spondence via 3d-guided cycle consistency. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 117–126 (2016)


