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Abstract. Semi-supervised video object segmentation (VOS) is a task
that involves predicting a target object in a video when the ground truth
segmentation mask of the target object is given in the first frame. Re-
cently, space-time memory networks (STM) have received significant at-
tention as a promising solution for semi-supervised VOS. However, an
important point is overlooked when applying STM to VOS. The solu-
tion (STM) is non-local, but the problem (VOS) is predominantly local.
To solve the mismatch between STM and VOS, we propose a kernelized
memory network (KMN). Before being trained on real videos, our KMN
is pre-trained on static images, as in previous works. Unlike in previ-
ous works, we use the Hide-and-Seek strategy in pre-training to obtain
the best possible results in handling occlusions and segment boundary
extraction. The proposed KMN surpasses the state-of-the-art on stan-
dard benchmarks by a significant margin (+5% on DAVIS 2017 test-dev
set). In addition, the runtime of KMN is 0.12 seconds per frame on the
DAVIS 2016 validation set, and the KMN rarely requires extra compu-
tation, when compared with STM.

Keywords: Video object segmentation, Memory network, Gaussian ker-
nel, Hide-and-Seek

1 Introduction

Video object segmentation (VOS) is a task that involves tracking target ob-
jects at the pixel level in a video. It is one of the most challenging problems in
computer vision. VOS can be divided into two categories: semi-supervised VOS
and unsupervised VOS. In semi-supervised VOS, the ground truth (GT) seg-
mentation mask is provided in the first frame, and the segmentation mask must
be predicted for the subsequent frames. In unsupervised VOS, however, no GT
segmentation mask is provided, and the task is to find and segment the salient
object in the video. In this paper, we consider semi-supervised VOS.

Space-time memory networks (STM) [30] have recently received significant
attention as a promising solution for semi-supervised VOS. The basic idea behind
the application of STM to VOS is to use the intermediate frames between the
first frame and the current frame. In STM, the current frame is considered to be
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Fig. 1. Illustration of KMN. In STM [30], two cars in the query frame are matched
with a car in the memory frame owing to the non-local matching between the query
and memory. The car in the middle is the correct match, while the car on the left
is an incorrect match. In KMN, however, non-local matching between the query and
memory is controlled by the Gaussian kernel. Only the car in the middle of the query
frame is matched with the car in the memory.

the query frame for which the target is to be predicted, whereas the past (already
predicted) frames are used as memory frames. This approach, however, overlooks
an important point. The solution (STM) is non-local, but the problem (VOS) is
predominantly local, as illustrated in Fig. 1. Specifically, STM is based on non-
local matching between the query frame and memory frames. However, in VOS,
the target object in the query frame usually appears in the local neighborhood of
the target’s appearance in the memory frames. To solve the problem arising from
the use of STM for VOS, we propose a kernelized memory network (KMN). In
KMN, the Gaussian kernel is employed to reduce the degree of non-localization
of the STM and improve the effectiveness of the memory network for VOS.

Before being trained on real videos, our KMN is pre-trained on static im-
ages, as in some previous works. In particular, multiple frames based on a random
affine transform were used in [29,30]. Unlike the training process in the previ-
ous works, however, we employ a Hide-and-Seek strategy during pre-training to
obtain the best possible results in handling occlusions and segment boundary
extraction. The Hide-and-Seek strategy [38] was initially developed for weakly
supervised object localization, but we used it to pre-train the KMN. This pro-
vides two key benefits. First, Hide-and-Seek achieves segmentation results that
are considerably robust to occlusion. To the best of our knowledge, this is the first
time that Hide-and-Seek has been applied to VOS in order to make the predic-
tions robust to occlusion. Second, Hide-and-Seek is used to refine the boundary of
the object segment. Because most of the ground truths in segmentation datasets
contain unclear and incorrect boundaries, it is fairly challenging to predict accu-
rate boundaries in VOS. The boundaries created by Hide-and-Seek, however, are
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clear and accurate. Hide-and-seek appears to provide instructive supervision for
clear and precise cuts for objects, as shown in Fig. 4. We conduct experiments on
DAVIS 2016, DAVIS 2017, and Youtube-VOS 2018 and significantly outperform
all previous methods, even compared with online-learning approaches.

The contributions of this paper can be summarized as follows. First, KMN is
developed to reduce the non-locality of the STM and make the memory network
more effective for VOS. Second, Hide-and-Seek is used to pre-train the KMN on
static images.

2 Related Work

Semi-supervised video object segmentation [33,34,49] is a task involving
prediction of the target objects in all frames of a video sequence where infor-
mation of the target objects is provided in the first frame. Because the object
mask for the first frame of the video is given at the test time, many previous
studies [37,5,32,2,14,7,1,25,26,44,22,47] fine-tuned their networks on the given
mask. This is known as the online-learning strategy. Online-learning methods can
provide accurate prediction results, but require considerable time for inference
and finding the best hyper-parameters of the model for each sequence. Offline-
learning methods [27,16,50,3,43,29,4,52,30] use a fixed parameter set trained on
the whole training sequence. Therefore, they can have a fast run time, while
achieving comparable accuracy. Our proposed method follows the offline ap-
proach.

Memory networks [39] use the query, key, and value (QKV) concept. The
QKV concept is often used when the target information of the current input
exists at the other inputs. In this case, memory networks set the current input
and the other inputs as the query and memory, respectively. The key and value
are extracted from memory, and the correlation map of the query and memory is
generated through a non-local matching operation of the query and key feature.
Then, the weighted average value based on the correlation map is retrieved. The
QKV concept is widely used in a variety of tasks, including natural language
processing [41,28,20], image processing [31,54], and video recognition [46,10,35].
In VOS, STM [30] has achieved significant success by repurposing the concept of
the QKV. However, applications in STM tend to overlook an important feature
of VOS, leading to a limitation that will be addressed in this paper.

Kernel soft argmax [21] uses Gaussian kernels on the correlation map to
create a gradient propagable argmax function for semantic correspondence. The
semantic correspondence task requires only a single matching flow from a source
image to a target image for each given source point. However, applying a discrete
argmax function on the correlation map makes the network untrainable. To solve
this problem, kernel soft argmax applies Gaussian kernels on the correlation map
and then averages the correlation scores. Our work is inspired by the kernel soft
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Fig. 2. Overall architecture of our kernelized memory network (KMN). We follow
the frameworks of [30] and propose a new operation of kernelized memory read. The
numbers next to the block indicate the spatial size and channel dimension, respectively.

argmax, but its application and objective are completely different. The kernel
soft argmax applies Gaussian kernels to the results of the searching flow (i.e.,
memory frame) to serve as a gradient propagable argmax function, whereas we
applied Gaussian kernels on the opposite side (i.e., query frame) to solve the
case as shown in Fig. 1.

Hide-and-Seek [38] is a weakly supervised framework that has been proposed
to improve object localization. Training object localization in a weakly super-
vised manner using intact images leads to poor localization by finding only the
most salient parts of the objects. Hiding some random patches of the object dur-
ing training helps to improve object localization by forcing the system to find
relatively less salient parts. We have found that Hide-and-Seek can improve VOS
which is a fully supervised learning task. As a result, we achieved comparable
performance to the other offline-learning approaches, even when we trained only
on the static images.

Difficulties in segmentation near object boundaries. Although there has
been significant progress in image segmentation, accurate segmentation of the
object boundary is still challenging. A low-level layer has been trained in EGNet
[53] using object boundaries to accurately predict object boundaries. The im-
balance between boundary pixels and non-boundary pixels has been addressed
in LDF [48] by separating them and training them separately. In this paper,
we deal with the problem of GTs that are inaccurate near the object boundary.
Hide-and-Seek addresses the problem by generating clean boundaries.
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3 Kernelized Memory Network

3.1 Architecture

In this section, we present a kernelized memory network (KMN). The overall
architecture of KMN is fairly similar to that of STM [30], as illustrated in Fig. 2.
As in STM [30], the current frame is used as the query, while the past frames with
the predicted masks are used as the memory. Two ResNet50 [12] are employed
to extract the key and value from the memory and query frames. In memory,
the predicted (or given) mask input is concatenated with the RGB channels.
Then, the key and value features of the memory and the query are embedded
via a convolutional layer from the res4 feature [12], which has a 1/16 resolution
resolution with respect to the input image. The structures of the key and value
embedding layers for the query and memory are the same, but the weights are not
shared. The memory may take several frames, and all frames in the memory are
independently embedded and then concatenated along the temporal dimension.
In the query, because it takes a single frame, the embedded key and value are
directly used for memory reading.

The correlation map between the query and memory is generated by applying
the inner product to all possible combinations of key features in the query and
memory. From the correlation map, highly matched pixels are retrieved through a
kernelized memory read operation, and the corresponding values of the matched
pixels in the memory are concatenated with the value of the query. Subsequently,
the concatenated value tensor is fed to a decoder consisting of a residual block
[13] and two stacks of refinement modules. The refinement module is the same
as that used in [30,29]. We recommend that the readers refer to [30] for more
details about the decoder.

The main innovation in KMN, distinct from STM [30], lies in the mem-
ory read operation. In the memory read of STM [30], only Query-to-Memory

matching is conducted. In the kernelized memory read of KMN. however, both
Query-to-Memory matching and Memory-to-Query matching are conducted. A
detailed explanation of the kernelized memory read is provided in the next sub-
section.

3.2 Kernelized Memory Read

In the memory read operation of STM [30], the non-local correlation map c(p,q)
is generated using the embedded key of the memory kM =

{
kM (p)

}
∈ RT×H×W×C/8

and query kQ =
{
kQ(q)

}
∈ RH×W×C/8 as follows:

c (p,q) = kM (p)kQ(q)> (1)

where H, W , and C are the height, width, and channel size of res4 [12], respec-
tively. p = [pt, py, px] and q = [qy, qx] indicate the grid cell positions of the key
features. Then, the query at position q retrieves the corresponding value from
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the memory using the correlation map by

r (q) =
∑
p

exp (c (p,q))∑
p

exp (c (p,q))
vM (p) (2)

where vM =
{
vM (p)

}
∈ RT×H×W×C/2 is the embedded value of the memory.

Then the retrieved value r(q), which is of size H ×W × C/2, is concatenated
with the query value vQ ∈ RH×W×C/2, and the concatenation result is fed to
the decoder.

The memory read operation of STM [30] has two inherent problems. First,
every grid in the query frame searches the memory frames for a target object,
but not vice versa. That is, there is only Query-to-Memory matching in the
STM. Thus, when multiple objects in the query frame look like a target object,
all of them can be matched with the same target object in the memory frames.
Second, the non-local matching in the STM can be ineffective in VOS, because
it overlooks the fact that the target object in the query should appear where it
previously was in the memory frames.

To solve these problems, we propose a kernelized memory read operation us-
ing 2D Gaussian kernels. First, the non-local correlation map c (p,q) = kM (p)kQ(q)>

between the query and memory is computed as in STM. Second, for each grid p
in the memory frames, the best-matched query position q̂ (p) = [q̂y (p) , q̂x (p)]
is searched by

q̂ (p) = arg max
q

c (p,q) . (3)

This is a Memory-to-Query matching. Third, a 2D Gaussian kernel g = {g (p,q)} ∈
RT×H×W×H×W centered on q̂ (p) is computed by

g (p,q) = exp

(
− (qy − q̂y (p))

2
+ (qx − q̂x (p))

2

2σ2

)
(4)

where σ is the standard deviation. Using Gaussian kernels, the value in the
memory is retrieved in a local manner as follows:

rk (q) =
∑
p

exp
(
c (p,q) /

√
d
)
g (p,q)∑

p
exp

(
c (p,q) /

√
d
)
g (p,q)

vM (p) (5)

where d is the channel size of the key. This is a Query-to-Memory match-
ing. Here, 1√

d
is a scaling factor adopted from [41], to prevent the argument

in the softmax from becoming large in magnitude, or equivalently, to prevent
the softmax from becoming saturated. The kernelized memory read operation is
summarized in Fig. 3.

4 Pre-training by Hide-and-Seek

As in previous studies [32,29,30], our KMN is pre-trained using static image
datasets that include foreground object masks [9,24,11,36,6,45]. The basic idea of
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Fig. 4. A pair of images generated dur-
ing pre-training using Hide-and-Seek.
The mask indicated in red denotes the
ground truth of the target object.

pre-training a VOS network is to synthetically generate a video with foreground
object masks from a single static image. Applying random affine transforms to
a static image and the corresponding object mask can yield a synthetic video,
and the video can be used to pre-train a VOS network. The problem with syn-
thetic generation of a video from a static image, however, is that the occlusion
of the target object does not occur in a generated video. Thus, the simulated
video cannot train the pre-trained KMN to cope with the common problem of
occlusion in VOS. To solve this problem, the Hide-and-Seek strategy is used to
synthetically generate a video with occlusions. Some patches are randomly hid-
den or blocked, and the occlusions are synthetically generated in the training
samples. Here, we only consider squared occluders, but any shape can be taken.
Hide-and-Seek can pre-train KMN to be robust to occlusion in the VOS. This
idea is illustrated in Fig. 4.

Further, it should be noted that most segmentation datasets contain inac-
curate masks (GTs) near the object boundaries. Pre-training KMN with accu-
rate masks is of great importance for high-performance VOS, because inaccu-
rate masks can lead to performance degradation. Manual correction of incorrect
masks would be helpful, but it would require a tremendous amount of labor.
Another benefit obtained by the use of Hide-and-Seek in pre-training KMN is
that the boundaries of the object segment become cleaner and more accurate
than before. An example is illustrated in Fig. 4. In this figure, the ground truth
mask contains incorrect boundaries on the head of the running person. However,
Hide-and-Seek creates a clear object boundary, as represented by the pink line
in Fig. 4. A detailed experimental analysis is given in Section 5.6.

The use of Hide-and-Seek in the pre-training on simulated videos significantly
improves the VOS pre-training performance; the results are given in Table 1. The
pre-training performance obtained by Hide-and-Seek is much higher than that
of the previous methods [29,30], and the performance is even as high as the
full-training performance of some previous methods.
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5 Experiments

In this section, we describe the implementation details of the method, our ex-
perimental results on DAVIS 2016, DAVIS 2017, and Youtube-VOS 2018, and
the analysis of our proposed methods.

5.1 Training Details

We divide the training stage into two phases: one for pre-training on the static
images and another for the main training on VOS datasets composed of video
sequences.

During the pre-training, we generated three frames using a single static image
by randomly applying rotation, flip, color jittering, and cropping, similar to
[29,30]. We then used the Hide-and-Seek framework, as described in Section 4.
We first divided the image into a 24 × 24 grid, which has the same spatial size
as the key feature. Each cell in the grid had a uniform probability to be hidden.
We gradually increased the probability from 0 to 0.5.

During the main training, we followed the STM training strategy [30]. We
sampled the three frames from a single video. They were sampled in time-order
with intervals randomly selected in the range of the maximum interval. In the
training process, the maximum interval is gradually increased from 0 to 25.

For both training phases, we used the dynamic memory strategy [30]. To
deal with multi-object segmentation, a soft aggregation operation [30] was used.
Note that the Gaussian kernel was not applied during training. Because the
argmax function, which determines the center point of the Gaussian kernel, is
a discrete function, the error of the argmax cannot be propagated backward
during training. Thus, if the Gaussian kernel is used during training, it attempts
to optimize networks based on the incorrectly selected key feature by argmax,
which leads to performance degradation.

Other training details are as follows: randomly resize and crop the images to
the size of 384 × 384, use the mini-batch size of 4, minimize the cross-entropy
loss for every pixel-level prediction, and opt for Adam optimizer [19] with a fixed
learning rate of 1e-5.

5.2 Inference Details

Our network utilizes intermediate frames to obtain rich information about the
target objects. For the inputs of the memory, intermediate frames use the soft-
max output of the network directly, while the first frame uses the given ground
truth mask. Even though we predict all the frames in a sequence, using all the
past frames as memory is not only computationally inefficient but also requires
considerable GPU memory. Therefore, we follow the memory management strat-
egy described in [30]. Both the first and previous frames are always used. The
other intermediate frames are selected at five-frame intervals. Remainders are
dropped.
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Table 1. Comparisons on the DAVIS 2016 and DAVIS 2017 validation set where ground
truths are available. ‘OL’ indicates the use of online-learning strategy. The best results
are bold-faced, and the second best results are underlined.

DAVIS 2016 val DAVIS 2017 val
Training Data Methods OL Time GM JM FM GM JM FM

Static Images
RGMP [29] 0.13s 57.1 55.0 59.1 - - -
STM [30] 0.16s - - - 60.0 57.9 62.1
KMN (ours) 0.12s 74.8 74.7 74.8 68.9 67.1 70.8

DAVIS

BVS [27] 0.37s 59.4 60.0 58.8 - - -
OSMN [50] - - - - 54.8 52.5 57.1
OFL [40] 120s 65.7 68.0 63.4 - - -
PLM [37] X 0.3s 66.0 70.0 62.0 - - -
VPN [16] 0.63s 67.9 70.2 65.5 - - -
OSMN [50] 0.14s 73.5 74.0 72.9 - - -
SFL [5] X 7.9s 74.7 74.8 74.5 - - -
PML [3] 0.27s 77.4 75.5 79.3 - - -
MSK [32] X 12s 77.6 79.7 75.4 - - -
OSVOS [2] X 9s 80.2 79.8 80.6 60.3 56.6 63.9
MaskRNN [14] X - 80.8 80.7 80.9 - 60.5 -
VidMatch [15] 0.32s - 81.0 - 62.4 56.5 68.2
FAVOS [4] 1.8s 81.0 82.4 79.5 58.2 54.6 61.8
LSE [7] X - 81.6 82.9 80.3 - - -
FEELVOS [43] 0.45s 81.7 80.3 83.1 69.1 65.9 72.3
RGMP [29] 0.13s 81.8 81.5 82.0 66.7 64.8 68.6
DTN [52] 0.07s 83.6 83.7 83.5 - - -
CINN [1] X >30s 84.2 83.4 85.0 70.7 67.2 74.2
DyeNet [22] 0.42s - 84.7 - 69.1 67.3 71.0
RaNet [47] 0.03s 85.5 85.5 85.4 65.7 63.2 68.2
AGSS-VOS [23] - - - - 66.6 63.4 69.8
DTN [52] - - - - 67.4 64.2 70.6
OnAVOS [44] X 13s 85.5 86.1 84.9 67.9 64.5 71.2
OSVOSS [26] X 4.5s 86.0 85.6 86.4 68.0 64.7 71.3
DMM-Net [51] - - - - 70.7 68.1 73.3
STM [30] 0.16s 86.5 84.8 88.1 71.6 69.2 74.0
PReMVOS [25] X 32.8s 86.8 84.9 88.6 77.8 73.9 81.7
DyeNet [22] X 2.32s - 86.2 - - - -
RaNet [47] X 4s 87.1 86.6 87.6 - - -
KMN (ours) 0.12s 87.6 87.1 88.1 76.0 74.2 77.8

+Youtube-VOS

S2S [49] X 9s - 79.1 - - - -
AGSS-VOS [23] - - - - 67.4 64.9 69.9
A-GAME [17] 0.07s - 82.0 - 70.0 67.2 72.7
FEELVOS [43] 0.45s 81.7 81.1 82.2 72.0 69.1 74.0
STM [30] 0.16s 89.3 88.7 89.9 81.8 79.2 84.3
KMN (ours) 0.12s 90.5 89.5 91.5 82.8 80.0 85.6



10 H. Seong et al.

Table 2. Comparisons on the DAVIS 2017 test-dev and Youtube-VOS 2018 validation
sets where ground truths are unavailable. ‘OL’ indicates the use of online-learning
strategy. The best results are bold-faced, and the second best results are underlined.

DAVIS17 test-dev Youtube-VOS 2018 val
Methods OL GM JM FM Overall JS JU FS FU

OSMN [50] 39.3 33.7 44.9 51.2 60.0 40.6 60.1 44.0
FAVOS [4] 43.6 42.9 44.2 - - - - -
DMM-Net+ [51] - - - 51.7 58.3 41.6 60.7 46.3
MSK [32] X - - - 53.1 59.9 45.0 59.5 47.9
OSVOS [2] X 50.9 47.0 54.8 58.8 59.8 54.2 60.5 60.7
CapsuleVOS [8] 51.3 47.4 55.2 62.3 67.3 53.7 68.1 59.9
OnAVOS [44] X 52.8 49.9 55.7 55.2 60.1 46.6 62.7 51.4
RGMP [29] 52.9 51.3 54.4 53.8 59.5 45.2 - -
RaNet [47] 53.4 55.3 57.2 - - - - -
OSVOSS [26] X 57.5 52.9 62.1 - - - - -
FEELVOS [43] 57.8 55.1 60.4 - - - - -
RVOS [42] - - - 56.8 63.6 45.5 67.2 51.0
DMM-Net+ [51] X - - - 58.0 60.3 50.6 53.5 57.4
S2S [49] X - - - 64.4 71.0 55.5 70.0 61.2
A-GAME [17] - - - 66.1 67.8 60.8 - -
AGSS-VOS [23] - - - 71.3 71.3 65.5 75.2 73.1
Lucid [18] X 66.7 63.4 69.9 - - - - -
CINN [1] X 67.5 64.5 70.5 - - - - -
DyeNet [22] X 68.2 65.8 70.5 - - - - -
PReMVOS [25] X 71.6 67.5 75.7 - - - - -
STM [30] 72.2 69.3 75.2 79.4 79.7 72.8 84.2 80.9
KMN (ours) 77.2 74.1 80.3 81.4 81.4 75.3 85.6 83.3

We empirically set the fixed standard deviation σ of the Gaussian kernel
in (4) to 7. We did not utilize any test time augmentation (e.g., multi-crop
testing) or post-processing (e.g., CRF) and used the original image without any
pre-processing (e.g., optical flow).

5.3 DAVIS 2016 and 2017

DAVIS 2016 [33] is an object-level annotated dataset that contains 20 video
sequences with a single target per video for validation. DAVIS 2017 [34] is an
instance-level annotated dataset that contains 30 video sequences with multiple
targets per video for validation. Both DAVIS validation sets are most commonly
used in VOS to validate proposed methods. We measure the official metrics:
the mean of the region similarity JM, the contour accuracy FM, and their
average value GM. We used a single parameter set that was trained on the DAVIS
2017 training dataset, which contains 60 video sequences, to evaluate our model
on DAVIS 2016 and DAVIS 2017 for a fair comparison with previous works
[29,50,30]. The experimental results on the DAVIS 2016 and 2017 validation sets
are given in Table 1. We report three different results for each training data.
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Fig. 5. Qualitative results and comparisons on the DAVIS 2017 validation set. Our
results also do not utilize additional training set, Youtube-VOS.

The results of the training with only static images show a significant mar-
gin of improvement from previous studies. In addition, the performances of our
proposed network trained on the static images show results comparable to those
of the other approaches trained on DAVIS. This indicates that our Hide-and-
Seek pre-training approach uses the static images effectively for VOS in train-
ing. STM [30] trained on DAVIS showed weak performance compared with the
online-learning methods. However, our approach achieves almost similar or even
higher performance than the online-learning methods, along with a fast runtime.
Finally, the results trained on an additional training dataset, Youtube-VOS,
showed the best performance among all existing VOS approaches. Because the
ground truths of the DAVIS validation set are accessible to every user, tuning
on the dataset is relatively easy. Therefore, to show that a method actually
works well in general, we evaluate our approaches on the DAVIS 2017 test-dev
benchmark, where ground truths are unavailable, with results shown in Table
2. In DAVIS 2017 test-dev experiments, for a fair comparison, we resize the in-
put frame to be 600p as in STM [30]. We find that our approach surpasses the
state-of-the-art method by a significant margin (+5% GM score).

5.4 Youtube-VOS 2018

Youtube-VOS 2018 [49] is the largest video object segmentation dataset. It
contains 4,453 video sequences with multiple targets per video. To validate on
Youtube-VOS 2018, both metrics J and F were calculated separately, depending
on whether the object categories are seen or not during training: seen sequences
with the number of 65 for JS , FS , and unseen sequences with the number of
26 for JU , FU . The ground truths of the Youtube-VOS 2018 validation set are
unavailable as the DAVIS 2017 test-dev benchmark. As shown in Table 2, our ap-
proach achieved state-of-the-art performance. This indicates that our approach
works well in all cases.
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Table 3. Ablation study of our proposed methods. ‘HaS’ and ‘KM’ indicate the use of
Hide-and-Seek pre-training and kernelized memory read operation, respectively. Note
that we did not use additional VOS training data for the ablation study. Only either
DAVIS or Youtube-VOS is used, depending on the target evaluation benchmark.

DAVIS16 DAVIS17 Youtube-VOS 2018
HaS KM Time?GM JM FM GM JM FM Overall JS JU FS FU

STM[30] 0.11s 86.5 84.8 88.1 71.6 69.2 74.0 79.4 79.7 72.8 84.2 80.9

Ours

0.11s 81.3 80.0 82.6 72.6 70.1 75.0 79.0 79.2 73.5 83.1 80.3
X 0.11s 87.1 86.3 88.0 75.9 73.7 78.1 79.5 80.0 73.1 83.9 81.0

X 0.12s 87.2 86.6 87.7 73.5 71.2 75.7 81.0 81.0 75.4 85.0 82.5
X X 0.12s 87.6 87.1 88.1 76.0 74.2 77.8 81.4 81.4 75.3 85.6 83.3

? measured on our 1080Ti GPU system
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Fig. 6. Qualitative results and comparisons with STM [30]. The noticeable improve-
ments are marked with yellow boxes. For DAVIS results, Youtube-VOS is additionally
used for training. Note that the ground truths of the Youtube-VOS validation set are
not available.
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5.5 Qualitative Results

A qualitative comparison is shown in Fig. 5. We compare our method with the
state-of-the-art methods officially released on DAVIS1. The other methods in
the figure do not utilize any additional VOS training data. Therefore, we show
the KMN results which trained only on DAVIS in the main training stage for a
fair comparison. Our results show consistently accurate predictions compared to
other methods, even in cases of fast deformation (dance-twirl), the appearance
of other objects, which are regarded as a background similar to the target object
(car-roundabout), and the severe occlusion of the target objects (India).

5.6 Analysis

Ablation study. We conducted an ablation study to demonstrate the effective-
ness of our approaches, and the experimental results are presented in Table 3.
As shown in the table, our approaches lead to performance improvements. The
runtimes were measured on our 1080Ti GPU system, which is the same as that
used in [30].

Qualitative comparison with STM. We conducted a qualitative comparison
with STM [30], and the results are shown in Fig. 6. To show the actual improve-
ments from STM, we obtained STM results using the author’s officially released
source code2. However, since the parameters for Youtube-VOS validation are
not available, our parameters shown in Table 3 were used for Youtube-VOS.
For DAVIS, additional data, the Youtube-VOS set, was used for training. As
shown in Fig. 6, our results are robust and accurate even in difficult cases where
multiple similar objects appear in the query and occlusion occurs.

Boundary quality made by Hide-and-Seek. To verify that Hide-and-Seek
modified the ground truth boundary accurately, we visualized the prediction
loss for each pixel in Fig. 7. For a fair comparison, a single model trained on
static images was used. As shown in the figure, most of the losses occur near
the boundary, even when the network predicts quite accurately. This indicates
that the networks struggle to learn the mask boundary because the ground truth
mask has an irregular and noisy boundary. However, the boundary of the hidden
patch is not activated in the figure. This means that the network can learn the
mask boundary modified by Hide-and-Seek. Thus, Hide-and-Seek can provide
more precise boundaries, and we expect that our new perspective would provide
an opportunity to improve not only the quality of the segmentation masks, but
also system performance for various segmentation tasks in the computer vision
field.

1 https://davischallenge.org/davis2017/soa_compare.html
2 https://github.com/seoungwugoh/STM

https://davischallenge.org/davis2017/soa_compare.html
https://github.com/seoungwugoh/STM
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Fig. 7. Pixel-level cross-entropy loss visualization during the pre-training on static
images. ‘S’ indicates the gird size of the Hide-and-Seek. Even if the network finds the
object accurately, pixel-level losses occur near the mask boundary, because the ground
truth masks near the boundary are not accurate. This makes it difficult for the network
to learn the boundary correctly. Since Hide-and-Seek can cut the object cleanly, it gives
a more accurate ground truth mask near the boundary. Therefore, we can observe that
the losses are not activated on the boundaries made by Hide-and-Seek.

6 Conclusion

In this work, we present a new memory read operation and a method for handling
occlusion and obtaining an accurate boundary using a static image. Our proposed
methods were evaluated on the DAVIS 2016, DAVIS 2017, and Youtube-VOS
benchmarks. We achieved state-of-the-art performance, even including online-
learning methods. The ablation study shows the efficacy of our kernel approach,
which addresses the main problem of memory networks in VOS. New approaches
using the Hide-and-Seek strategy also show its effectiveness for VOS. Since our
approaches can be easily reproduced and lead to significant improvements, we
believe that our ideas have the potential to improve not only VOS, but also other
segmentation-related fields.
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