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Abstract. Existing RGB-D salient object detection (SOD) approaches
concentrate on the cross-modal fusion between the RGB stream and the
depth stream. They do not deeply explore the effect of the depth map
itself. In this work, we design a single stream network to directly use the
depth map to guide early fusion and middle fusion between RGB and
depth, which saves the feature encoder of the depth stream and achieves
a lightweight and real-time model. We tactfully utilize depth informa-
tion from two perspectives: (1) Overcoming the incompatibility prob-
lem caused by the great difference between modalities, we build a single
stream encoder to achieve the early fusion, which can take full advantage
of ImageNet pre-trained backbone model to extract rich and discrim-
inative features. (2) We design a novel depth-enhanced dual attention
module (DEDA) to efficiently provide the fore-/back-ground branches
with the spatially filtered features, which enables the decoder to opti-
mally perform the middle fusion. Besides, we put forward a pyramidally
attended feature extraction module (PAFE) to accurately localize the
objects of different scales. Extensive experiments demonstrate that the
proposed model performs favorably against most state-of-the-art meth-
ods under different evaluation metrics. Furthermore, this model is 55.5%
lighter than the current lightest model and runs at a real-time speed of
32 FPS when processing a 384× 384 image.

Keywords: RGB-D salient object detection · Single stream · Depth-
enhanced dual attention · Lightweight · Real-time

1 Introduction

Salient object detection (SOD) aims to estimate visual significance of image re-
gions and then segment salient targets out. It has been widely used in many fields,
e.g., scene classification [29], visual tracking [21], person re-identification [30],
foreground maps evaluation [10], content-aware image editing [51], light field
image segmentation [36] and image captioning [14], etc.
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Fig. 1. Visual comparison of RGB and RGB-D SOD datasets.

With the development of deep convolutional neural networks (CNNs), a large
number of CNN-based methods [33,43,35,37,42,6,44,41,39,27,38,24,47] have been
proposed for RGB salient object detection and they achieve satisfactory perfor-
mance. However, some complex scenarios are still unresolved, such as salient
objects share similar appearances to the background or the contrast among
different objects is extremely low. Under these circumstances, only using the
information provided by the RGB image is not sufficient to predict saliency map
well. Recently, benefiting from Microsoft Kinect and Intel RealSense devices,
depth information can be conveniently obtained. Moreover, the stable geometric
structures depicted in the depth map are robust against the changes of illu-
mination and texture, which can provide important supplement information for
handling complex environments, as shown in Fig. 1. These examples in the RGB-
D dataset have more stereoscopic viewing angles and more severe interference
from the background than ones in the RGB dataset.

For the RGB-D SOD task, many CNN-based methods [2,4,3,45,26,23] are pro-
posed, but more efforts need be paid to achieve a robust, real-time and small-scale
model. We analyze their restrictions here: (1) Most methods [16,48,2,34,4,26] use
the two-stream structure to separately extract features from RGB and depth,
which greatly increases the number of parameters in the network. In addition,
due to small scale of existing RGB-D datasets and great difference between RGB
and depth modalities, the deep network (e.g., VGG, ResNet) is very difficult to
be trained from scratch if the RGB and depth channels are concatenated and
fed into the network. To this end, we construct a single stream encoder, which
can borrow the generalization ability of ImageNet pre-trained backbone to ex-
tract discriminative features from the RGB-D input and achieve SOD-oriented
RGB-depth early fusion. (2) The depth map can naturally depict contrast cues at
different positions, which provides important guidance for the fore-/back-ground
segmentation. However, this observation has never been investigated in the exist-
ing literature. In this work, we introduce a spatial filtering mechanism between
the encoder and the decoder, which explicitly utilizes the depth map to guide
the computation of dual attention, thereby promoting feature discrimination in
the fore-/back-ground decoding branches. (3) Since the size of objects is vari-
ous, the effective utilization of multi-scale contextual information is very key to
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accurately localize objects. Previous methods [35,9,42,46,26] do not explore the
internal relationships between the parallel features of different receptive fields in
the multi-scale feature extraction module (e.g. ASPP [5]). We think that each
position in the feature map responds differently to objects and a strong activa-
tion area can better perceive the semantic cues of objects.

To address these above problems, we propose a single stream network with
the novel depth-enhanced attention (DANet) for RGB-D saliency detection.
First, we design a single stream encoder with a 4-channel input. It can not
only save many parameters compared to previous two-stream methods, but also
promote the regional discrimination of the low-level features because this en-
coder can effectively utilize the ImageNet pre-trained model to extract powerful
features with the help of the proposed initialization strategy. Second, we build
a depth-enhanced dual attention module (DEDA) between the encoder and the
decoder. This module sequentially leverages both the mask-guided strategy and
the depth-guided strategy to filter the mutual interference between depth prior
and appearance prior, thereby enhancing the overall contrast between foreground
and background. In addition, we present a pyramidal attention mechanism to
promote the representation ability of the top-layer features. It calculates the
spatial correlation among different scales and obtains efficient context guidance
for the decoder.

Our main contributions are summarized as follows.

– We propose a single stream network to achieve both early fusion and middle
fusion, which implicitly formulates the cross-modal information interaction
in the encoder and further explicitly enhances this effect in the decoder.

– We design a novel depth-enhanced dual attention mechanism, which exploits
the depth map to strengthen the mask-guided attention and computes fore-
/back-ground attended features for the encoder.

– Through using a self-attention mechanism, we propose a pyramidally at-
tended feature extraction module, which can depict spatial dependencies
between any two positions in feature map.

– We compare the proposed model with ten state-of-the-art RGB-D SOD
methods on six challenging datasets. The results show that our method per-
forms much better than other competitors. Meanwhile, the proposed model
is much lighter than others and achieves a real-time speed of 32 FPS.

2 Related Work

Generally speaking, the depth map can be utilized in three ways: early fu-
sion [25,32], middle fusion [15] and late fusion [13]. It is worth noting that the
early fusion technique has not been explored in existing deep learning based
saliency methods. Most of them use two streams to respectively handle RGB
and depth information. They achieve the cross-modal fusion only at a specific
stage, which limits the usage of the depth-related prior knowledge. This issue
motivates some efforts [2,4] to examine the multi-level fusion between the two
streams. However, the two-stream design significantly increases the number of
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parameters in the network [16,2,4,34]. And, restricted by the scale of existing
RGB-D datasets, the depth stream is hardly effectively trained and does not
comprehensively capture depth cues to guide salient object detection. To this
end, Zhao et al. [45] propose a trade-off method, which only feeds the RGB
images into the encoder network and inserts a shallow convolutional subnet be-
tween adjacent encoder blocks to extract the guidance information from the
depth map.

In this work, we integrate the depth map and the RGB image from starting to
build a real single-stream network. This network can fully use the advantage of
the ImageNet pre-trained model to extract color and depth features and remedy
the deficiencies of individual grouping cues in color space and depth space. And
we also show the effectiveness of the proposed early fusion strategy in the encoder
through quantitative and qualitative analysis. Recently, Zhao et al. [45] exploit
the depth map to compute a contrast prior and then use this prior to enhance
the encoder features. Their contrast loss actually enforces the network to learn
saliency cues from the depth map in a brute-force manner. Although the resulted
attention map can coarsely distinguish the foreground from the background, it
greatly reduces the ability of providing accurate depth prior for some easily-
confused regions, thereby weakening the discrimination of the encoder feature in
these regions. We think that the depth map is more suitable to play a guiding
role because the grouping cues in depth space are very incompatible with those in
color space. In this work, we combine the depth guidance and the mask guidance
to explicitly formulate their complementary relation. Thus, we can effectively
take advantage of the useful depth cues to assist in segmenting salient objects
and weaken their incompatibility.
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Fig. 2. Network pipeline. It consists of the VGG-16 (E1 ∼ E5), five transition lay-
ers (T1 ∼ T5), five saliency layers (S1 ∼ S5), five background layers (B1 ∼ B5),
the pyramidally attended feature extraction module (PAFE) and the depth-enhanced
dual attention module (DEDA). The final prediction is generated by using residual
connections to fuse the outputs from S1 and B1.



A Single Stream Network for RGB-D Salient Object Detection 5

3 Proposed Method

We adopt the feature pyramid network [19] (FPN) as the basic structure and
the overall architecture is shown in Fig. 2, in which encoder blocks, transition
layers, saliency layers and background layers are denoted as Ei, Ti, Si and
Bi, respectively. Here, i ∈ {1, 2, 3, 4, 5} indexes different levels. And their output
feature maps are denoted as Ei, T i, Si and Bi, respectively. Each transition layer
uses a 3×3 convolution operation to process the features maps from each encoder
block for matching the number of channels. The saliency layers and background
layers compose the decoder. The final output is generated by integrating the
predictions of the two branches using a residual connection. In this section,
we first describe the encoder network in Sec. 3.1, then give the details of the
proposed modules, including depth-enhanced dual attention module (DEDA) in
Sec. 3.2 and pyramidally attended feature extraction module (PAFE) in Sec. 3.3.

3.1 Single Stream Encoder Network

In our model, the encoder is a single stream with a FCN structure. We take the
VGG-16 [31] network as the backbone, which contains 13 Conv layers, 5 max-
pooling layers and 2 fully connected layers. First, we concatenate the depth map
with the RGB image as the 4-channel RGB-D input. We initialize the parame-
ters of the first convolutional layer in block E1 using the He’s method [17] and
output a 64-channel feature. The other layers adopt the ImageNet pre-trained
parameters. In this way, the two-modality information can be fused in the input
stage and make the low-level features have a more powerful discriminant ability,
which is conducive to extracting effective features for salient regions. Moreover,
because four input channels are parallel in the channel direction, the network
can easily learn to suppress the feature response of the depth channel when the
quality of the depth map is poor and does not affect feature computation of the
color channels. To demonstrate the effectiveness of this design, we compare two
other schemes. Both of them combine the color channels with the depth channel
by element-wise addition. One is to directly load the pre-trained parameters.
The other is to use the above-mentioned parameter setting. When the depth
map has a negative impact, the first layer simultaneously suppresses the color
response and the depth response. The quantitative results in Tab. 3 show that
our early fusion strategy performs better than other schemes.

Similar to most previous methods [48,2,45,3,34,26], we cast away all the fully-
connected layers of the VGG-16 net and remove the last pooling layer to retain
the details of the top-layer features.

3.2 Depth-enhanced Dual Attention Module

Considering that the depth map can naturally describe contrast information in
different depth positions, we utilize it to generate contrasted features for the
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Fig. 3. Detailed diagram of depth-enhanced dual attention module.

decoder, thereby strengthening the detection ability for hard examples. In par-
ticular, we propose a depth-enhanced attention module and its detailed structure
is shown in Fig. 3.

When the region of object has a large span at depth or the background and
foreground areas are at the same depth, only depending on the depth map does
not provide accurate grouping cues for saliency detection. Therefore, we adopt
the mask supervision and depth guidance mechanism to filter the misleading
information. We first combine the features from the current transition layer
and the previous decoder block with the depth map to compute a mask-guided
attention Am, which is supervised by the saliency ground truth. The whole
process is written as follows:

Am =

{
δ(Conv(T i + Si+1 +D)) if i = 1, 2, 3, 4

δ(Conv(T i +D)) if i = 5,
(1)

where δ(·) is an element-wise sigmoid function, Conv(·) refers to the convolution
layer and D denotes the depth map. Although the resulted Am shows high con-
trast between the foreground and the background under binary supervision, it
inevitably exists two drawbacks: (1) Some background regions are wrongly clas-
sified to be salient. (2) Some salient regions are mislabelled as the background.
To solve the first issue, we introduce the depth information to refine Am:

Asd = Am ·Am +Am ·D, (2)

where Asd denotes the depth-enhanced attention of the saliency branch. It can
provide additional contrast guidance for the misjudged regions in Am and main-
tain high contrast between foreground and background, thereby enhancing mask-
guided attention. To resolve the second issue, we design the depth-enhanced
attention Abd for the background branch as follows:

Abd = (1−Am) · (1−Am) + (1−Am) ·D. (3)
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Fig. 4. Illustration of pyramidally attended feature extraction.

We combine Am and D by the above formulas to construct foreground atten-
tion Asd and background attention Abd. There are three benefits: (1) When the
depth value is very small or even zero, the attention still work because the first
terms in Equ. (2) and Equ. (3) are independent of D. (2) The depth map does
not have the semantic distinction between foreground and background, which
may introduce noise and interference when segmenting salient object. However,
the DEDA can still preserve high contrast between the foreground and the back-
ground while introducing depth information in Equ. (2) and Equ. (3). Becasue,
the Am usually shows high contrast between the foreground and the background
under binary supervision. Am · D or 1−Am · D can limit D to only optimize the
foreground or the background. (3) During the back-propagation process of gra-
dient, Asd and Abd can obtain dynamic gradients, which help the network learn
the optimal parameters. Taking Asd for example, its derivation with respect to
Am is calculated as:

dAsd
dAm

= 2 ·Am +D, (4)

from where it can be seen that the gradient changes with Am although the depth
D is fixed.

3.3 Pyramidally Attended Feature Extraction

The scale of objects is various in images. The single-scale features can not cap-
ture the multi-scale context for different objects. Benefiting from the ASPP in
semantic segmentation [5], some SOD networks [9,42,46] also equip it. However,
directly aggregating features at different scales may weaken the representation
ability for salient areas because of the distraction of non-salient regions. Instead
of equally treating all spatial positions, we respectively apply spatial attention to
the features of different scales in order to focus more on the visually important
regions. By integrating the attention-enhanced multi-scale features, we build a
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pyramidally attended feature extraction module (PAFE). Its detailed structure
is shown in Fig. 4.

We first load in parallel several dilated convolutional layers with different
dilation rates on the top-layer E5 to extract high-level and multi-scale features.
Then, an attention module is followed in individual branch. Our attention design
is inspired by the non-local idea [40]. We consider the pairwise relationship at any
point in feature map to calculate the attention weight. Let Fin ∈ RC×H×W and
Fout ∈ RC×H×W represent the input and the output of the attention module,
respectively. The attention map A is computed as follows:

A = softmax(R1(Conv(Fin))>

×R1(Conv(Fin))),
(5)

where softmax(·) is an element-wise softmax function and R1(·) reshapes the
input feature to RC×N . N = H ×W is the number of features.

Next, we combine A with Fin to yield the attention-enhanced feature map
and then add the input Fin to obtain the output Fout as follows:

Fout = Fin +R2(R1(Conv(Fin))×A>), (6)

where R2(·) reshapes the input feature to RC×H×W . In particular, the 1 × 1
convolution branch and the global average pooling branch aim to maintaining the
inherent properties of the input by respectively using the minimal and maximum
receptive field. Therefore, we do not apply the attention module to the two
branches.

4 Experiments

4.1 Dataset

We evaluate the proposed model on six public RGB-D SOD datasets which
are NJUD [18], RGBD135 [7] NLPR [25], SSD [49], DUTLF-D [26] and
SIP [12]. On the DUTLF-D, we adopt the same way as the DMRA [26] to use
800 images for training and the rest 400 for testing. Following most state-of-
the-art methods [2,4,16,45], we randomly select 1400 samples from the NJUD
dataset and 650 samples from the NLPR dataset for training. Their remaining
images and other three datasets are used for testing.

4.2 Evaluation Metrics

We adopt several widely used metrics for quantitative evaluation: precision-recall
(PR) curves, F-measure score, mean absolute error (MAE, M), the recently
released S-measure (Sm) and E-measure (Em) scores. The lower value is better
for the MAE and higher is better for others. Precision-Recall curve: The pairs
of precision and recall are calculated by comparing the binary saliency maps with
the ground truth to plot the PR curve, where the threshold for binarizing slides
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from 0 to 255. F-measure: It is a metric that comprehensively considers both
precision and recall:

Fβ =

(
1 + β2

)
· precision · recall

β2 · precision + recall
, (7)

where β2 is set to 0.3 as suggested in [1] to emphasize the precision. In this
paper, we report the maximum F-measure (Fmaxβ ) score across the binary maps
of different thresholds, the mean F-measure (Fmeanβ ) socre across an adaptive
threshold and the weighted F-measure (Fwβ ) [22]. Mean Absolute Error: It
is a complement to the PR curve and measures the average absolute difference
between the prediction and the ground truth pixel by pixel. S-measure: It eval-
uates the spatial structure similarity by combining the region-aware structural
similarity Sr and the object-aware structural similarity So:

Sm = α ∗ So + (1− α) ∗ Sr, (8)

where α is set to 0.5 [10]. E-measure: The enhanced alignment measure [11]
can jointly capture image level statistics and local pixel matching information.

4.3 Implementation Details

Our model is implemented based on the Pytorch toolbox and trained on a PC
with GTX 1080Ti GPU for 40 epochs with mini-batch size 4. The input RGB im-
age and depth map are both resized to 384×384. For the RGB image, we use some
data augmentation techniques to avoid overfitting: random horizontally flip, ran-
dom rotate, random brightness, saturation and contrast. For the optimizer, we
adopt the stochastic gradient descent (SGD) with a momentum of 0.9 and a
weight decay of 0.0005. The learning rate is set to 0.001 and later use the “poly”
policy [20] with the power of 0.9 as a mean of adjustment. In this paper, we use
the binary cross-entropy loss as supervision. The source code will be publicly
available at https://github.com/Xiaoqi-Zhao-DLUT/DANet-RGBD-Saliency.

4.4 Comparison with State-of-the-art Results

The performance of the proposed model is compared with ten state-of-the-
art approaches on six benchmark datasets, including the DES [7], DCMC [8],
CDCP [50], DF [28], CTMF [16], PCA [2], MMCI [4], TANet [3], CPFP [45] and
DMRA [26]. For fair comparisons, all the saliency maps of these methods are
directly provided by authors or computed by their released codes.

Quantitative Evaluation. 1) Tab. 1 shows performance comparisons in
terms of the maximum F-measure, mean F-measure, weighted F-measure, S-
measure, E-measure and MAE scores. It can be seen that our DANet achieves
the best results on all six datasets under all six metrics. 2) Tab. 2 lists the model
sizes and average speed of different methods in detail. Our model is the smallest

https://github.com/Xiaoqi-Zhao-DLUT/DANet-RGBD-Saliency
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Table 1. Quantitative comparison. ↑ and ↓ indicate that the larger and smaller scores
are better, respectively. Among the CNN-based methods, the best results are shown in
red. The subscript in each model name is the publication year.

Metric
Traditional Methods VGG-16 VGG-19

DES14 DCMC16 CDCP17 DF17 CTMF18 PCANet18 MMCI19 TANet19 CPFP19 DANet DMRA19 DANet

[7] [8] [50] [28] [16] [2] [4] [3] [45] Ours [26] Ours

S
S
D

[4
9]

Fmax
β ↑ 0.260 0.750 0.576 0.763 0.755 0.844 0.823 0.835 0.801 0.888 0.858 0.866

Fmean
β ↑ 0.073 0.684 0.524 0.709 0.709 0.786 0.748 0.767 0.726 0.831 0.821 0.827

Fw
β ↑ 0.172 0.480 0.429 0.536 0.622 0.733 0.662 0.727 0.709 0.798 0.787 0.795

Sm ↑ 0.341 0.706 0.603 0.741 0.776 0.842 0.813 0.839 0.807 0.869 0.856 0.864

Em ↑ 0.475 0.790 0.714 0.801 0.838 0.890 0.860 0.886 0.832 0.909 0.898 0.911

M ↓ 0.500 0.168 0.219 0.151 0.100 0.063 0.082 0.063 0.082 0.050 0.059 0.050

N
J
U
D

[1
8]

Fmax
β ↑ 0.328 0.769 0.661 0.789 0.857 0.888 0.868 0.888 0.890 0.905 0.896 0.910

Fmean
β ↑ 0.165 0.715 0.618 0.744 0.788 0.844 0.813 0.844 0.837 0.877 0.871 0.871

Fw
β ↑ 0.234 0.497 0.510 0.545 0.720 0.803 0.739 0.805 0.828 0.853 0.847 0.857

Sm ↑ 0.413 0.703 0.672 0.735 0.849 0.877 0.859 0.878 0.878 0.897 0.885 0.899

Em ↑ 0.491 0.796 0.751 0.818 0.866 0.909 0.882 0.909 0.900 0.926 0.920 0.922

M ↓ 0.448 0.167 0.182 0.151 0.085 0.059 0.079 0.061 0.053 0.046 0.051 0.045

R
G
B
D
13
5
[7
]

Fmax
β ↑ 0.800 0.311 0.651 0.625 0.865 0.842 0.839 0.853 0.882 0.916 0.906 0.928

Fmean
β ↑ 0.695 0.234 0.594 0.573 0.778 0.774 0.762 0.795 0.829 0.891 0.867 0.899

Fw
β ↑ 0.301 0.169 0.478 0.392 0.687 0.711 0.650 0.740 0.787 0.848 0.843 0.877

Sm ↑ 0.632 0.469 0.709 0.685 0.863 0.843 0.848 0.858 0.872 0.905 0.899 0.924

Em ↑ 0.817 0.676 0.810 0.806 0.911 0.912 0.904 0.919 0.927 0.961 0.944 0.968

M ↓ 0.289 0.196 0.120 0.131 0.055 0.050 0.065 0.046 0.038 0.028 0.030 0.023

D
U
T
L
F
-D

[2
6]

Fmax
β ↑ 0.770 0.444 0.658 0.774 0.842 0.809 0.804 0.823 0.787 0.911 0.908 0.918

Fmean
β ↑ 0.667 0.405 0.633 0.747 0.792 0.760 0.753 0.778 0.735 0.884 0.883 0.889

Fw
β ↑ 0.380 0.284 0.521 0.536 0.682 0.688 0.628 0.705 0.638 0.847 0.852 0.860

Sm ↑ 0.659 0.499 0.687 0.729 0.831 0.801 0.791 0.808 0.749 0.889 0.887 0.899

Em ↑ 0.751 0.712 0.794 0.842 0.883 0.863 0.856 0.871 0.815 0.929 0.930 0.937

M ↓ 0.280 0.243 0.159 0.145 0.097 0.100 0.112 0.093 0.100 0.047 0.048 0.043

N
L
P
R

[2
5]

Fmax
β ↑ 0.695 0.413 0.687 0.752 0.841 0.864 0.841 0.876 0.884 0.908 0.888 0.916

Fmean
β ↑ 0.583 0.328 0.592 0.683 0.724 0.795 0.730 0.796 0.818 0.865 0.855 0.870

Fw
β ↑ 0.254 0.259 0.501 0.516 0.679 0.762 0.676 0.780 0.807 0.850 0.840 0.862

Sm ↑ 0.582 0.550 0.724 0.769 0.860 0.874 0.856 0.886 0.884 0.908 0.898 0.915

Em ↑ 0.760 0.685 0.786 0.840 0.869 0.916 0.872 0.916 0.920 0.945 0.942 0.949

M ↓ 0.301 0.196 0.115 0.100 0.056 0.044 0.059 0.041 0.038 0.031 0.031 0.028

S
IP

[1
2]

Fmax
β ↑ 0.720 0.680 0.544 0.704 0.720 0.861 0.840 0.851 0.870 0.901 0.847 0.892

Fmean
β ↑ 0.644 0.645 0.495 0.673 0.684 0.825 0.795 0.809 0.819 0.864 0.815 0.855

Fw
β ↑ 0.342 0.414 0.397 0.406 0.535 0.768 0.712 0.748 0.788 0.829 0.734 0.822

Sm ↑ 0.616 0.683 0.595 0.653 0.716 0.842 0.833 0.835 0.850 0.878 0.800 0.875

Em ↑ 0.751 0.787 0.722 0.794 0.824 0.900 0.886 0.894 0.899 0.914 0.858 0.915

M ↓ 0.298 0.186 0.224 0.185 0.139 0.071 0.086 0.075 0.064 0.054 0.088 0.054

Table 2. The model sizes and average speed of different methods.

Model Name PCANet [2] MMCI [4] TANet [3] CPFP [45] DMRA [26] OURS(VGG-19) OURS(VGG-16)

Model Size 533.6 (MB) 951.9 (MB) 929.7 (MB) 278 (MB) 238.8 (MB) 128.1 (MB) 106.7 (MB)

Average speed 17 (FPS) 20 (FPS) 14(FPS) 6 (FPS) 22 (FPS) 30 (FPS) 32 (FPS)

and the fastest among these state-of-art methods and saves 55.5% of the param-
eters compared to the second lightest method DMRA [26] . 3) Fig. 5 shows the
PR curves of different algorithms. We can see that the curves of the proposed
method are significantly higher than those of other methods, especially on the
NJUD, NLPR and RGBD135 datasets which contain plenty of relatively com-
plex images. Through detailed quantitative comparisons, it can be seen that our
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Fig. 5. Precision (vertical axis) recall (horizontal axis) curves on six RGB-D salient
object detection datasets.

method has significant advantages in accuracy and model size, which indicates
it is necessary to further explore how to better utilize depth information.

Qualitative Evaluation. Fig. 6 illustrates the visual comparison with other
approaches. Our method yields the results more close to the ground truth in var-
ious challenging scenarios. For example, for the images having multiple objects
or the objects having slender parts, our method can accurately locate objects
and capture more details (see the 1st - 3th rows). In complex environments, with
the guidance of the depth maps, the proposed method can precisely identify the
whole object, while other methods fail (see the 4th - 6th rows). Even when the
depth information performs badly in separating the foreground from the back-
ground, our network still significantly outperforms other methods (see the 7th -
9th rows).

4.5 Ablation Studies

We take the FPN network of the VGG-16 backbone as the baseline to analyze
the contribution of each component. To verify their generalization abilities, we
demonstrate the experimental results on five datasets.

Effectiveness of Depth Fusion in Encoder Network. We evaluate three
early fusion strategies. The results are shown in Tab. 3. Addp denotes the fusion
by using element-wise addition and the ImageNet pre-trained first-layer convolu-
tion. AddHe and CatHe use the He’s initialization [17] instead of the pre-trained
parameters in the first layer, and the latter adopts the 4-channel concatenation
rather than element-wise addition. We can see that CatHe is significantly better
than the baseline and other early fusion methods across five datasets. In par-
ticular, it respectively achieves the gain of 4.53%, 5.44%, 5.25% and 16.36% in
terms of the Fmaxβ , Fmeanβ , Fwβ and MAE on the RGBD135 dataset. Further-
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RGB Depth GT OURS DMRA CPFP TANet MMCI PCANet CTMF DF

Fig. 6. Visual comparison between our results and the state-of-the-art methods.

Table 3. Ablation analysis on five datasets.

Metric Baseline Addp AddHe CatHe DA MGA DEFA DEDA ASPP PAFE

S
S
D

[4
9
]

Fmaxβ ↑ 0.799 0.812 0.817 0.845 0.837 0.843 0.858 0.860 0.879 0.888

Fmeanβ ↑ 0.745 0.743 0.734 0.758 0.754 0.794 0.806 0.810 0.830 0.831

Fwβ ↑ 0.700 0.705 0.677 0.710 0.697 0.745 0.757 0.761 0.784 0.798

Sm ↑ 0.813 0.825 0.811 0.835 0.829 0.841 0.846 0.847 0.855 0.869

Em ↑ 0.862 0.857 0.833 0.849 0.847 0.883 0.886 0.887 0.905 0.909

M ↓ 0.080 0.077 0.092 0.076 0.078 0.064 0.060 0.062 0.056 0.050

N
J
U
D

[1
8
] Fmaxβ ↑ 0.855 0.861 0.857 0.869 0.865 0.882 0.889 0.889 0.896 0.905

Fmeanβ ↑ 0.781 0.784 0.798 0.815 0.813 0.832 0.842 0.849 0.862 0.877

Fwβ ↑ 0.748 0.757 0.744 0.770 0.763 0.815 0.823 0.826 0.843 0.853

Sm ↑ 0.848 0.854 0.847 0.860 0.856 0.878 0.881 0.880 0.890 0.897

Em ↑ 0.863 0.866 0.872 0.880 0.880 0.896 0.904 0.907 0.915 0.926

M ↓ 0.079 0.076 0.081 0.073 0.076 0.059 0.056 0.055 0.049 0.046

R
G
B
D
1
3
5

[7
] Fmaxβ ↑ 0.839 0.860 0.865 0.877 0.881 0.897 0.904 0.913 0.907 0.916

Fmeanβ ↑ 0.772 0.792 0.802 0.814 0.812 0.850 0.868 0.876 0.894 0.891

Fwβ ↑ 0.705 0.732 0.740 0.742 0.751 0.823 0.831 0.846 0.860 0.848

Sm ↑ 0.847 0.863 0.867 0.864 0.871 0.906 0.903 0.907 0.915 0.905

Em ↑ 0.904 0.910 0.922 0.922 0.923 0.943 0.952 0.954 0.966 0.961

M ↓ 0.055 0.050 0.051 0.046 0.044 0.032 0.033 0.029 0.026 0.028

N
L
P
R

[2
5
] Fmaxβ ↑ 0.852 0.852 0.860 0.862 0.859 0.887 0.886 0.880 0.903 0.908

Fmeanβ ↑ 0.772 0.772 0.773 0.774 0.773 0.821 0.826 0.832 0.857 0.865

Fwβ ↑ 0.741 0.741 0.743 0.743 0.734 0.809 0.813 0.815 0.846 0.850

Sm ↑ 0.862 0.863 0.866 0.868 0.865 0.893 0.893 0.889 0.907 0.908

Em ↑ 0.898 0.900 0.898 0.892 0.894 0.920 0.923 0.926 0.939 0.945

M ↓ 0.052 0.053 0.053 0.052 0.055 0.040 0.040 0.038 0.032 0.031

S
IP

[1
2
]

Fmaxβ ↑ 0.838 0.851 0.836 0.849 0.835 0.864 0.873 0.876 0.885 0.901

Fmeanβ ↑ 0.780 0.784 0.758 0.787 0.771 0.804 0.830 0.833 0.847 0.864

Fwβ ↑ 0.716 0.721 0.692 0.722 0.699 0.767 0.791 0.798 0.813 0.829

Sm ↑ 0.833 0.840 0.824 0.841 0.833 0.854 0.863 0.865 0.871 0.878

Em ↑ 0.882 0.881 0.867 0.880 0.868 0.889 0.907 0.907 0.909 0.917

M ↓ 0.085 0.082 0.095 0.083 0.092 0.070 0.062 0.061 0.057 0.054
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Fig. 7. Visual comparison between the 4-channel RGB-D FPN and the 3-channel RGB
FPN (baseline). Each input image corresponds to two columns of feature maps (E1 ∼
E5) and prediction. The left is the results of the 3-channel baseline, while the right is
those of the 4-channel baseline.

more, we visualize the features of different levels in Fig. 7. With the aid of the
contrast prior provided the depth map, salient objects and their surrounding
backgrounds can be clearly distinguished starting from the lowest level (E1). At
the highest level (E5), the encoder feature is more concentrated on the salient
regions, thereby providing the decoder with effective contextual guidance.

Effectiveness of Depth-Enhanced Dual Attention Module. We com-
pare three attention modules based on the ‘CatHe’ model. The results are shown
in Tab. 3. We try to directly use the depth map as the attention between the
encoder and decoder. Since the depth value often varies widely inside the fore-
ground or the background, it easily misleads salient object segmentation and
performs badly, even worse than the CatHe model. To this end, we use the
mask-guided attention (MGA) and the performance is indeed improved. Based
on it, we further introduce the depth guidance and build two attended branches
to form the depth-enhanced dual attention module (DEDA). It can be seen that
the DEFA and DEDA achieve significant performance improvement compared to
the MGA. And, the gap between the DEFA and DEDA indicates that the back-
ground branch has important supplement to the final prediction. I should note is
that we do not deeply consider the two-branch fusion. Since the output of each
branch is only a single-channel map, it might not produce too much performance
improvement no matter what fusion is used. In addition, we qualitatively show
the benefits of the DEDA in Fig 8. It can be seen that the mask-guided atten-
tion wrongly classifies some salient regions as the background (see the 1st - 3th

columns) and some background regions to be salient (see the 4th - 6th columns).
By introducing extra contrast cues provided by the depth map for these regions,
the decoder can very well correct some mistakes in the final predictions.

Effectiveness of Pyramidally Attended Feature Extraction. To be
fair, we compare the PAFE with the ASPP which also uses the same convolution
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Fig. 8. Visual results of using the DEDA. Am, Asd and Abd are calculated by Equ. 1,
Equ. 2 and Equ. 3, respectively.

operations. That is, both the two modules equip a 1× 1 convolution, three 3× 3
atrous convolution with dilation rates of [2, 4, 6] and a global average pooling.
The results in Tab. 3 indicate that the proposed PAFE is more competitive
than the ASPP. In addition, we also compare them in terms of Flops (4.00G vs.
3.86G) and Params (7.07M vs. 6.82M). Our PAFE does not increase much more
computation cost.

5 Conclusions

In this paper, a more efficient way of using depth information is proposed. We
build a single-stream network with the novel depth-enhanced dual attention for
real-time and robust salient object detection. We first abandon the routines of
the two-stream cross-modal fusion and design a single stream encoder to make
full use of the representation ability of the pre-trained network. Next, we use
the depth-enhanced dual attention module to make the decoder jointly optimize
the fore-/back-ground predictions. Benefiting from the above two ingenious de-
signs, the saliency detection performance is greatly improved while almost no
parameters are increased. In addition, we introduce the self-attention mechanism
to pyramidally weight multi-scale features, thereby obtaining accurate contex-
tual information to guide salient object segmentation. Extensive experimental
results demonstrate that the proposed model notably outperforms ten state-of-
the-art methods under different evaluation metrics. Moreover, our model size is
only 106.7 MB with the VGG-16 backbone and runs a real-time speed of 32 FPS.
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