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Abstract. In this paper, we propose a cascading network for compressed
sensing of images with progressive reconstruction. Specifically, we decom-
pose the complex reconstruction mapping into the cascade of incremental
detail reconstruction (IDR) modules and measurement residual updat-
ing (MRU) modules. The IDR module is designed to reconstruct the
remaining details from the residual measurement vector, and MRU is
employed to update the residual measurement vector and feed it into
the next IDR module. The contextual memory module is introduced to
augment the capacity of IDR modules, therefore facilitating the infor-
mation interaction among all the IDR modules. The final reconstruction
is calculated by accumulating the outputs of all the IDR modules. Ex-
tensive experiments on natural images and magnetic resonance images
demonstrate the proposed method achieves better performance against
the state-of-the-art methods.

Keywords: Compressed Sensing, Cascading Network, Contextual Mem-
ory, Progressive Reconstruction

1 Introduction

Compressed sensing (CS) [5] is a well-known signal sensing technology, which at-
tempts to directly sense the compressed signal. The basic principle of CS is that
a N-dimensional sparse signal x with K non-zero transforming coefficients can
be recovered from only about O(K log(N/K)) linear projection measurements
[3,4]. The CS technology has also achieved great success in many imaging system-
s, such as shortwave-infrared cameras [13,22], compressive magnetic resonance
imaging (MRI) [20, 39, 40], transmission electron microscopy, and snapshot com-
pressive imaging [19, 37], because it can potentially improve the imaging systems
by reducing the numbers of measurement, imaging time and storage space.
The core problem of compressed sensing of images is how to reconstruct the
underlying image from the received measurement. Many approaches have been
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Fig. 1. The cascading network architecture of the proposed MAC-Net.

proposed for this problem, and they can be broadly divided into two categories.
The first category is to solve a sparsity-regularized nonlinear problem based on
iterative optimization, including greedy pursuit methods [26, 33, 35] and convex
relaxation methods [6,8,23,34]. Specifically, greedy pursuit methods estimate
the ideal sparse signal by selecting one or more columns in the sensing matrix
that are most relevant to the measurement vector, and then calculate the residual
measurement vector for subsequent iterations. Convex relaxation methods take
the 1 norm as the sparsity metric, and the reconstruction can be obtained by
means of many well-developed convex optimization methods. Since large-scale
matrix multiplications are needed in the convex optimization, convex relaxation
methods are very time-consuming. The second category of methods is to direct-
ly learn an inverse reconstruction mapping from the measurement vector to the
original image with a deep network [16, 18, 30]. In order to improve the mapping
accuracy, a lot of works leverage on designing more sophisticated and large net-
works. However, simply stacking complex network modules does not necessarily
make the reconstruction result more accurate.

To deal with these issues, we propose a new cascading network for progres-
sive CS image reconstruction, named Memory Augmented Cascading Network
(MAC-Net). As shown in Fig. 1, the proposed network is composed of three kinds
of modules, i.e., incremental detail reconstruction (IDR) modules, measurement
residual updating (MRU) modules and a contextual memory (CM) module. The
IDR module is dedicated to predicting the incremental reconstruction from the
input measurement vector. The MRU is designed to calculate the residual mea-
surement based on the reconstruction results of the former IDR module and feed
it into the next IDR module. The CM module is used to augment the capacity of
the IDR modules. Specifically, the current IDR module can easily access informa-
tive features in the memory through the reading operation, therefore facilitating
the reconstruction of the remaining details. All these modules are trained in an
end-to-end manner under the guidance of a unified loss function. The final re-
construction is obtained by accumulating outputs of all IDR modules. The code
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of MAC-Net are available at https://github.com/DFLyan/MAC-Net. Our main
contributions are summarized below.

1. The proposed MAC-Net decomposes the complex reconstruction mapping as
progressive reconstruction, which can effectively reduce the learning difficulty
and boost the reconstruction quality.

2. The CM module is designed to augment the capacity of IDR modules and
enrich the interactions between them, therefore enhancing the reconstruction
performance of each IDR module.

3. MAC-Net is flexible to achieve scalable reconstruction by using different
numbers of modules according to practical demand. The extensive experi-
ments on natural images and MRI images verify its promising performance.

2 Related Work

Mathematically, the compressed measurement vector y € RM of an image = €
RN can be represented as the linear observation equation y = &z + ¢, where
& € RM*N is the sensing matrix with M < N, such as the random Gaussian
matrix and partial fourier transform matrix, and € is the measurement noise.
M/N is termed as the measurement rate. Compressed sensing reconstruction
refers to the problem of recovering the original image x from the measurement
vector y. Many methods have been proposed to solve this problem, and they can
be grouped into the following two categories.

Iterative optimization based methods This category of methods try to find
the sparsity solution to the underdetermined linear observation Eq. (1) by itera-
tive optimization. When the [y norm is used for the sparsity metric, the induced
reconstruction is a non-convex and NP-hard problem [9]. Some greedy pursuit
algorithms, such as the orthogonal matching pursuit (OMP) [33], regularized
OMP (ROMP) [27] and CoSaMP [26], are adopted to find an approximate solu-
tion based on the greedy rule. Greedy pursuit algorithms have the advantages of
fast calculation and easy implementation. However, they usually require a high
measurement rate for reliable reconstruction.

Different from the greedy methods, the convex optimization methods relax
the reconstruction problem by replacing the non-convex Iy norm with the convex
I3 norm [10]. The convex optimization of I; norm solution can usually recover
a good reconstruction to the original signal [7]. Many reconstruction method-
s are developed based on the principle of well-developed convex optimization
algorithms, such as /; norm minimization [2] by using the iterative shrinkage
thresholding algorithm (ISTA), total variation minimization by augmented la-
grangian and alternating direction algorithms [6]. Convex optimization methods
can obtain superior reconstruction quality over greedy optimization method-
s. However, each iteration in convex optimization methods involves large-scale
matrix multiplication, so they are computationally expensive.
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Deep network based methods The main idea of deep network based meth-
ods is to learn the inverse mapping from the compressed measurement to the
reconstruction, so that the test image can be fast reconstructed by simply pass-
ing the low-dimensional measurement vector through the learnt network. Many
deep networks have been designed for CS reconstruction. Deeplnverse [24] uses
a deep convolutional network to predict the reconstruction. DAGAN [39] learns
a deep de-aliasing generative adversarial network for CS-MRI (Magnetic Reso-
nance Imaging) reconstruction. Specifically, a U-Net based generator is used to
refine the reconstruction by predicting the incremental details. ReconNet [18]
uses a deep convolutional network to directly learn the mapping relationship be-
tween the measurement vector and image blocks, and obtains the finally recon-
structed image by assembling each block’s reconstruction. SCGAN [30] proposes
a sub-pixel convolutional generative adversarial network for the reconstruction,
where adversarial learning is beneficial for capturing the inherent image distri-
bution for reconstruction. DR2-Net [41] exploits the linear layer and multiple
residual blocks to learn the reconstruction mapping. NLR-CSNet [31] attempts
to learn a network for reconstructing image sequences from the measurement
vectors without pre-training. In order to combine the merits of iterative opti-
mization based methods and deep learning based methods, ISTA-Net [16] unrolls
the classical ISTA optimization into learnable network modules and learns all
these network modules in an end-to-end manner. ADMM-Net [40] converts the
alternating direction method of multipliers (ADMM) algorithm to the corre-
sponding deep architectures. The above methods mostly leverage a single deep
network to learn the mapping relationship between the measurement vector and
the original image. According to the CS theory, since the image residuals are of-
ten more compressible, it is easier to reconstruct the residuals than the original
image [4,15,32]. So, instead of one step prediction, MAC-Net proposed in this
paper constructs multiple stages to continuously approximate the measurement
vector for reconstructing the underlying image. Each stage learns the mapping
relationship between the residual of the measurement vector and the residual of
the reconstructed image. The progressive reconstruction can reduce the difficulty
of network learning, which is conducive to improving the reconstruction quality.

3 Memory Augmented Cascading Reconstruction

3.1 Network Architecture

MAC-Net aims to recover the original image from the given measurement vector
progressively. Fig.1 illustrates the proposed MAC-Net, which decomposes the
complex reconstruction mapping into multiple cascading stages. At each cas-
cading stage, the IDR module predicts the current incremental reconstruction
and engenders a residual, i.e, the remaining residual of the target image that
has not been approximated. The measurement vector is then updated to reflec-
t the remaining part and fed into the next IDR module, the new incremental
reconstruction can be yielded.
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Fig. 2. Illustration of one cascading stage and its interaction with the CM module.

In order to further the reconstruction quality, all the incremental reconstruc-
tions of the former stages are written into contextual memory and a reading
operation is designed to access the associated information for the current IDR
module to promote the reconstruction of the remaining details. With the involve-
ment of more stages, the reconstruction is continuously improved, and finally,
high-quality reconstruction can be achieved. The above computation flow can
be expressed as

2t = Gi(yi=1, Mi—Y), yi = Ui(at,y'=), .
M =M1 2,1<i<K. )

G denotes the IDR module of the i-th stage, which exploits both the residual
measurement vector y*~' and the contextual memory M?~! to generate the
incremental reconstruction . U? denotes the MRU module to generate the new
measurement residual ¢* according to %, and M* denotes the contextual memory
information at the i-th cascading stage. K is the total number of cascading
stages. For the first cascading stage, y° is the given measurement vector and
M? has empty memory. The final reconstruction accumulates the incremental
reconstructions of all cascading stages and is calculated by

K
Sk = Zx (2)

Due to this cascading architecture, MAC-Net can obtain scalable reconstruction
results by choosing different K according to practical demands. In the following,
we will illustrate the detailed architecture of each cascading stage.

3.2 Single Cascading Stage

Fig. 2 illustrates a single cascading stage in detail, which mainly includes an
IDR module, a MRU module and the interaction with the CM module. The
i-th cascading stage takes the measurement vector y*~! as the input, and the
IDR module outputs the incremental reconstruction x*, while the MRU module
calculates the associated residual measurement vector y° for the next stage.
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The IDR Module predicts the incremental reconstruction x* from the mea-
surement vector '~ with the assistance of contextual memory M*~!. The IDR
module consists of three processing blocks, i.e., the resolution upsampling Fiy,
contextual fusion Flyysion, and high-resolution refinement F.fine, and its whole
process can be formulated as,

xi - Frefine(Ffusion(Fup(yi_l)v Mi_l))' (3)

F,, accepts the measurement vector y'~! as the input and increases the reso-

lution of the feature maps to make it the same as the original image. Different
from the conventional setting of taking CS measurement over the whole image
with size W x H, we divide the image evenly into [WW/16] x [ H/16] sub-blocks
with size 16 x 16 and perform an m—dimensional CS measurement on each sub-
block. These sensed measurement vectors are rearranged as a data cube with the
size of [W/16] x [H/16] x m according to the order of their spatial position-
s. This way, we can represent the measurement y°~! as a 3-D data cube as in
[38], and use a 3 x 3 convolution instead of the fully connected layer to process
the whole measurement, which can reduce the number of network parameters.
Then, a bottleneck residual block [11] is used to extract the feature maps and
upsample their resolutions by a sub-pixel convolution layer [28] with a scaling
factor of 4. Repeating this process twice can generate the feature maps with the
same resolution as the original image.

Fpyusion is designed to interact with the CM module to read informative
features and concatenates them with the features from the output of F,,. The
detailed interaction with the CM module will be described in sub-section 3.3.

Firefine processes the feature maps by two bottleneck residual blocks and
employs a convolution operation to adjust the number of channels of the feature
maps, and finally outputs the incremental reconstruction x*. It should be noted
that we use a large 5 x 5 convolution kernel for coarse reconstruction in the
first stage, and a small 3 x 3 convolution kernel for detailed reconstructions in
subsequent stages. The 1 x 1 convolution in the fusion layer remains unchanged.
Although the CS measurement is conducted in a block-wise manner, the IDR
module outputs the entire reconstruction 2 in a single forward computation,
thereby eliminating the blocking artifacts.

The MRU Module updates the measurement vector according to the cur-
rent incremental reconstruction so that it can reflect the residual. With regard
to the i-th stage, the residual measurement vector is updated as:

y' =y~ dat. (4)

@ has a block-diagonal structure corresponding to the block-by-block CS mea-
surement, which can significantly reduce the computation complexity of the up-
dating equation. In fact, by tracking back to the first stage with y° as the input,
Eq. 4 can be rewritten as y’ = y° — &#S?. Therefore, as the cascading stage con-
tinues, the norm (e.g. I; norm) of the residual measurement vector will decrease
continually, making it possible to pursuit all the information involved in the
measurement vector for reconstruction.
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3.3 Contextual Memory Augmentation

In order to enrich the information flow in our cascading network, we augmen-
t the sequential links between the network modules with the CM module, so
that the current IDR module can access all the former predictions and extract
the relevant information for reconstruction [25,29]. We define the writing and
reading operations of the CM module to solve the problem of memory update
and usage. Therefore, each cascading stage can utilize the contextual memory
more efficiently, and the information interaction will be facilitated between the
cascading stages in the network.

The reading operation is to extract the informative features for aiding the
processing of the IDR module. Specifically, we use the feature maps f; in the
IDR module as a query and embed the query by convolution operations. The
reading gate is designed to filter out the informative context f,,, from the memory
according to the embedded query from the IDR module, which is computed as,

A = softmaz(conv(conv(fy))),
{fm = A® conv(M~1), )

where conv is a 3 X 3 convolution operation. The function of softmax is to
normalize the embedded query into a probability distribution A. ® denotes the
element-wise multiplication operation. It should be noted that softmaxz is used
in the channel dimension, and it means that all the values in one pixel’s position
of a 3-D feature map add up to 1. In fact, A can be seen as the 3-D attention
maps. Different from the 1-D channel attention [12] and 2-D spatial attention
[14], and the simple tensor product of the spatial and channel attention [36], A
can attend each entry of 3-D feature maps conv(M®~t) adaptively. Thereby, the
reading gate can extract informative context f,, into the F'rysion block of the
IDR module, which helps the IDR module to reconstruct the remaining residual.

The writing operation of the i-th stage is to add the current incremental
image 2% into the CM module and update the memory as M* = [M*~1 2.

3.4 Network Loss and Learning

Assuming the training dataset consists of N pairs {z,, yg = @mp};f:l, and given
the measurement vector yg, the output of MAC-Net is denoted as Szf{ , where K is
the number of cascading stages. y;(l < ¢ < K) denotes the measurement residual
of the p-th training image induced in the i-th stage of MAC-Net. Each stage
is supposed to produce meaningful incremental reconstruction and contribute
to the improvement of the reconstruction quality. Therefore, we impose weak
supervision on each stage by minimizing the /; norm of the updated residual
measurement vector, so that the quality of the cumulative reconstruction can be
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continuously improved. The unified loss function of MAC-Net is defined as,

. N X i
in, 55 Ll = 52,40 8 i), )

(6)

= Gl(y;_la M;)_l)’ y;) = Ul(x;n y;)_l)v
M=M=V i), SK =S ol i=1,..K,

where A is the regularization parameter to balance the importance of the re-
construction error term and the measurement error term, and (; is the weight
associated with the i-th stage. Mean absolute error (MAE) is used to measure
the reconstruction error and measurement error. Although there are no param-
eters to be optimized in the MRU module, we still need to define the gradient
operation for the MRU module due to the chain rule. According to Eq. 4, the
gradient of MRU with respect to x’ is the negative transpose of sensing matrix
—&T and the gradient with respect to 3°~! is simply the constant 1. The Adam
optimizer [17] is adopted to update the parameters of MAC-Net.

4 Experimental Results and Analysis

The proposed MAC-Net is evaluated on two kinds of image datasets. One is
natural image datasets including Set1l [18] and BSD68 [21], and the other is
the magnetic resonance image dataset, i.e., the MICCAI 2013 grand challenge
dataset. Multiple state-of-the-art CS reconstruction methods are also tested for
comparison, including TVAL3 [6], ReconNet [18], SCGAN [30], DR2-Net [41],
ISTA-Net™ [16], DeepADMM [40] and DAGAN [39].

In the natural image reconstruction experiments, followed by ReconNet [18]
and DR?-Net [41], we choose their training set, Train91 dataset, for the net-
work training. This image set contains 91 color images. Firstly, we convert these
images into grayscale images by extracting the luminance component. In order
to increase the number of samples, we randomly crop the image blocks with
the size of 96 x 96 from 91 grayscale images, and by conducting flipping(up-
down and left-right) and rotating(0°,90°,180° and 270°) operations the training
set is further augmented. In the magnetic resonance image reconstruction ex-
periments, the MICCAI 2013 dataset has a training set with 15992 2D images
including brain tissues. To ensure the integrity of the structure, we use complete
MR images instead of cropped blocks. Data augmentation is also used during the
training. SET11 [18], BSD68 [21] and MICCAT 2013 grand challenge dataset are
used for testing. The Peak Signal to Noise Ratio(PSNR) is adopted as a quanti-
tative evaluation criterion of the experimental results. The proposed MAC-Net
is implemented upon the tensorflow platform [1] and the Adam optimizer [17] is
adopted for updating network parameters with an initial learning rate of 0.0001.
During training, the learning rate is reduced to 80% every 50 epochs, and we
used 200 epochs in total. We run the experiments on Ubuntu Linux with GeForce
GTX TITAN X GPU.
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Fig. 3. The curves of average PSNR versus the number of cascading stages on SET11.

Fig. 4. Visualization of cascading reconstruction of the image Monarch from SET11.

4.1 Ablation studies

In order to better understand the behaviour of MAC-Net, we conduct two groups
of ablation studies, the first group is to take a deeper insight to the procedure
of cascading reconstruction, and the second group is to evaluate the influence of
memory augmentation on the reconstruction performance.

We first evaluate the performance of cascading reconstruction. As described
in Section 3, using more cascading stages is helpful for improving the recon-
struction quality, but the complexity of the network will be also increased. Fig.3
illustrates average PSNR curves as a function of the number of cascading stages
at four measurement rates on the SET11 dataset. At the measurement rates of
0.25 and 0.1, each additional stage can bring some PSNR improvement. Special-
ly, there is a sharp rise from 22.01 dB to 32.91 dB at the measurement rate of
0.25. Although the PSNR increments per stage at the measurement rates of 0.04
and 0.01 are smaller than those at the measurement rates of 0.25 and 0.1, the
cascading reconstruction is also beneficial for exploiting the limited information
in the measurement vector for reconstruction. We can also find out that 8 stages
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Fig. 5. The ablation studies of the contextual memory and the reading operation.

can well balance the quality and efficiency of network reconstruction. More than
8 stages will only bring very slight performance improvement and even reduce
the reconstruction quality. Taking the Monarch image from the SET11 dataset
as an example, Fig.4 visualizes the procedure of its cascading reconstruction at
the measurement rate of 0.25. The images above the arrows represent the in-
cremental reconstruction generated by each stage, while the images along the
direction of the arrows represent the cumulative reconstruction at each stage. It
can be seen that the incremental details generated by each stage can refine the
reconstruction progressively and the PSNR value increases stage by stage.

The second group of ablation studies are designed for determining the effect of
contextual memory augmentation on the reconstruction performance. MAC-Net
uses the contextual memory to augment the links between the cascading stages.
In particular, the current stage can read all the previous reconstructions through
the CM module, and the reading operation is used to extract the informative
features for boosting the reconstruction of current stage.

To verify the benefits of the contextual memory and reading operation, we
remove the CM module and reading operation from MAC-Net to form two sim-
plified versions, including MAC-Net without the CM module (named C-Net),
MAC-Net with the CM module but without the reading operation (named MC-
Net). In the case of without the reading operation, the reading gate is not used
and the convolutional feature maps from the contextual memory are directly
concatenated with the feature maps in the IDR module. Fig. 5 shows the aver-
age PSNR values of MAC-Net and its two simplified versions at the measurement
rates of 0.25 and 0.04 upon the SET11 dataset. It can be seen that C-Net has
the lowest PSNR values, and it in turn demonstrates that the CM module is
beneficial to improve the reconstruction performance. MAC-Net is superior to
MC-Net, which shows that the use of reading gate in the read operation can
further improve the reconstruction quality. With both the CM module and the
reading gate, the PSNR value of MAC-Net is significantly improved by 1.24dB
and 0.44dB at the measurement rates of 0.25 and 0.04 respectively.

4.2 Results on natural images

In the following experiments, we evaluate the reconstruction performance of
MAC-Net on natural images and compare it with several state-of-the-art meth-
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Table 1. Reconstruction results on SET11 at four measurement rates.

Measurement Rate
0.25 | 0.10 | 0.04 | 0.01

TVAL3 [6] |27.84[22.84|18.39|11.31
ReconNet [18] |25.54 [22.68 |19.99 | 17.27
SCGAN [30] |27.19|24.80|22.18|18.43
DR2-Net [41] |28.66 |24.32[20.63 | 17.27
ISTA-Net™ [16]| 32.57 | 26.64 | 21.31|17.34

MAC-Net (32.91(27.68(24.22| 18.26

Algorithm

Table 2. Reconstruction results on BSD68 at four measurement rates.

Measurement Rate
0.30 | 0.25 | 0.10 | 0.04

TVALS3 [6] 22.68 121.91]19.84|18.28
ReconNet [18] | 27.53 |25.31|24.15|21.66
SCGAN [30] | 26.22 |25.91|24.10|22.25
ISTA-Net™ [16]| 30.34[29.36 | 25.33|22.17

MAC-Net 30.28 (29.42|25.80(23.62

Algorithm

ods including TVAL3 [6], ReconNet [18], SCGAN [30], DR?-Net [41] and ISTA-
Nett [16]. Among these methods, TVAL3 is the representative iteration op-
timization based method, ISTA-Net™ is the most recent deep learning based
reconstruction method. Table 1 and Table 2 reports the experimental results of
these methods on Set11l and BSDG68 respectively. It can be seen from these two
tables that MAC-Net can almost surpass all other competing methods. Especial-
ly at the measurement rate of 0.04, MAC-Net outperforms ISTA-Net™ with a
large margin of 2.91dB on the SET11 dataset and 1.45dB on the BSD68 dataset.

Some reconstructed images of Set1l and BSD68 are also presented in Fig.6
and Fig.7 respectively. Some patches are zoomed in for a clear comparison of
local image structures. MAC-Net can recover richer image structures and tex-
ture details than all the other methods. For instance, in the Barbara image,
it is relatively difficult to reconstruct the texture on the headscarf, due to the
complex variation of the pixel value. ReconNet and SCGAN fail to recover the
texture pattern. The basic texture pattern can be reconstructed by TVAL3, but
a lot of noise is introduced. Although DR2-Net and ISTA*-Net can recover the
main structure, the reconstructed images still lack fine details. The reconstruct-
ed images by MAC-Net have more texture details with the best visual quality.
At the low measurement rate of 0.04, MAC-Net shows an obvious advantage
over the other methods, and it can still recover meaningful image structures.
The superiority of MAC-Net is mainly due to the network architecture of cas-
cading reconstruction and memory augmentation. In addition, due to block-wise
reconstruction, all the other deep-learning based methods suffer from blocking
artifacts, especially at the measurement rates of 0.1 and 0.04. MAC-Net predicts



12 J. Chen et al.
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MR=0.04, PSNR 21.284B 23.47dB . 22.64dB

Fig. 6. Visual comparisons between multiple algorithms upon Barbara, Parrot and
Lena images from SET11 at CS measurement rate of 0.25 (the top group), 0.1 (the
middle group) and 0.04 (the bottom group).

the ensemble image from the measurement vectors of all blocks through a single
forward computation, thereby getting rid of blocking artifacts.

In the practical application of compressed sensing, the robustness to noise is
also a criterion for measuring the quality of the algorithm. Therefore, we perform
a series of experiments based on the Set1l dataset. Gaussian noise with a mean
value of zero and five levels of variances including 0.01, 0.05, 0.1, 0.25 and 0.5
is added to the measurement vectors, and we then feed them into the trained
network which has been trained with the clean data. The result is shown in the
Fig.8 and we can see that MAC-Net is more robust to the noise.

4.3 Compressive MRI reconstruction

We further conduct the reconstruction tests on Magnetic Resonance Imaging,
which is one of the most widely used fields of compressed sensing. The MR image
is sampled in the k-space. In order to reduce the acquisition time, compressive
MRI undersamples the k-space by partial Fourier sampling. In this case, the sens-
ing matrix @ is defined as & = PF, where P is the under-sampling matrix and F’
denotes the discrete Fourier transform. Due to this specific sampling mechanism
of Compressive MRI, we slightly adjust the network architecture of MAC-Net.
Specifically, we add a layer to obtain the initial reconstruction by the inverse
Fourier transform from the zero-filled undersampled k-space measurements. The
initial reconstruction has the same spatial resolution as the original images, the
operations for resolution enhancement are not required anymore. The cascading
architecture and the contextual memory augmentation are kept the same.

In the experiments, we compare it with DeepADMM [40] and DAGAN ([39],
because both of them achieve great success on compressive MRI reconstruc-
tion and obtained state-of-the-art results on the MICCAI 2013 grand challenge
dataset. The reconstruction results are shown in the Table 3. At the measurement
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Ground Truth ReconNet SCGAN ISTA-Net+ MAC-Net

PSNR 22.03dB 21.01dB 23.54dB 24.30dB

15.66dB 16.52dB 15.97dB 17.13dB

Fig. 7. Visual comparisons between multiple algorithms upon test002 and test067 im-
ages from BSD68 at CS measurement rate of 0.04.
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Fig. 8. Comparison of noise robustness on SET11.

rates of 0.1, 0.2, 0.3, 0.4, and 0.5, MAC-Net is significantly better than the other
two methods, even exceeds DAGAN 9.52dB at the measurement rate of 0.4. Fig.
9 shows the visual results, including reconstructed images and residuals between
reconstructed images and ground truth images. We also zoom in texture block
of every image to better reflect the reconstruction effect of MAC-Net. There are
more details reconstructed by MAC-Net and fewer differences between original
images and reconstructed images. Apart from this, compared to DeepADMM
and DAGAN, less noise is generated during reconstruction. This indicates that
through the full use of measurement vector in a cascading manner, MAC-Net
can not only reconstruct images accurately but also suppress noise effectively.

5 Conclusions

In this paper, we propose a memory augmented cascading network for com-
pressed sensing of images. In order to reconstruct images of better quality, the
proposed network employs a cascading framework with multiple stages. Each
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Table 3. Reconstruction results on MICCAI 2013 grand challenge dataset.

Measurement Rate
0.1 | 02 | 0.3 | 04 | 0.5
DeepADMM [40]| 30.70 | 39.10 | 39.72 | 43.25 | 44.39
DAGAN [39] [33.79]39.44]40.20|44.83 |47.83
MAC-Net 35.94(|46.07|46.93|54.35(56.34

Algorithm

(a) Ground Truth (b) ZeroFilling (c) DeepADMM

(d) DAGAN (¢) MAC-Net

70

60

Fig. 9. Visual results of MAC-Net, DeepADMM and DAGAN upon three sample im-
ages from MICCAI 2013 grand challenge dataset at CS measurement rate of 0.3 using
1D Gaussian masks. The residuals between reconstructed images and ground truth
images are also presented by heat maps. The two columns of (b)-(e) are reconstructed
images and the residuals, respectively. The color bar on the right indicates the intensity
value of each pixel in the residual images.

stage has two tasks: reconstructing the image and calculating the residual of
the measurement vector of the current reconstructed image. At the same time,
through the contextual memory augmentation and incremental learning of resid-
ual parts of images, the network can reconstruct high-quality images. The ex-
perimental results show that the proposed method is superior to other state-of-
the-art methods on compressed sensing of natural images and MR images.
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