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This file uses the DOP Toolbox to investigates objective measures for the quality of
discrete orthonormal basis functions B. different measures are compared: the Gramian i.e,
the determinant of the Gram matrix, |G| = |BT

B|; the maximum error in the projection
onto the orthogonal complement, max(I − G); and the Frobenius norm of the projection
onto the orthogonal complement ‖I − G)‖F .

The quality of the new synthesis algorithm is verified.

1 Functions used from the DOPBox toolbox.

This file uses the functions:

1. dop: to synthesize the orthogonal basis functions.

2 Introduction

Much has been written on the application of discrete orthogonal basis functions, particularly in
image processing [5, 9, 10, 8, 4, 11, 12, 1]. Unfortunatly, very little work has been do to establish
objective measured for the quality of basis functions. In general the quality of the basis functions
was measured using the reconstruction quality of an image. This is unsatisfactory since the result
is a mixture of the information content of the image and the quality of the basis functions.

Gram polynomials [3, 2, 6] are an interesting set of basis functions since they for an orthonormal
basis function set. They are used in this investigation.

This file investigate three possible measures for the quality of basis functions. The three
measures are then used to compar the quality of Gram polynomials using the method originally
proposed by Gram which has become known as Gram-Schmidt orthogonalization, with the poly-
nomial synthesis method proposed in [6] and applied in [7].

3 Proposed Measures of Quality

Objective measures of quality of a set of basis functions are required, if we wish to evaluate new
synthesis methody.

Given a set of basis functions B formed by concatinating the individual basis functions as the
columns of B, the Gram matrix is defined as,

G = B
T

B. (1)

Ideally, the Gram matrix should be the identity matrix independent of the degree of the set of
basis functions. Consequently, the projection onto the orthogonal complement,

G
⊥ = I − G = 0 (2)

should be exactly the zero matrix.
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3.1 The Gramian as a measure of quality

The Gramian is defined as the determinant of the Gram matrix. Here we define the symbol
gB , |G| = |BT

B| as the Gramian of the set of basis functions contained in B. The determinant
of the Gram matrix should be exactly, i.e. |G| = 1. Consequently the error measure can be
defined as εg = 1 − gB.

3.2 The maximum in G
⊥

The first new measure proposed here is the maximum value in the matrix εm = max(G⊥).

3.3 The Frobenius norm of G
⊥

The Frobenius norm of εF = ‖G⊥‖F is a measure for the total error.

3.4 Error Measures and number of Significant Digits

Ideally the error measures ε should be exactly zero. However, all computer systems have finite
precision, e.g. MATLAB has eps = 2.2204e-16. This is the smallest relative distance between
two numbers, if we consider the number 1 there there are approximatly ds = 16 significant digits.
The significant digits for the basis functions can be estimates from the error measures as follows,
ds ≈ log

10
(ε)

4 A new Synthesis Algorithm

The synthesis method proposed by Gram [3] is now known as Gram Schnidt orthogonalization.
This method is, however, known to be numerically unstable. A method based on complete re-
orthogonalization was proposed in [6] and applied to inverse problems in [7]. The proposed error
measures are used here to compare the two synthesis methods.

5 Matlab Code

A few preparatory lines of code.

1 close all;
2 clear all;
3 setUpGraphics;

define the minimum and maximum degrees to be tested

4 minD = 5;
5 maxD = 70;
6 %
7 % Define a vector of degrees
8 %
9 d = minD : maxD ;

10 %
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11 % Prepare storage for the results
12 %
13 noSims = length( d );
14 Eg = zeros( noSims, 1 );
15 Em = zeros( noSims, 1 );
16 Ef = zeros( noSims, 1);

Compute the measures of error for each degree

17 for k=1:noSims
18 %
19 % Synthesize the basis functions using Gram Schmidt orthogonalization
20 %
21 B2 = dopGram( d(k) );
22 %
23 % Compute the Gram matrix and its orthogonal complement
24 %
25 G = B2’ * B2;
26 Gort = G - eye(d(k));
27 %
28 % compute the error measures
29 %
30 Eg(k) = 1 - det( G );
31 Em(k) = max(abs(Gort(:)));
32 Ef(k) = norm(Gort,’fro’);
33 %
34 end;

5.1 Measures for Gram Schmidt synthesis

The error measures for the Gram Schmidt synthesis of the Gram polynomials are shown in Fig-
ure 5.1. The error measures εm and εf deliver similar results indicating that there is a low in
significant digits even for very modest degrees and that the quality of the basis functions degener-
ats progressively. The Gramian εm shown no initial degredation up to a degree of d ≈ 30 and then
degenerates more rapidly. At degree d ≈ 60 the basis functions have degenerated to an extend
that there are no significant digits.

35 fig1 = figure;
36 plot( d, log10(abs(Eg)+eps), ’k’);
37 hold on;
38 plot( d, log10(Em), ’r’ );
39 plot( d, log10(Ef), ’b’ );
40 %
41 range = axis;
42 plot( [34,34], range(3:4), ’k’);
43 plot( [59,59], range(3:4), ’k’);
44 grid on;
45 %
46 xlabel(’Degree d’);
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47 ylabel(’ \log_{10}( \epsilon )’);
48 legend( ’\epsilon_g’, ’\epsilon_m’,’\epsilon_f’,’Location’,’NorthWest’);
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Figure 1: Error measures for the Gram Schmidt synthesis of the Gram polynomials.

5.2 Measures for synthesis using dop.m

In this the synthesis algorithn with complete orthogonalization is investigated. It produces high
quality basis functions for very high degrees. To avoid inordinate computation time the degrees
at which the reqults are logarithmicly spaced, here between d = 10 . . . 1000.

49
50 % setup the vector of degrees
51 %
52 Log10minD = 1;
53 Log10maxD = 3;
54 %
55 % Use a logarithmic spacing of the degree to save time
56 %
57 d = round(logspace( Log10minD, Log10maxD ));
58 %
59 % Prepare stoorage for the results
60 %
61 noSims = length( d );
62 Eg = zeros( noSims, 1 );
63 Em = zeros( noSims, 1 );
64 Ef = zeros( noSims, 1);

Compute the measures of error for each degree

65 for k=1:noSims
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66 %
67 % Synthesize the basis functions using the new procedure
68 %
69 B2 = dop( d(k) );
70 %
71 % Compute the Gram matrix and its orthogonal complement
72 %
73 G = B2’ * B2;
74 Gort = G - eye(d(k));
75 %
76 % compute the error measures
77 %
78 Eg(k) = 1 - det( G );
79 Em(k) = max(abs(Gort(:)));
80 Ef(k) = norm(Gort,’fro’);
81 %
82 end;

Plot the results for the new algorithm

83 fig2 = figure;
84 plot( d, log10(abs(Eg)+eps), ’k’);
85 hold on;
86 plot( d, log10(Em), ’r’ );
87 plot( d, log10(Ef), ’b’ );
88 grid on;
89 %
90 xlabel(’Degree d’);
91 ylabel(’ \log_{10}( \epsilon )’);
92 legend( ’\epsilon_g’, ’\epsilon_m’,’\epsilon_f’,’Location’,’NorthWest’);
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Figure 2: Error measures for the complete orthogonalization synthesis of the Gram polynomials.

Note that there are still more than ds > 13 significant digits at degree d = 1000. These basis
functions are for all intents and purposes free from error.

6 Conclusions

The Frobenius norm of the orthogonal complement of the Gram matrix yields a stable estimate for
the error in a set of orthogonal basis functions. It corresponds to the upperbound of the deviation
of teh Granian from 1, it is however, more stable (see Figure 5.2).

The synthesis method for basis functions implemented in dop.m yield basis functions which
have excelent quality even at degrees of d = 1000.
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