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Abstract. Pedestrian detection is a core problem in computer vision
that sees broad application in video surveillance and, more recently, in
advanced driving assistance systems. Despite its broad application and
interest, it remains a challenging problem in part due to the vast range of
conditions under which it must be robust. Pedestrian detection at night-
time and during adverse weather conditions is particularly challenging,
which is one of the reasons why thermal and multispectral approaches
have been become popular in recent years. In this paper, we propose a
novel approach to domain adaptation that significantly improves pedes-
trian detection performance in the thermal domain. The key idea behind
our technique is to adapt an RGB-trained detection network to simul-
taneously solve two related tasks. An auxiliary classification task that
distinguishes between daytime and nighttime thermal images is added
to the main detection task during domain adaptation. The internal rep-
resentation learned to perform this classification task is used to con-
dition a YOLOv3 detector at multiple points in order to improve its
adaptation to the thermal domain. We validate the effectiveness of task-
conditioned domain adaptation by comparing with the state-of-the-art
on the KAIST Multispectral Pedestrian Detection Benchmark. To the
best of our knowledge, our proposed task-conditioned approach achieves
the best single-modality detection results.

Keywords: object detection, pedestrian detection, thermal imagery, task-
conditioned, domain adaptation, conditioning network, thermal imagery

1 Introduction

Object detection and, in particular, pedestrian detection is one of the most
important problems in computer vision due to its central role in diverse practical
applications such as safety and security, surveillance, and autonomous driving.
The detection problem is particularly challenging in many common contexts
such as limited illumination (nighttime) or adverse weather conditions (fog, rain,
dust) [22, 19]. In such conditions the majority of detectors [4, 27, 40] using visible
spectrum imagery can fail.

For these reasons, detectors exploiting thermal imagery have been proposed
as suitable for robust pedestrian detection [19, 38, 25, 20, 5, 22, 23, 14]. A
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growing number of works have also investigated multispectral detectors that
combine visible and thermal images for robust pedestrian detection [36, 1, 29,
24, 38, 25, 20, 39, 5, 14, 22, 23].

However, multispectral detectors, in order to make the most out of both
modalities, typically need to resort to additional (and expensive) annotations,
and are usually based on far more complex network architectures than single-
modality methods (see table 3). Moreover, due to the cost of deploying multiple
aligned sensors (thermal and visible) at inference time, multispectral models
can have limited applicability in real-world applications. Aside from the techni-
cal and economic reasons, the privacy-preserving affordances offered by thermal
imagery are also a motivation for prefering thermal-only detecion [19]. Because
of this, several recent works do not use visible images, but focus only on thermal
images for pedestrian detection [18, 16, 3, 7, 19, 15]. They typically yield lower
performance than multispectral detectors since robust pedestrian detection using
only thermal data is nontrivial and there is still potential for improvement.

In this paper we propose a task-conditioned network architecture for domain
adaptation of pedestrian detectors to thermal imagery. Our key idea is to aug-
ment a detector with an auxiliary network that solves a simpler classification
task and then to exploit the learned representation of this auxiliary network to
inject conditioning parameters into strategically chosen convolutional layers of
the main detection network. The resulting, adapted network operates entirely
in the thermal domain and achieves excellent performance compared to other
single-modality approaches.

The contributions of this work are:

– we propose a novel task-conditioned network architecture based on YOLOv3
[32] that uses the auxiliary task of day/night classification to aid adaptation
to the thermal domain;

– we conduct extensive ablative analyses probing the effectiveness of various
task-conditioning architectures and adaptation schedules;

– to the best of our knowledge, our task-conditioned detection networks out-
perform all single-modality detection approaches the KAIST Multispectral
Pedestrian Detection Benchmark [17]; and

– exploiting only thermal imagery, we outperform many state-of-the-art mul-
tispectral pedestrian detectors on the KAIST benchmark at nighttime.

The rest of the paper is organized as follows. In the next section we review
the scientific literature related to our proposed domain adaptation approach. In
section 3 we describe our approach to conditioning thermal domain adaptation
on the auxiliary task of day/night discrimination. We report in section 4 on
an extensive set of experiments performed to evaluate the effectiveness of task-
conditioning, and in section 5 we conclude with a discussion of our contribution.

2 Related work

Pedestrian detection has attracted much attention from the scientific community
over the years because of its usefulness in many applications. Thanks to the
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reduction of costs and availability of thermal cameras, many recent works have
investigated how to perform it in multispectral and thermal domains.

2.1 Pedestrian detection in the visible spectrum

The main challenges to robust pedestrian detection in the visible spectrum arise
from a variety of environmental conditions such as occlusion, changing illumi-
nation, and variation of viewpoint and background [29]. In [36] discriminative
detectors are learned by jointly optimizing them along with semantic tasks such
as pedestrian and scene attributes detection; in [29] joint estimation of visibility
of multiple pedestrians and recognition of overlapping pedestrians is done us-
ing a mutual visibility deep model; in [5] semantic segmentation is used as an
additional supervision to improve the simultaneous detection. In [40] the Re-
gion Proposal Network (RPN) originally proposed in Faster R-CNN is used for
standalone pedestrian detection; dealing with multiple scales using a specialized
sub-networks based on Fast R-CNN is proposed in [24]; prediction of pedestrian
centers and scales in one pass and without anchors was recently proposed in [27].

2.2 Multispectral pedestrian detection approaches

Many recent works have used both thermal and RGB images to improve detec-
tion results [38, 25, 20, 39, 22, 23], combining visible and thermal images for
training and testing. The authors of [38] investigated two types of fusion net-
works to exploit visible and thermal image pairs. Four different network fusion
approaches (early, halfway, late, and score fusion) for the multispectral pedes-
trian detection task were also introduced in [25]. The cross-modality learning
framework including a Region Reconstruction Network (RRN) and Multi-Scale
Detection Network (MDN) of [39] used thermal image features to improve de-
tection results in visible data.

Because the combination of visible and thermal images works well in two-
stage network architectures, most of top-performing multispectral pedestrian
detection are based on the approach originally used in Fast-/Faster R-CNNs.
For instance, the Faster R-CNN detector was used to perform multispectral
pedestrian detection in Illumination-aware Faster R-CNN (IAF R-CNN) [23].
The authors in [20] detected persons in multispectral video with a combination
of a Fully Convolutional RPN and a Boosted Decision Trees Classifier (BDT).
The generalization ability of RPN was also investigated in [10], evaluating which
multispectral dataset results in better generalization. MSDS-RCNN [22] is a
fusion of a multispectral proposal network (MPN) and a multispectral classi-
fication network (MCN). In [41] an Aligned Region CNN is proposed to deal
with weakly aligned multispectral data. Box-level segmentation via a supervised
learning framework was proposed in [6], eliminating the need of anchor boxes.

Approaches based on one-stage detectors have also been investigated. The
authors in [37] used YOLOv2 [32] as a fast single-pass network architecture
for multispectral detection. A deconvolutional single-shot multi-box detector
(DSSD) was also leveraged by authors in [21] to exploit the correlation between
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visible and thermal features. The work in [43] adopted two Single Shot Detec-
tors (SSDs) to investigate the potential of fusing color and thermal features with
Gated Fusion Units (GFU).

2.3 Pedestrian detection in thermal imagery.

A few works have addressed pedestrian detection using thermal (IR) imagery
only. Adaptive fuzzy C-means for IR image segmentation and CNN for pedestri-
ans detection were proposed in [18]. A combination of Thermal Position Inten-
sity Histogram of Oriented Gradients (TPIHOG) and the additive kernel SVM
(AKSVM) was proposed by [3] for nighttime-only detection in thermal imagery.
Thermal images augmented with saliency maps used as attention mechanism
have been used to train a Faster R-CNN detector in [12]. In [16] several video
preprocessing steps are performed to make thermal images look more similar
to grayscale images converted from RGB, then a pre-trained and fine-tuned
SSD detector is used. Recently, the authors in [7] used Cycle-GAN for image-
to-image translation of thermal to pseudo-RGB data, using it to fine-tune to a
multimodal Faster-RCNN detector. Instead, the authors in [15] used a GAN to
transform visible images to synthetic thermal images, as a data augmentation
processing to train a pedestrian detector to work on thermal-only imagery. An-
other recent work dealing with domain adaptation is the Top-down and Bottom-
up Domain Adaptation approaches proposed in [19] for pedestrian detection in
thermal imagery. In this work, bottom-up adaptation obtains state-of-the-art
single-modality results at nighttime on KAIST dataset [17].

2.4 Task-conditioned networks

There are a few task-conditioning approaches, such as conditional generative
models like those based on adversarial networks [28], and the seminal work in [31]
that proposed architecture guidelines for training Deep Convolutional GANs.
In particular, our approach is inspired by the general conditioning layer called
Feature-wise Linear Modulation (FiLM) proposed in [30] for conditioning visual
reasoning tasks.

In this paper we perform pedestrian detection on thermal imagery only. Our
method is based on the single-stage detector YOLOv3 [33], whose computa-
tional efficiency makes it particularly well-suited to practical applications with
real-time requirements. We extend the YOLOv3 architecture by integrating con-
ditioning layers to better specialize the network to deal with day- and nighttime
images. We evaluate conditioning of residual groups, detection heads, and their
combination during domain adaptation.

3 Task-conditioned domain adaptation

In this section we describe our approach to conditioning a detector during adap-
tation to the thermal domain. Our central idea is that robust pedestrian de-
tection naturally depends on low-level semantic qualities of input images – for
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example whether an image is captured during the day or at night. This aux-
iliary information should be useful for learning representations upon which we
can condition the adaptation internal representations used for the primary de-
tection task. In the next section we describe the architecture of an auxiliary
classification network that is connected to the main detection network, and in
section 3.2 we describe the conditioning layers that can be strategically inserted
into the network to modify internal representation. We describe two alternative
conditioning architectures for YOLOv3 in section 3.3, and in section 3.4 we put
everything together into a description of the combined adaptation loss.

3.1 Auxiliary classification network

Let DΘd
(x) represent the detector network (YOLOv3 in our case) parameterized

by Θd, and let Fi(x) represent the output of the ith convolutional layer of the
detection network. We define an auxiliary classification network as follows. The
output of an early convolutional layer (e.g. F4(x) as in Fig. 1), is average pooled
to form a feature that is then fed to two fully-connected layers of size C with
ReLU activations. The resulting feature representation is then passed to a final
fully connected layer with a single output and a sigmoid activation. We denote
the output of this auxiliary network AΘa

(x).
During training we use the following loss attached to the output of the aux-

iliary network:

La(xi, yi;Θa) = [yi · log f(xi) + (1− yi) · log(1− f(xi))] , (1)

where for all training images xi we associate an auxiliary training label yi. Since
we experiment on the KAIST dataset, which distinguishes daytime and nighttime
images in its annotations and evaluation protocol, we define yi = 0 if xi was
captured during the day, and yi = 1 if xi was captured at night. In this case the
auxiliary network has the task of classifying images as daytime or nighttime.

3.2 Conditioning layers

Our idea to use the internal, C-dimensional representation learned in the auxil-
iary classification network (i.e. the representation after the two fully-connected
layers used for classification) rather than its output. See Figure 1 for a schematic
representation of the conditioning process. This representation is task-specific: in
our experiments it is learned to capture the salient information useful for deter-
mining whether an image was captured during the day or at night. At strategic
points in the main detection network we will use this representation to generate
conditioning parameters that condition a convolutional feature map using the
representation learned by the auxiliary network.

Consider an arbitrary convolutional output Fi(x) of the main detector net-
work DΘd

, and let di be the number of convolutional feature maps in Fi(x). We
generate conditioning parameters γi and βi:

γi = ReLU[W i
γA(x) + biγ ]

βi = ReLU[W i
βA(x) + biβ ],
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Fig. 1. Conditioning layer and auxiliary classification network. The auxiliary network
learns an internal representation used to solve a classification task. This representation
is then leveraged by conditioning layers to adjust internal convolutional feature maps
in the detection network.

where W i
γ ,W

i
β ∈ Rdi×C and biγ , b

i
β ∈ Rdi are the weights and biases, respectively,

of two new fully connected layers of D units added to the network (purple layers
in Fig. 1). These new layers are responsible for generating the parameters used
for conditioning Fi.

Fi is substituted by the conditioned version:

F ′i (x) = ReLU[(1− γi)� Fi(x)⊕ βi],

where � and ⊕ are, respectively, the elementwise multiplication and addition
operations broadcasted to cover the spatial dimensions of the feature maps Fi(x).
In this way, the generated γi parameters can scale feature maps independently
and the βi parameters independently translate them.

3.3 Conditioned network architectures

YOLOv3 is a very deep detection network with three detection heads for de-
tecting objects at different scales [33]. In order to investigate the effectiveness
of conditioning YOLOv3 during domain adaptation, we experimented with two
different strategies for injecting conditioning layers into the network. In sec-
tion 4.3 we report on a series of ablation experiments performed to evaluate
these different architectural possibilities for conditioning the network.

Conditioning residual groups (TC Res Group). YOLOv3 uses a 52-layer,
fully-convolutional residual network as its backbone. The network is coarsely
structured into five residual groups, each consisting of one or more residual blocks
of two-convolutional layers with residual connections adding the input of each
block to the output.

A natural conditioning point is at each of these residual groups. This strategy
is illustrated in figure 2; the figure reports also the size of the layers of the
conditioning network (C = 1024). After each group of residual blocks, we insert
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Fig. 2. TC Res Group: Conditioning residual groups of YOLOv3. The pre-ReLU
activations of the last layer of each convolutional group are modified by parameters γi
and βi. Conditioning is done before the final residual connection of each group.
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Fig. 3. TC Det: Conditioning the detection heads of YOLOv3. Feature maps used for
detection are conditioned using the internal representation of the auxiliary network.

a conditioning layer after the last convolutional layer and before the final residual
connection of the group.

Conditioning detection heads (TC Det). A natural alternative to condi-
tioning residual groups is to condition each of the three detection heads branch-
ing off of the YOLOv3 backbone. The intuition here is to condition the network
closer to where the actual detections are being made.

Detection heads in YOLOv3 consist of one convolutional block for the large-
scale detection head, and three convolutional blocks for the other two. We insert
the conditioning layer after the last convolution of these blocks and before the
final 1 × 1 convolutional layer producing the detection head output. Figure 3
gives a schematic illustration of detection head conditioning architecture, and
reports the size of the layers of the conditioning network (C = 512).
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3.4 Adaptation loss

The final loss function used for domain adaptation is:

L(xi,yi, yi;ΘD, ΘA) = Ld(xi,yi) + La(xi, yi),

where x is a training thermal image, Ld is the standard detection loss based
on the structured target detections yi, and La is the auxiliary classification loss
defined in equation (1).

When we backpropagate error from the auxiliary loss La we are improving
the internal representation of the auxiliary network AΘa

, making it better for
classifying day/night. When we backpropagate error from the detection loss,
we simultaneously improve the generated conditioning parameters (γi, βi) and
the internal representation in the YOLOv3 backbone. Our intuition is that this
adapts feature maps to be conditionable on based on the representation learned
in the auxiliary classification network.

4 Experimental results

In this section we report results of a number of experiments we performed to
evaluate the effectiveness of task-conditioned domain adaptation. In section 4.1
we describe the characteristics of the KAIST Multispectral Pedestrian Detection
benchmark, and in section 4.3 we present two ablation studies we conducted to
evaluate the various architectural parameters of our approach. In section 4.4
we compare with state-of-the-art single- and multimodal pedestrian detection
approaches.

4.1 Dataset and evaluation metrics

Our experiments were conducted on the KAIST Multispectral Pedestrian Bench-
mark dataset [17]. KAIST is the only large-scale dataset with well-aligned visi-
ble/thermal pairs [7], and it contains videos captured both during the day and
at night.

The KAIST dataset consists of 95,328 aligned visible/thermal image pairs
split into 50,172 for training and 45,156 for testing. As is common practice, we use
the reasonable setting [9, 17, 22, 25], and use the improved training annotations
from [22] and test annotations from [25]. We sample every two frames from
training videos and exclude heavily occluded and small person instances (< 50
pixels). The final training set contains 7,601 images. The test set contains 2,252
image pairs sampled every 20 frames. Figure 4 shows some example images with
our detection results on KAIST.

We used standard evaluation metrics for object detection, namely miss rate
as a function of False Positives Per Image (FPPI), and log-average miss rate for
thresholds in the range of [10−2, 100]. For computing miss rates, an Intersection
over Union (IoU) threshold of 0.5 is used to calculate True Positive (TP), False
Positives (FP) and False Negatives (FN).
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Fig. 4. Examples of KAIST thermal images with detections. The first two rows are
daytime images and the last two are nighttime. The first and the third rows show
detection results without conditioning, and the second and last rows detections with
our TC Det detector. Blue boxes are true positive detections, green boxes are false
negatives, and red boxes indicate false positives. See section 4.3 for detailed analysis.

4.2 Implementation and training

All of our networks were implemented in PyTorch and source code and pretrained
models are available.1 During training, at each epoch we set aside 10% of the
training images for validation for that epoch. We use the same hyperparameter
settings of the original YOLOv3 model [33] and use weights pretrained on MS
COCO as a starting point. We use Stochastic Gradient Descent (SGD) with
an initial learning rate of 0.0001. When the validation performance no longer
improves, we reduce the learning rate by a factor of 10. Training is halted after
decreasing the learning rate twice in this way. All models were trained for a
maximum of 50 epochs with a batch size of 8 and input image size 640 × 512.
For most cases, training stops at around 30 epochs and requires about 12 hours
on an NVIDIA GTX 1080.

1 https://github.com/mrkieumy/task-conditioned

https://github.com/mrkieumy/task-conditioned
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Fig. 5. Ablation study of different conditioning points. Plots report miss rate as a
function of false positives per image, and log-average miss rates are given in the legends.

4.3 Ablation studies

In this section we report on a series of experiments we conducted to explore the
design space for task-conditioned adaptation of a pretrained YOLOv3 detector to
the thermal domain. We first consider the where-aspect of task-conditioning (i.e.
at which points in the YOLOv3 architecture task-conditioning is most effective),
and then consider the when-aspect of task conditioning by exploring the many
possibilities of conditioning adaptation phases.

Comparison of conditioning points. YOLOv3 is a very deep network which
presents many options for intervening with conditioning layers. It has 23 residual
blocks, each consisting of two convolutional layers and one residual connection.
These 23 residual blocks are organized into five groups as illustrated in figure 2.
Inspired by the paper [30], in which the authors demonstrate that conditioning
residual blocks can be effective, we performed an architectural ablation on where
to condition the network by considering conditioning of all residual blocks versus
conditioning each residual group. We investigate also conditioning of the three
detection heads, both alone and in combination with residual group conditioning.

The configurations investigated are:

– No Conditioning (direct fine-tuning on thermal): the YOLOv3 network
pretrained on MSCOCO is directly fine-tuned on KAIST thermal images.

– TC Res Group (conditioning of residual groups): the conditioning scheme
described in section 3.3 and illustrated in figure 2. We insert conditioning
layers into all residual groups at the final residual block.

– TC Res All (conditioning of all residual blocks): similar to group condi-
tioning, but conditioning all residual blocks of the YOLOv3 network.

– TC Det (conditioning of detection heads): the scheme described in sec-
tion 3.3 and illustrated in figure 3.

– TC Res Group + Det (conditioned residual groups and detection heads):
a combination of TC Res Group and TC Det.

In figure 5 we plot the miss rate as a function of False Positive Per Image
(FPPI) for the five different conditioning options. Note that all task-conditioned
networks result in improvement over the No Conditioning network trained
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Table 1. Ablation on adaptation schedules for TC Det. Results are on KAIST in
terms of log-average miss rate (lower is better). NC indicates the modality is used for
adaptation with no conditioning, C indicates the modality is used with conditioning
of detection heads, and %indicates the modality is not used during adaptation.

Training Testing Miss Rate

visible thermal visible thermal all day night

NC % ! % 36.67 32.83 45.00

C % ! % 34.73 29.53 46.09

% NC % ! 31.06 37.34 16.69

NC NC % ! 30.50 37.45 15.73

C NC % ! 28.48 35.86 12.97

% C % ! 29.95 38.16 12.61

NC C % ! 28.53 36.59 11.03

C C % ! 27.11 34.81 10.31

with standard fine-tuning. TC Det performs best overall and performs especially
well at nighttime with a miss rate of only 10.31% – an improvement of 6.38%
over the No Conditioning network.

While conditioning residual groups (TC Res Group) is also effective com-
pared to fine-tuning, adding more conditioning layers results in worse perfor-
mance. One reason for this might be that conditioning layers add parameters to
the network, and depending on the size of the feature maps being conditioned
could be leading to overfitting on the KAIST training set.

In figure 4 we give example detections from the TC Det and No Condition-
ing detectors. TC Det yields more true positive and fewer false positive detec-
tions with respect to simple fine-tuning. On daytime images (first two columns
of figure 4), the detector without conditioning (top row) produces a number of
false positives and missed detections which TC Det does not. The difference is
even more pronounced at nighttime (second two columns of figure 4).

This ablation analysis indicates that conditioning only detection layers (TC
Det) is most effective when compared to conditioning of residual blocks – an-
swering the where of task-conditioning. In all of the following experiments we
consider only the TC Det task-conditioned network.

Comparison of conditional adaptation schedules. In this set of experi-
ments we compare the many options of conditioning when adapting a pretrained
detector from the visible to the thermal domain. Starting from a pretrained de-
tector, we can fine-tune (with or without conditioning) on KAIST RGB images,
then fine-tune (again with or without conditioning) on KAIST thermal images.
In table 1 we give results of an ablation study considering all these possibili-
ties. Adapting first using RGB images, rather than going directly to thermal,
is generally useful. In fact, the best adaptation schedule is to fine-tune a condi-
tioning network on visible spectrum images, and then fine-tune that conditioned
network on thermal imagery.
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Fig. 6. The effects of conditioning during daytime and nighttime. The first two columns
show results for a thermal detector without conditioning and with conditioning. Blue
boxes are true positive detections, green boxes are false negatives, and red boxes indi-
cate false positives. See text detailed analysis.

Visualizing the effects of conditioning. Figure 6 illustrates the effect con-
ditioning has on the feature maps of YOLOv3. The heatmaps in this figure were
generated by averaging the convolutional feature maps input to the medium-
scale detection head of YOLOv3 and superimposing this on the original thermal
image. The third column is the average feature map of a non-conditioned thermal
detector (TD), and the fourth and fifth columns are, respectively, the average
feature maps before and after conditioning.

From the heatmaps in figure 6 we note that pedestrians show more contrast
with the background in the task-conditioned feature maps for both daytime
and nighttime. Also, the thermal detector without conditioning misses several
pedestrians and produces one false positive at nighttime, while TC Det correctly
detects these and does not produce false positive detections. Task-conditioning
also helps eliminate one false positive in the daytime image.

4.4 Comparison with the state-of-the-art

In this section we compare our approaches with the state-of-the-art on KAIST.
Since our approach focuses on detection only in thermal images at test time,
we first compare with state-of-the-art single-modality detectors using use only
visible or only thermal images. Then, we compare our approaches with state-of-
the-art multispectral detectors using both visible and thermal images.

Comparison with single-modality detectors. Table 2 compares our ap-
proaches with the single-modality detectors using thermal-only or visible-only
at training and testing time. TC Det obtains the best results with 27.11% miss-
rate in all modalities and 10.31% missrate at nighttime. Our results outperform
all existing single-modality methods by a large margin in all conditions (day,
night, and all). To the best our knowledge, our detectors outperform all state-
of-the-art single-modality approaches on KAIST dataset.
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Table 2. Comparison with state-of-the-art single-modality approaches on KAIST
in term of log-average miss rate (lower is better). Best results highlighted in
underlined bold, second best in bold.

Detectors MR all MR day MR night Test images

FasterRCNN-C [25] 48.59 42.51 64.39 RGB
RRN+MDN [39] 49.55 47.30 54.78 RGB
FasterRCNN-T [25] 47.59 50.13 40.93 thermal
TPIHOG [3] - - 57.38 thermal
SSD300 [16] 69.81 - - thermal
Saliency Maps [12] - 30.40 21.00 thermal
VGG16-two-stage [15] 46.30 53.37 31.63 thermal
ResNet101-two-stage [15] 42.65 49.59 26.70 thermal
Bottom-up [19] 35.20 40.00 20.50 thermal

Ours TC Visible 34.73 29.53 46.09 RGB
Ours TC Thermal 28.53 36.59 11.03 thermal
Ours TC Det 27.11 34.81 10.31 thermal

Table 3. Comparison with state-of-the-art multimodal approaches in terms of log-
average miss rate on KAIST dataset (lower is better). All approaches use both visible
and thermal spectra at training and test time, while ours use only thermal imagery for
testing. Results for Methods indicated with * were computed using detections provided
by the authors. Best results highlighted in underlined bold, second best in bold.

Method MR all MR day MR night Detector Architecture

KAIST baseline [17] 64.76 64.17 63.99 ACF [8]
Late Fusion [38] 43.80 46.15 37.00 RCNN [13]
Halfway Fusion [25] 36.99 36.84 35.49 Faster R-CNN [34]
RPN+BDT [20] 29.83 30.51 27.62 VGG-16 + BF [35, 2]
IATDNN+IAMSS [14] 26.37 27.29 24.41 VGG-16 + RPN [35, 20]

IAF R-CNN* [23] 20.95 21.85 18.96 VGG-16 + Faster R-CNN [35, 34]
MSDS-RCNN [22] 11.63 10.60 13.73 VGG-16 + RPN [35]

MSDS sanitized* [22] 10.89 12.22 7.82 VGG-16 + RPN [35]
YOLO TLV [37] 31.20 35.10 22.70 YOLOv2 [32]
DSSD-HC [21] 34.32 - - DSSD [11]
GFD-SSD [43] 28.00 25.80 30.03 SSD [26]

Ours Thermal 31.06 37.34 16.69 YOLOv3 [33]
Ours TC Res Group 28.69 34.95 14.97 YOLOv3 [33]
Ours TC Det 27.11 34.81 10.31 YOLOv3 [33]

Comparison with multimodal detectors. Table 3 compares our detectors
with state-of-the-art multimodal approaches. Some multispectral methods using
both visible and thermal images for training and testing such as MSDS [22],
IAF [23] or IATDNN+IAMSS [14] are superior in terms of combined day/night
miss rate (all). This is due to the advantage they have in exploiting both visi-
ble and thermal imagery, affecting in particular pedestrian detection during the
day. In fact, the authors in MSDS [22] proposed a set of manually “sanitized”
annotations for KAIST that correct problems in the original annotations and
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their sanitized results at night-time (indicated by *) are better than the origi-
nal results due to misalignment correction. Another key difference is that most
state-of-the-art multispectral approaches use more complex, two-stage detection
architectures like Faster RCNN (last column of table 3). Note, however, that
both TC Res Group and TC Det, surpass many multimodal techniques, while
TC Det performs second-best at night.

We note that recent advances in the state-of-the-art on KAIST have been
made by augmenting and/or correcting the original dataset annotations. For ex-
ample, the authors of AR-CNN [42] completely re-annotated the KAIST dataset,
correcting localization errors, adding relationships, and labeling unpaired ob-
jects, resulting in significantly improved performance. Use of additional manual
annotations, however, renders their results impossible to compare with those of
other approaches and are thus excluded from our comparison.

Speed analysis. The average inference time for YOLOv3 is 28.57 milliseconds
per image (∼35 FPS). Our TC Det network requires 33.17 milliseconds per
image (∼30 FPS), and TC Res Group 35.01 milliseconds per image (∼29
FPS). Thus, task conditioning does not significantly increase the complexity of
the network – in fact our TC Det network requires less than five milliseconds
more for single-image inference compared to the original YOLOv3 detector.

5 Conclusions

In this paper we proposed a task-conditioned architecture for adapting visible-
spectrum detectors to the thermal domain. Our approach exploits the internal
learned representation of an auxiliary day/night classification network to inject
conditioning parameters at strategic points in the detector network. Our exper-
iments demonstrate that task-based conditioning of the YOLOv3 detection net-
work can significantly improve thermal-only pedestrian detection performance.

Task-conditioned networks preserve the efficiency of the single-shot YOLOv3
architecture and perform respectably even compared to some multispectral de-
tectors. However, they are outperformed by more complex, two-stage multispec-
tral detectors such as MSDS [22]. We think, however, that our task-conditioning
approach can also be fruitfully applied to such detectors by conditioning both
region proposal and classification subnetworks.
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