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1 Introduction

The Gradient-to-Surface Toolbox, grad2Surf, is a MATLAB toolbox for the reconstruction of a
surface from its gradient field. The gradient field is assumed to be measured, e.g., via Photometric
Stereo, and therefore contains either stochastic or systematic error. It is based on the papers [1], [2]
and [3]. The following Table contains a list of the functions and their various purposes.
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Function Name Purpose

g2s Reconstructs the surface by global least squares (GLS).
g2sSpectral GLS with Spectral Regularization
g2sTikhonov GLS with Tikhonov Regularization.
g2sTikhonovStd Tikhonov Regularization, computes λ
g2sDirichlet GLS with Dirichlet Boundary Conditions
g2sWeighted Weighted Least Squares solution
g2sTikhonovRTalpha Preparatory function for g2sTikhonovRT
g2sTikhonovRT Real-time surface reconstruction with Tikhonov Regularization
g2sSparse Solves the GLS problem with traditional sparse methods
g2sSylvester Solves the necessary Sylvester Equation
g2sTestSurf Generates a test surface for testing the algorithms

Included with the main functions are auxiliary functions g2sTestSurf and g2sSylvester , as
well as g2sSparse , which solves the problem using traditional sparse methods which are common
to the literature. It is not recommended to use this function for anything other than comparison
purposes.
Note that this package requires the toolbox DOPbox, which is available on MATLAB fileexchange:
http://www.mathworks.com/matlabcentral/fileexchange/41250
This document was generated automatically from the file g2sIntro.m using the publish2LaTeX
package:
http://www.mathworks.com/matlabcentral/fileexchange/41207

2 Global Least Squares Solution

Clear the workspace, and change some of the graphics settings.

1 close all
2 clear all
3 setUpGraphics(8) ;

Set the (discrete) size of the surface, and then generate the test surface:

4 m = 156 ;
5 n = 213 ;
6 figure ;
7 [Ztrue,Zx,Zy,x,y] = g2sTestSurf(m,n, ’even’ ,1) ;
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Figure 1: The test surface and its gradient field.

Add noise to the gradient field:

8 sigma = 0.05 ;
9 Ax = ( max( Zx(:) ) - min ( Zx(:) ) )/2 ;

10 Ay = ( max( Zy(:) ) - min ( Zy(:) ) )/2 ;
11 ZxN = Zx + sigma * Ax * randn (m,n) ;
12 ZyN = Zy + sigma * Ay * randn (m,n) ;
13 figure
14 subplot (1,2,1) ;
15 imagesc ( x, y, ZxN ) ;
16 axis equal, axis tight
17 subplot (1,2,2) ;
18 imagesc ( x, y, ZyN ) ;
19 axis equal, axis tight
20 colormap ( gray ) ;
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Figure 2: Noisy gradient field: Gaussian noise with a standard deviation that is 5% of the gradient’s
amplitude.

Set the number of points to be used in the numerical derivatives, N, and test the basic least
squares solution:

21 N = 3 ;
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22 tic ;
23 Z = g2s( ZxN, ZyN, x, y, N ) ;
24 tGLS = toc
25 h1 = figure ;
26 subplot (1,2,1) ;
27 g2sPlotSurf( x, y, Z, h1, ’Surface Reconstructed with GLS’ ) ;
28 %
29 tic ;
30 warning( ’off’ , ’WarnTests:convertTest’ ) ;
31 % Note: "g2sSparse" is for comparison purposes only, and con tains
32 % a warning that you should use "g2s" instead
33 Zsparse = g2sSparse( ZxN, ZyN, x, y, N ) ;
34 warning( ’on’ , ’WarnTests:convertTest’ ) ;
35 tSparse = toc
36 subplot (1,2,2) ;
37 g2sPlotSurf( x, y, Zsparse, h1, ’Reconstruction with Sparse Method’ ) ;

tGLS =

0.2436

tSparse =

1.2911
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Figure 3: The sparse method solves the GLS problem, however, by vectorizing the system of
equations. It is therefore far less efficient (an O(n6) algorithm instead of an O(n3) algorithm) and
less accurate, since using sparse methods only an approximate solution is obtained.
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3 Spectral Regularization, Constrained Regularization, Weighted

Least Squares

For spectral regularization the surface is described by a set of orthogonal basis functions. The
regularizing effect is by truncating the set of basis functions by any form of low-, high-, or bandpass-
filter. Note that if the full set of basis functions is used (no-filter) the solution is identical to the
GLS solution.

38 basisFns = ’cosine’ ;
39 p = floor (m/4) ;
40 q = floor (n/4) ;
41 Mask = [p,q] ;
42 % The following (comment) produces a band pass mask:
43 %Mask = zeros(m,n) ;
44 %Mask(1:p,1:q) = ones(p,q) ;
45 %Mask(1:2,1:2) = zeros(2) ;
46 Zpoly = g2sSpectral( ZxN, ZyN, x, y, N, Mask, basisFns ) ;
47 h3a = figure ;
48 g2sPlotSurf( x, y, Zpoly, h3a, ’Reconstructed Surface (Spectral)’ ) ;
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Figure 4: The surface reconstruction using cosine basis functions for spectral regularization. Only
one quarter of the low-frequency basis functions are used, effecting a low pass filter which smooths
the reconstructed surface. The computation is also more efficient than the full solution.

Dirichlet Boundary Conditions specify the value of the integral surface over the boundary of
the domain. This can be used for a regularizing effect, e.g., by setting the boundary values to
zero. It is particularly effective and robust to noise if the boundary values are known a-priori.

49 ZB = zeros (m,n) ;
50 ZB(1,:) = sin (2 * x)’ ; ZB(m,:) = sin (2 * x) ;
51 ZB(:,1) = sin (2 * y) ; ZB(:,n) = sin (2 * y) ;
52 Zdir = g2sDirichlet( Zx, Zy, x, y, 5, ZB ) ;
53 figure
54 g2sPlotSurf( x, y, Zdir ) ;
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Figure 5: For Dirichlet boundary conditions, the value of the surface at the boundary can be
specified arbitrarily, as in this example.

Weighted Least Squares is used when the gradient field is corrupted by heteroscedastic Gaussian
noise. This occurs particularly in Photometric Stereo, since one of the main assumptions is that
the camera effects an orthogaphic projection. Since this is not the case, the WLS squares can be
used to compensate for this.

55 f = 1 + exp ( -(x- mean(x)).ˆ2/(2 * std (x)ˆ2) ) ; f = f/ mean(f) ;
56 g = 1 + exp ( -(y- mean(y)).ˆ2/(2 * std (y)ˆ2) ) ; g = g/ mean(g) ;
57 Lxx = diag ( f ) ; Lxy = diag ( g ) ;
58 Lyx = diag ( f ) ; Lyy = diag ( g ) ;
59 ZxNw = Zx + sigma * Ax * sqrtm (Lxy) * randn (m,n) * sqrtm (Lxx) ;
60 ZyNw = Zy + sigma * Ay * sqrtm (Lyy) * randn (m,n) * sqrtm (Lyx) ;
61 ZwLS = g2s( ZxNw, ZyNw, x, y, N ) ;
62 Zw = g2sWeighted( ZxNw, ZyNw, x, y, N, Lxx, Lxy, Lyx, Lyy ) ;
63 h5 = figure ;
64 subplot (1,3,1) ;
65 g2sPlotSurf( x, y, Ztrue, h5, ’Exact’ ) ;
66 subplot (1,3,2) ;
67 g2sPlotSurf( x, y, ZwLS, h5, ’GLS’ ) ;
68 subplot (1,3,3) ;
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69 g2sPlotSurf( x, y, Zw, h5, ’Weighted LS’ ) ;

0
5

10

0
5

10
−4
−2

0
2

Exact

xy 0
5

10

0
5

10
−4
−2

0
2

GLS

xy 0
5

10

0
5

10
−4
−2

0
2

Weighted LS

xy

Figure 6: The true surface, and reconstructions from gradient fields subject to heteroscedastic
Gaussian noise. In the case the Weighted Least Squares solution is optimal in the Maximum
Likelihood sense.

4 Tikhonov Regularization

For Tikhonov regularization, if the value of λ is known, the function g2sTikhonov can be used,
which implements the GLS solution with Tikhonov regularization of arbitrary degree. Tikhonov
regularization in “Standard form” is of degree zero, and the a-priori estimate of the surface is
Z0=zeros (m,n) , i.e., a flat surface.

70 lambda = 0.025 ;
71 deg = 0 ;
72 Z0 = zeros (m,n) ;
73 [ Ztik, Res ] = g2sTikhonov( ZxN, ZyN, x, y, N, lambda, deg, Z 0 ) ;
74 h3 = figure ;
75 g2sPlotSurf( x, y, Ztik, h3, ’GLS Solution with Tikhonov Regularization’

) ;
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Figure 7: Tikihonov regularization adds a penalty term to the GLS cost funtion. Depending
on the degree of the penalty term, the deviation of the reconstructed surface from the a-priori
estimate is penalized, or its first or second derivative equivalents.

To compute a value for λ, use the L-Curve

76 noLambdas = 100 ;
77 [ ZtikL, lamOpt, RC, Theta ] = g2sTikhonovStd( Zx, Zy, x, y, N,

noLambdas, Z0 ) ;
78 %
79 figure
80 loglog ( RC(:,2), RC(:,3), ’r.-’ ) ;
81 hold on
82 text ( RC(1,2), RC(1,3), [ ’lambda = ’ , num2str (RC(1,1))] ) ;
83 text ( RC(noLambdas,2), RC(noLambdas,3), [ ’lambda = ’ , num2str (RC(

noLambdas,1))] ) ;
84 title ( ’L-Curve’ ) ;
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Figure 8: The L-Curve is only one method for determining the regularization parameter for
Tikhonov Regularization.

Finally, for Real-Time implementations of Tikhonov, an algorithm has been developed [3]
which separates the computation into everything which can be computed beforehand (without the
measured gradient field), and the computation which needs to be done in a Real-Time environment.
The function g2sTikhonovRTalpha makes the preparatory computations based solely on the
domain information and the degree of accuracy required. The cell array S is then passed on to the
Real-Time portions of the code, the function g2sTikhonovRT . For this example, with a 156×213
surface, the reconstrution time is about 1/10th of the preparatory computation. The relative error
between the full algorithm an the real time algorithm is negligibly small.

85 tic ;
86 S = g2sTikhonovRTalpha( x, y, N ) ;
87 tPrep = toc
88 %
89 tic
90 ZtikRT = g2sTikhonovRT( ZxN, ZyN, S, lambda, Z0 ) ;
91 tRT = toc
92 %
93 eRel = 100 * norm( ZtikRT - Ztik, ’fro’ ) / norm( Ztik, ’fro’ )

tPrep =

0.0797

tRT =

0.0057
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eRel =

1.7471e-08
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