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Fig. 1. Our method takes as input a 3D scan and a set of CAD models. We jointly detect
objects and layout elements in the scene. Each detected object or layout component
then forms a node in a graph neural network which estimates object-object relationships
and object-layout relationships. This holistic understanding of the scene enables results
in a lightweight CAD-based representation of the scene.

Abstract. We present a novel approach to reconstructing lightweight,
CAD-based representations of scanned 3D environments from commod-
ity RGB-D sensors. Our key idea is to jointly optimize for both CAD
model alignments as well as layout estimations of the scanned scene,
explicitly modeling inter-relationships between objects-to-objects and
objects-to-layout. Since object arrangement and scene layout are intrinsi-
cally coupled, we show that treating the problem jointly significantly helps
to produce globally-consistent representations of a scene. Object CAD
models are aligned to the scene by establishing dense correspondences
between geometry, and we introduce a hierarchical layout prediction
approach to estimate layout planes from corners and edges of the scene.
To this end, we propose a message-passing graph neural network to model
the inter-relationships between objects and layout, guiding generation of
a globally object alignment in a scene. By considering the global scene
layout, we achieve significantly improved CAD alignments compared to
state-of-the-art methods, improving from 41.83% to 58.41% alignment
accuracy on SUNCG and from 50.05% to 61.24% on ScanNet, respectively.
The resulting CAD-based representations makes our method well-suited
for applications in content creation such as augmented- or virtual reality.
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1 Introduction

The recent progress of 3D reconstruction of real-world environments from com-
modity range sensors has spurred interest in using such captured 3D data for
applications across many fields, such as content creation, mixed reality, or robotics.
State-of-the-art 3D reconstruction approaches can now produce impressively-
robust camera tracking and surface reconstruction [29, 30, 7, 11].

Unfortunately, the resulting 3D reconstructions are not well-suited for direct
use with many applications, as the geometric reconstructions remain incomplete
(e.g., due to occlusions and sensor limitations), are often noisy or oversmoothed,
and often consume a large memory footprint due to high density of triangles
or points used to represent a surface at high resolution. There still remains a
notable gap between these reconstructions and artist-modeled 3D content, which
are clean, complete, and lightweight [16].

Inspired by these attributes of artist-created 3D content, we aim to construct
a CAD-based scene representation of an input RGB-D scan, with objects repre-
sented by individual CAD models and scene layout represented by lightweight
meshes. In contrast to previous approaches which have individually tackled the
tasks of CAD model alignment [22, 2, 3] and of layout estimation [28, 25, 6], we
observe that object arrangement is typically tightly correlated with the scene
layout. We thus propose to jointly optimize for CAD model alignment and scene
layout to produce a globally-consistent CAD-based representation of the scene.

From an input RGB-D scan along with a CAD model pool, we align CAD
models to the scanned scene by establishing dense correspondences. To estimate
the scene layout, we characterize the layout into planar elements, and propose a
hierarchical layout prediction by first detecting corner locations, then predict-
ing scene edges, and from sets of edges potentially presenting a layout plane,
predicting the final layout. We then propose a graph neural network architec-
ture for optimizing the relationships between objects and layout by predicting
object-object relative poses as well as object-layout support relationships. This
optimization guides both object and layout arrangement to be consistent with
each other. Our approach is fully-convolutional and trained end-to-end, generating
a CAD-based scene representation of a scan in a single forward pass.

In summary, we present the following contributions:

– We formulate a lightweight heuristic-free 3D layout prediction algorithm
that hierarchically predicts corners, edges and then planes in an end-to-end
fashion consisting of only ≈ 1M trainable parameters generating satisfactory
layouts without the need for extensive heuristics.

– We present a scene graph network that learns relationships between objects
and scene layout, enabling globally consistent CAD model alignments and
results in a significant increase in prediction performance in both synthetic
as well as real-world datasets.

– We introduce a new richly-annotated real-world scene layout dataset con-
sisting of 1151 CAD shells and wireframes on top of the ScanNet RGB-D
dataset, allowing large-scale data-driven training for layout estimation.
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2 Related Work

CAD model alignment Aligning an expert-generated 3D model or a 3D template
to 3D scan data has been studied widely due to its wide range of applications,
for instance motion capture [4], 3D object detection and localization [12, 13,
39], and scene registration [35]. Our aim is to leverage large-scale datasets of
CAD models to reconstruct a lightweight, semantically-informed, high-quality
CAD representation of an RGB-D scan of a scene. Several approaches have been
developed to retrieve and align CAD models from a shape database and align
them in real time to a scan during the 3D scanning process [19, 22], although their
use of handcrafted features for geometric scan-to-CAD matching limit robustness.

Zeng et al. [40] developed a learned feature extractor using a siamese network
design for geometric feature matching, which can be employed for scan-to-CAD
feature matching, though this remains difficult due to the domain gap between
synthetic CAD models and real-world scans. Avetisyan et al. [2] proposed a
scan-to-CAD retrieval and alignment approach leveraging learned features to
detect objects in a 3D scan and establish correspondences across the domain gap
of scan and CAD. They later built upon this work to develop a fully end-to-end
trainable approach for this CAD alignment task [3]. For such approaches, each
object is considered independently, whereas our approach exploits contextual
information from object-object and object-layout to produce globally consistent
CAD model alignment and layout estimation.

Other approaches retrieve and align CAD models to RGB images [23, 38, 33];
our work instead focuses on geometric alignment of CAD models and layout.

Graph neural networks and relational inference in 3D. Recent developments in
graph inference and graph neural networks have shown significant promise for
inference on 3D data. Recently, various approaches have viewed 3D meshes as
graphs in order find correspondences between 3D shapes [5], deform a template
mesh to fit an image observation of a shape [36], or generate a mesh model of
an object [10], among other applications. Learning on graphs has also shown
promise for estimating higher-level relational information in scenes, as a scene
graph. 3D-RelNet [21] predicts 3D shapes and poses from single RGB images and
establish pairwise pose constraints between objects to improve overall prediction
quality. Our approach is similarly inspired to establish relationships between
objects; we additionally employ relationships between objects and structural
components (i.e., walls, floors, and ceilings), which considerably inform object
arrangement. Armeni et al. [1] propose a unified hierarchical structure that hosts
building, room, and object relationships into one 3D scene graph. They leverage
this graph structure to generate scene graphs from 2D images. Our approach
focuses on leveraging relational information to reconstruct imperfect scans with
a CAD-based representation for each object and layout element.

Layout estimation. Various layout estimation approaches have been developed to
infer structural information from RGB and RGB-D data. Scan2BIM [28] generates
building information models (BIM) from 3D scans by detecting planes and finding
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Fig. 2. Layout estimation as planar quad structures. Layout components are character-
ized as planar elements which are detected hierarchically. From an input scene, corners
of these layout elements are predicted in heatmap fashion leveraging non-maximum
suppression. From these predicted corners, edges are then predicted for each possible
pair of corners as a binary classification task. From the predicted edge candidates, valid
quads of four connected edges are considered as candidate layout elements, with a
binary classification used to produce the final layout prediction.

plausible intersections to produce room-level segmentation of floors, ceilings and
walls under Manhattan-style constraints. PlaneRCNN [24] and PlaneNet [26]
propose deep neural network architectures to detect planes from RGB images
and estimate their 3D parameters. FloorNet [25] estimates a 2D Manhattan-style
floorplan representation for an input RGB-D scan using a point-based neural
network architecture. Floor-SP [6] relaxes the Manhattan constraints with an
integer programming formulation, and produces more robust floorplan estimation.
In contrast to these layout estimation approaches, our focus lies in leveraging
global scene relations between objects as well as structural elements in order to
produce a CAD-based representation of the scene.

Single view 3D reconstruction. Holistic 3D Scene Parsing [18] parses a single
RGB image and reconstruct a holistic 3D arrangements of CAD models jointly
optimizing for 3D object detection, scene layout and hidden human context. Zou
et al. [41] infers a complete interpretation of the scene from a single RGBD
frame where objects and scene layout are predicted in data-driven fashion. In
contrast to single view reconstruction, our approach aims towards holistic scene
understanding that can operate on large-scale 3D scenes while consuming only a
few seconds of runtime at test time.

3 SceneCAD: Joint Object Alignment and Layout
Estimation

The input scan is represented as a sparse 3D voxel grid of the occupied surface
geometry carrying fused RGB data. The scan is first encoded by a series of sparse
3D convolutional layers [8] to produce a feature volume F ′. The sparse output
F ′ is then densified into a dense 3D feature grid F ∈ RNf×Nx×Ny×Nz where NF

is the number of channels in the feature and Nx, Ny, and Nz are the resolution
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of the feature along x, y, and z axis respectively. Note that the encoder serves as
backbone for proceeding modules. Hence, F is the input to the CAD alignment
module as well as the layout estimation module.

Based on F , we detect objects along with their bounding box in the object
detection module and layout planes in the layout detection module. We then
establish our relational inference by formulating a message-passing graph neural
network on the predicted objects and layout planes, where each node represents
an object or layout plane, with losses on edge relationships representing relative
poses and support. Finally, we predict a set of retrieved CAD models along with
their 9-DoF poses (3 translation, 3 rotation, and 3 scale) for every detected
object.

The message-passing graph neural network helps to inform objects of both
relations between other objects as well as with the scene layout, e.g., certain
types of furniture such as beds and chairs are typically directly supported by a
floor, chairs near a table often face the table. This joint optimization thus helps
to enable globally consistent CAD model alignment in the final output.

3.1 Layout Prediction

The indoor scene of interest in our problem consists of planar or quadrilateral
components such as walls, floors, and ceilings. However, some of these planar
elements create complex geometry such as bars, beams, or other structures that
effectively make template-matching approach to find the room layout challenging.
Thus, we propose a bottom-up approach that predicts corners, edges, and planar
elements sequentially to predict the room layout. Our layout prediction pipeline
is structured hierarchically: first predicting the corner locations, then predicting
edges between the corners, and finally extracting quads from the predicted edges.
We visualize the overview of the pipeline on Figure 2.

Corners are predicted by a convolutional network that decodes F to its
original dimension by predicting a heatmap; i.e. a voxel-wise score that indicates
a cornerness likeliness. The loss for this predicted heatmap is a voxel-wise binary
cross-entropy classification loss in conjunction with a softmax and a negative
log-likelihood over the entire voxel grid where the problem is formulated as a
spatial multi-class problem. This is structured as an encoder-decoder, where the
bottleneck lies at a spatial reduction of 4×. Note that we make predictions for
corners which have not been observed in the input scan (e.g., due to occlusions,
c.f.). See supplemental material for a visual illustration of the layout prediction
pipeline. From the output corner heatmap, we apply a non-maximum suppression
to filter out weak responses, and define the final corner predictions as a set of
xyz coordinates V = {vi}i, vi = [xi, yi, zi].

We the predict the layout edges from the predicted corners V . We construct the
candidate set of edges by taking all pair-wise combinations of corners eij = (vi,vj)
for all i ∈ [1, ..., |V|] and j ∈ [1, ..., i − 1]. We denote all edges as E = {eij}ij .
From the pool of candidate edges we predict a set of edges that belongs to the
scene structure using a graph neural network. Specifically, for each potential
edge eij = (vi,vj), we extract corresponding features from the vertex prediction
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convolutional network, F [vi], F [vj ] where F [·] denotes the feature vector at
the specified x, y, z coordinate. We concatenate these features along with the
normalized coordinates to form an input feature vector for each edge feij =
[F [vi], F [vj ],N(vi),N(vj)]. For each edge we construct two feature descriptors
with alternating order of corner features feji

to mitigate the effect of order
dependency. We feed these concatenated features into a graph network, which we
train with edge-wise binary cross entropy loss against ground truth edges. As the
vertex predictions have uncertainty, we label edges with predicted vertices within
a certain radius from the ground truth layout vertices to be positives. This edge
prediction limits the set of candidate layout quads which would otherwise be

O
((|V|

4

))
.

From these predicted edges, we then compute the set of candidate layout quads
as the set of planar, valid 4-cycles within these edges qijkl = {eij , ejk, ekl, eli}.
To detect valid cycles, we use the depth-first-search cycle detection algorithm
We predict the final set of layout quads as either positive or negative where the
positive predictions constitute the scene layout, decomposed as quads. The feature
descriptor for a candidate quad is constructed by concatenating the features
from F corresponding to the corner locations of its vertices and normalized
corner locations, qijkl = [F [vi], F [vj ], F [vk], F [vl],N(vi),N(vj),N(vk),N(vl)].
Similar to the edge features, every quad feature descriptor is 4-way permuted
qjkli,qklij , and qlijk in order to mitigate order-dependency. This feature is input
to an MLP followed by a binary cross entropy loss. From these predicted quads,
we recover the scene layouts without heuristic post-processing.

3.2 CAD Model Alignment

Along with the room layout, we aim to find and align light-weight CAD models
to objects in the scanned scene. To this end, we propose a CAD model alignment
pipeline that detects objects, retrieves CAD models, and finds transformations
that aligns the CAD model to the scanned scene. First, we use a single-shot
anchor-based object detector to identify objects [17], using the features from the
backbone we extracted (F) from the previous stage. We then filter the predicted
anchors with non-maximum suppression following the standard single-shot object
detection pipeline [27]. Given this set of object bounding boxes B, we extract
Nd × Nd × Nd feature volume Fo for all o ∈ [1, ..., |B|] from the feature map
F around the object anchor ao. We use this feature volume for CAD model
retrieval and alignment. A corresponding CAD model is retrieved by calculating
an object descriptor of length 512 and searching the nearest neighbor CAD model
from an shared embedding space. This shared embedding space is established by
minimizing the distance between descriptors of scanned objects and their CAD
counterpart with an L1 loss during training.

Finally, given the nearest CAD model for all object anchors, we find dense
correspondences between the CAD model and the feature volume Fo. Dense
correspondences are trained through an explicit voxel-wise L1 regression loss. We
use Procrutes [15] to estimate a rotation matrix and an L1 distance loss with
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respect to the groundtruth rotation matrix to further enhance correspondence
quality. Note that the Procrutes method yields a transformation matrix through
the Singular Value Decomposition which is differentiable, allowing for end-to-end
training.

3.3 Learning Object and Layout Relationships

From our layout prediction and CAD model alignment, we obtain a set of layout
quads and aligned CAD models, both obtained independently from the same
backbone features. However, this can result in globally inconsistent arrangements;
for instance, objects passing through the ground floor, or shelves misaligned
with walls. We thus propose to learn the object-layout as well as object-object
relationships as a proxy loss used to guide the CAD model alignments and layout
quads into a globally consistent arrangement.

We construct this relationship learning as a graph problem, where the set of
objects and layout quads form the nodes of the graph. Edges are constructed
between every object-object node-pair and every object-quad node-pair, forming
a graph on which we formulate a message-passing graph neural network.

Each node of the graph is characterized by a feature vector of length 128.
For objects this feature vector is obtained by pooling the object feature volume
to 83 resolution, followed by linearization. For layout quads, this feature vector
is constructed by concatenating the features from F or the associated corner
locations, upon which an MLP is applied to obtain a 128-dimensional vector.

Figure 3 shows an overview of our message-passing network. Messages are
passed from nodes to edges for a graph G = (V,E), with nodes vi ∈ V and edges
ej,k = (vj , vk) ∈ E. We define the message passing similar to [14, 20, 10, 37]:

v → e : ht+1
i,j = fe(concat(ht

i,h
t
j − ht

i))

where ht
i is the feature corresponding to vertex vi at message passing step t, ht

i,j

is the feature corresponding edge ei,j at step t, and fe represents an MLP. That
is, edges features are computed as the concatenation of its constituent vertices.

We then take these output edge features from the message passing and
perform a classification of various relationships using a cross entropy loss. We
describe the relationships as follows, which we chose as they do not require
extra manual annotation effort given existing ground truth CAD alignments and
scene layout; see Section 4.2 for more detail regarding extraction of ground truth
object and layout relationships. For object-layout relationships, we formulate
a 3-class classification task for support relations, predicting horizontal support,
vertical support, or no support. Only one relationship per object-layout pair
is allowed. For object-object relationships, we predict the angular difference
between the front-facing vectors of the respective objects, in order to recognize
common relative arrangements of objects (e.g., chairs often face tables). This is
trained with a 6-class cross entropy loss where the angular deviation up to 180◦
is discretized into 6 bins.
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Here, the relationship prediction adds a proxy loss to the model in Figure 2
which inter-correlates object and layout alignments, implicitly guiding the CAD
model alignment and layout quad estimation to become more globally consistent.

Fig. 3. Object and layout relational prediction. We establish a message-passing neural
network in order to predict object-object and object-layout relations. The inputs are
feature descriptors of detected objects and quads pooled to the same size, and the
output is relationship classification between objects and layout elements, as well as pose
relations between objects. Note this relational inference is fully differentiable, enabling
end-to-end prediction.

4 Object+Layout Dataset

To train and evaluate our method, we introduce a new dataset of 1151 CAD
layout annotations to the real-world RGB-D scans of the ScanNet dataset [9].
These layout annotations, in addition to the CAD annotations of Scan2CAD [2]
to ScanNet scenes, inform our method and evaluation on real-world scan data.

In order to obtain these room layout annotations, we use a semi-automated
annotation process. We then automatically extract the object-object and object-
layout relations.

4.1 Extraction of Scene Layouts

We performed a semi-automatic layout annotation for ScanNet scene data. First,
large planar surfaces are detected using RANSAC on the reconstructed scans.
We then employ a manual refinement step to modify potential errors in the
automatic extraction. The surface extraction is preceded by a semantic instance
segmentation to obtain wall, floor, ceiling, window, door, etc. instances. RANSAC
is then applied to extract 3D planes from each instance. Planes that fall below a
threshold will be merged or connected. All planes are projected onto the floor
plane and through a set of various heuristics the most plausible intersection
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points are selected to ultimately become corner points for the final layout. The
room height is either estimated by the maximum height of the detected wall
instances or is spanned by the ceiling.

Following the proposals given by RANSAC, we then manually verified which
proposals were plausible. This step is relatively quick (≈ 2min per scene) and
indicated that the RANSAC produced 1151 plausible initial layouts. These
layouts were then refined through a manual annotation process. We developed a
Blender4-based tool was introduced for the layout refinement, allowing annotators
to edit/merge/delete corner junctions as well as add or modify edges and planes.
All automatically generated layouts were verified and refined by two student
annotators (≈ 15min per scene). An illustration of layouts annotation samples
on ScanNet can be found in the supplemental.

4.2 Extraction of Object and Layout Relationships

To support learning global scene relationships, we extract object and layout
relations to supervised our message-passing approach to learning relationships.
We opt to learn relations which can be automatically extracted from given CAD
model and layout annotations.

We extract object-object and object-layout relationships. For the object-object
case, we compute the angular difference between the front-facing vectors of each
object where symmetrical properties are ignored; in practice, we compute this
on-the-fly during the training process.

Relationships between objects and layout elements are established by support:

– A vertical support relationship between a layout element and an object
is valid if the bottom side of the bounding box of the object within close
proximity to and close to parallel to the layout element.

– A horizontal touch relationship is valid if the left, right, front or back side
of the bounding box of the object is within close proximity to and close to
parallel to the layout element.

These relations are extracted through an exhaustive search. That is, each pair
of object-layout is checked for vertical support or horizontal touch. To estimate
proximity of objects, we expand the bounding box of the objects by τp, and
expand the sides of the bounding boxes of the layout elements by τp. We then
consider the object and layout element to be in close proximity if their expanded
bounding boxes overlap. We use τp = 0.2 meters for all experiments.

4.3 Synthetic Data

We additionally evaluate our approach on synthetic data, where CAD object and
layout ground truth are provided in the construction of the synthetic 3D scenes.
We use synthetic scenes from the SUNCG dataset [32]. SUNCG contains models
of indoor building environments including CAD models and room layouts. Layout

4 https://www.blender.org
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bathtub bookshelf cabinet chair display other sofa table trashbin class avg. avg.

FPFH (Rusu et al. [31]) 0.00 1.92 0.00 10.00 0.00 5.41 2.04 1.75 2.00 2.57 4.45
SHOT (Tombari et al. [34]) 0.00 1.43 1.16 7.08 0.59 3.57 1.47 0.44 0.75 1.83 3.14
Li et al. [22] 0.85 0.95 1.17 14.08 0.59 6.25 2.95 1.32 1.50 3.30 6.03
3DMatch (Zeng et al. [40]) 0.00 5.67 2.86 21.25 2.41 10.91 6.98 3.62 4.65 6.48 10.29
Scan2CAD (Avetisyan et al. [2]) 36.20 36.40 34.00 44.26 17.89 70.63 30.66 30.11 20.60 35.64 31.68
End2End (Avetisyan et al. [3]) 38.89 41.46 51.52 73.04 26.53 26.83 76.92 48.15 18.18 44.61 50.72

Ours (dense) 33.33 39.39 58.62 70.76 28.57 33.72 50.00 34.55 23.73 41.41 51.05
Ours (dense) + obj-obj 44.44 54.55 49.15 68.05 37.50 36.05 61.11 42.01 27.12 46.66 52.97
Ours (dense) + layout 54.55 47.37 38.33 71.11 32.88 28.05 62.86 37.91 32.26 45.04 52.06
Ours (dense) full 39.39 42.11 48.33 74.32 42.47 36.59 62.86 36.26 30.65 45.89 54.33
Ours (sparse) 42.42 39.47 51.67 77.28 45.21 28.05 77.14 37.91 25.81 47.22 55.77
Ours (sparse) + obj-obj 42.42 44.74 50.00 77.53 43.84 30.49 74.29 39.56 32.26 48.35 56.70
Ours (sparse) + layout 45.45 42.11 48.33 78.27 42.47 31.71 77.14 37.36 27.42 47.81 56.29
Ours (sparse) full 42.42 36.84 58.33 81.23 50.68 40.24 82.86 45.60 32.26 52.27 61.24

Table 1. CAD alignment evaluation on ScanNet Scan2CAD data [9, 2]. Our final method
(last row), incorporating contextual information from both object-object relationships
and object-layout relationships, outperforms the baseline by a notable margin of 10.52%.

components are given and hence extraction into planar quads can be performed
automatically. To generate the input partial scans, we virtually scan the scenes to
produce input scans similar to real-world scenarios, following previous approaches
to generate synthetic partial scan data [17].

Object and layout relational information was extracted following the same
procedure for ScanNet data.

5 Results

5.1 CAD Alignment Performance

We evaluate our method on synthetic SUNCG [32] scans as well as real-world
ScanNet [9] scans in Tables 3 and 1, respectively. We follow the CAD alignment
evaluation metric proposed by [2], which measures alignment accuracy where an
alignment is considered successful if it falls within 20cm, 20◦, and 20% scale of
the ground truth. On both SUNCG and ScanNet scans we compare to several
state-of-the-art handcrafted geometric feature matching approaches [31, 34, 22]
and learned approaches [40, 2, 3]. We additionally show qualitative comparisons
in Figures 6 and 5.2. On synthetic scan data we outperform the strongest baseline
by 16.58%, and improve by 10.52% on real scan data. This demonstrates the
benefit of leveraging global information regarding object and layout relations in
improving object alignments.

We also perform an ablation study on the various design choices and impact
of relation information. We evaluate a dense convolutional backbone for our
network architecture (dense) in contrast to our final sparse convolutional backbone
leveraging the sparse convolutions proposed by [8]. We additionally show that
the object-to-object relational inference (obj-obj ) as well as layout estimation
(layout) improve upon no relational inference, and our full method incorporating
both object and layout relational inference, the most contextual information,
yields the best performance.
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5.2 Layout Prediction

Fig. 4. Qualitative comparison of our layout estimation on the ScanNet dataset [9].
Layout elements are highlighted with their wireframes. Our method provides a very
lightweight, learned approach (≈ 1M trainable parameters) for layout estimation.

For the final quad prediction we achieve a F1-score of 37.9% on ScanNet
and 69.6% on SUNCG. Corners are considered as successfully detected if the
predicted corner is within a radius of 40cm from the ground truth corner. Edges
are considered as correctly predicted if they connect the same corners as the
ground truth edges. Similarly, correctly predicted quads are spanned by the same
4 corners as the associated ground truth quad. We aim to achieve a high recall for
corners and edges due to our hierarchical prediction. We achieve robust results
on both datasets, although ScanNet is notably more difficult as many scenes can
miss views of entire layout components (e.g., missing ceilings).

6 Limitations

While the focus of this work was to show improved scene understanding through
joint prediction of objects and layouts, we believe there is potential for further
achievements. For instance, our layout prediction method is bound to predict



12 Avetisyan et al.

Fig. 5. Layout estimation on SUNCG [32] scans. Layout elements are highlighted with
their wireframes. Our method excels with its simplicity, especially for very large and
complex scenes where heuristics to determine intersections tend to struggle.

# voxels 18K 42K 71K
Scene extent 2.6m2 × 2.4m2 3.2m2 × 3.5m2 7.5m2 × 6.2m2

# objects 1 5 26

Timing 1.9s 2.0s 2.60s

Table 2. Runtime (seconds) of our approach on different test scenes categorized into
small, medium and large.

bed cabinet chair desk dresser other shelves sofa table class avg. avg.

SHOT (Tombari et al. [34]) 13.43 3.23 10.18 2.78 0.00 0.00 1.75 3.61 11.93 5.21 6.30
FPFH (Rusu et al. [31]) 38.81 3.23 7.64 11.11 3.85 13.21 0.00 21.69 11.93 12.39 9.94
Scan2CAD (Avetisyan et al. [2]) 52.24 17.97 36.00 30.56 3.85 20.75 7.89 40.96 43.12 28.15 29.23
End2End (Avetisyan et al. [3]) 71.64 32.72 48.73 27.78 38.46 37.74 14.04 67.47 45.87 42.72 41.83

Ours (dense) 63.89 35.16 56.82 39.02 30.00 38.85 29.17 76.67 31.03 44.51 44.48
Ours (dense) + obj-obj 77.78 36.26 53.03 41.46 40.00 47.48 20.83 76.67 25.86 46.60 46.41
Ours (dense) + layout 75.00 37.04 60.68 37.14 38.89 45.53 33.33 72.41 32.08 48.01 48.33
Ours (dense) full 81.25 40.00 51.92 45.45 41.18 49.17 31.58 75.86 46.00 51.38 50.41
Ours (sparse) 54.29 42.55 66.67 48.57 44.44 57.60 27.27 57.89 36.84 48.46 52.31
Ours (sparse) + obj-obj 74.29 40.43 70.09 65.71 27.78 60.80 27.27 55.26 38.60 51.14 55.27
Ours (sparse) + layout 65.71 42.55 77.78 54.29 38.89 60.80 22.73 57.89 45.61 51.81 57.12
Ours (sparse) full 71.43 43.62 77.78 54.29 38.89 60.80 22.73 68.42 45.61 53.73 58.41

Table 3. CAD alignment accuracy on SUNCG [32] scans. Our final method (last row)
goes beyond considering only objects and jointly estimates room layout and object and
layout relationships, resulting in significantly improved performance.

quad planes only and hence more sophisticated methods could be used for
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Fig. 6. Qualitative CAD alignment and layout estimation results on SUNCG [32] scans.
Our joint estimation approach produces more globally consistent CAD alignments and
generates additionally room layout applicable for VR/AR applications.

more accurate layout estimation. Also, we used a very lightweight graph neural
network for message passing. One could use a more sophisticated method for more
accurate relationship prediction and a richer set of relationships that may contain
functionality relationships, spatial relationships or room semantic relationships.

7 Conclusion

In this work we formulated a method to digitize 3D scans that goes beyond the
focus of objects in the scene. We propose a novel method that estimates the
layout of the scene by sequentially predicting corners, then edges and finally
quads in a fully differentiable way. The estimated layout is used in conjunction
with an object detector to predict contact relationships between objects and
the layout and ultimately to predict a CAD arrangement of the scene. We can
show that objects and the surrounding (scene layout) go hand in hand and are a
crucial factor towards full scene digitization and scene understanding. Objects
in the scene are often not arbitrarily arranged, for instance often cabinets are
leaned at walls or a table is surrounded by chairs in a dining room, hence
we leverage the inherent coupling between objects and layout structure in the
learning process. Our approach improves global CAD alignment accuracy by
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Fig. 7. Qualitative CAD alignment and layout estimation results on ScanNet [9] scans
(zoomed in views on the bottom). Our approach incorporating object and layout
relationships produces globally consistent alignments along with the room layout.

learning those patterns on both real and synthetic scans. We hope that we can
encourage further research towards this avenue, and see as next immediate steps
for future work the necessity of texturing digitized shapes in order to enhance
the immersive experience in VR environments.
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