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Abstract. In this paper we focus on the task of weakly-supervised se-
mantic segmentation supervised with image-level labels. Since the pixel-
level annotation is not available in the training process, we rely on region
mining models to estimate the pseudo-masks from the image-level labels.
Thus, in order to improve the final segmentation results, we aim to train
a region-mining model which could accurately and completely highlight
the target object regions for generating high-quality pseudo-masks. How-
ever, the region mining models are likely to only highlight the most dis-
criminative regions instead of the entire objects. In this paper, we aim to
tackle this problem from a novel perspective of optimization process. We
propose a Splitting vs. Merging optimization strategy, which is mainly
composed of the Discrepancy loss and the Intersection loss. The proposed
Discrepancy loss aims at mining out regions of different spatial patterns
instead of only the most discriminative region, which leads to the split-
ting effect. The Intersection loss aims at mining the common regions
of the different maps, which leads to the merging effect. Our Splitting
vs. Merging strategy helps to expand the output heatmap of the region
mining model to the object scale. Finally, by training the segmentation
model with the masks generated by our Splitting vs Merging strategy,
we achieve the state-of-the-art weakly-supervised segmentation results
on the Pascal VOC 2012 benchmark.

Keywords: Weakly-Supervised Learning, Deep Convolutional Neural
Network (DCNN), Semantic Segmentation

1 Introduction

The performance of semantic segmentation has been remarkable improved by
recent deep learning developments [16, 14]. The segmentation models trained
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with pixel-level ground-truth could achieve remarkable segmentation accuracy.
However, one of the obstacles to limit the developments of semantic segmentation
is that the pixel-wise segmentation ground-truth is quite time-consuming and
expensive to annotate. One way to reduce the need of pixel-wise annotations is
to utilize weaker level of supervisions in the training stage. The weak supervisions
include but are not limited to bounding boxes, points, scribbles and image-level
labels. Among all the supervision formats, image-level label is the easiest format
to annotate and has been widely studied in the weakly supervised learning.
However, semantic segmentation supervised with image-level labels is a difficult
task, since there is no localization and scale information of the ground-truth
objects provided by the training images.

Thus, region-mining techniques are utilized to estimate object localization
and scales from image-level labels. The region-mining model, or the object lo-
calization model, is usually an image-classification model which could induce
class-specific localization maps. The highlighted regions of the localization maps
usually correspond to the image labels, which is an approximation of the target
object localization and scales. However, region mining models usually only se-
lect the most discriminative parts, which deviates from our goal to estimate the
complete integral object regions. The main underlying reason is that the region
mining models are optimized solely with the classification loss. Thus, targeting
only the most discriminative parts is enough for the classification purpose.

In order to alleviate such limitations of region mining models, previous works
usually follow the erasing vs. mining pipeline, which is to mine out the most dis-
criminative region, erase it in the feature space, then re-train the region mining
model to detect the next discriminative region. The final localization map is the
union of all the output maps in different erasing steps. Such erasing operation
manipulates the feature space in the forward pass, which may be complicated to
implement since it requires multiple steps of model training and post-processing
operations.

Different from the previous erasing operations in the forward pass, we tackle
this problem from the perspective of the backward pass, or the optimization
process. Intrinsically speaking, our goal is to search localization maps of differ-
ent spatial patterns which all satisfy the classification purpose and the union
of all the maps can highlight the entire object regions. Thus, we propose a
Discrepancy loss which helps to mine out different localization maps. However,
optimizing with the Discrepancy loss alone can lead to the trivial solution of
splitting the original discriminative region. In order to avoid such phenomena,
we further add an Intersection loss which tends to merge the splitted regions
in order to regularize the splitting effect. By such splitting vs. merging process,
we effectively expand the highlighted regions to the integral object range in a
principled pipeline.

In summary, our main contributions are listed as follows:

– We propose to expand the highlighted regions generated by the region mining
model from a novel perspective of the backward pass.
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– We propose a Discrepancy loss which aims to mine out localization maps of
different spatial patterns. It leads to a splitting effect of localization maps.

– We propose an Intersection loss which aims to regularize the splitting phe-
nomena caused by the Discrepancy loss. It leads to a merging effect of local-
ization maps.

– Training the segmentation network with the pseudo-masks generated by our
splitting vs. merging process, we achieve state-of-the-art results on weakly
supervised semantic segmentation on Pascal VOC 2012 segmentation bench-
mark.

2 Related Works

2.1 Weakly Supervised Semantic Segmentation

The pixel-wise groundtruth for semantic segmentation is quite laborious to an-
notate. Apart from few-shot learning [26, 25] and Domain adaptation [21, 17, 28,
30], one way to reduce the annotation load is to utilize weaker-level annotation
format, namely weakly supervised learning. In this part we give a brief review
about the weakly supervised semantic segmentation with image-level labels and
their key contributions to improve the segmentation results. Recent works always
rely on the localization maps to generate localization seeds/pseudo-masks as the
substitute of the non-existence of pixel-level groundtruth. The first category [13,
29, 6, 8] investigates training the region mining models to generate initial lo-
calization maps which could highlight the object range. The methods in this
category are closely related to the object localization tasks [27, 32]. The second
category investigates post-processing the localization maps to generate refined
pseudo-masks close to the target object regions. The post-processing techniques
usually rely on the low-level similarity cues to compensate the seed incomplete-
ness caused by the high-level feature discrimination. Affinitynet [1] proposes to
train a network to predict the inter-patch similarity and apply random walk
post-processing technique on the localization seeds. The third category inves-
tigates a training pipeline for segmentation model which is more stable to the
inaccurate/incomplete localization seeds. SEC [10] proposes a pipeline which
incorporates expansion loss, CRF constrains loss to the original segmentation
loss. Similarly [7] dynamically grows the initial incomplete discriminative seeds
into the larger object regions in the training process. The fourth category in-
vestigates utilizing additional easily obtained sources such as web sources into
weakly supervised semantic segmentation tasks. Web images, which are easily
collected by indexing the category names, always possess dominant foreground
and clear background regions. Thus the pseudo-masks of web images could be
easily estimated by segmentation techniques such as co-segmentation [19] or
saliency detection [23]. Consequently the web images could be utilized to com-
pensate the inaccurate localization seeds. Our proposed methods belong to the
first category, which focuses on training the region-mining models to highlight
the entire object regions.
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2.2 Region Mining

In this section we briefly review the region mining techniques which our meth-
ods are closely related to. We refer region mining methods as the approaches
to estimate the object regions by training image-classification network using the
image-level labels, such as CAM [32] and Grad-CAM [18]. One of the common
drawbacks of the region-mining technique is that the result localization map is
usually confined to the most discriminative parts instead of the integral object
region. Many works focus on enlarging the localization maps from the most dis-
criminative parts to the integral object regions. Adversarial Erasing [22] is the
early work that expands the highlighted region by erasing the most discrimna-
tive image region detected by original region-mining model and then re-train the
region-mining model with the erased input images. SeeNet [6] utilizes Condition-
ally Reversed Linear Units to reverse the signs of the feature maps according to
the confident foreground/background region. [22, 6] follow a sequential training
pipeline, which means they alternate between training region-mining models and
suppressing the feature space through multiple iterations. Such multi-step train-
ing process is time-consuming and complicated to implement. In order to follow a
more simple and delicate pipeline, ACoL [31] and GAIN [13] switch the sequential
pipeline into an end-2-end manner, which enclose such erasing/suppressing op-
erations in the training steps. Decoupled-net [29] proposes to extend the regions
by increasing the dropout rates of dropout layers, which also encloses feature
suppression in the training process. The common inherent idea among [22, 6,
31] is to suppress the feature space to reduce its classification differentiation to
force the classification model to highlight larger region to achieve classification
purpose.

2.3 Co-training

Co-training is a technique which has been initially proposed for multi-view semi-
supervised learning. It has been applied in unsupervised domain adaptation
tasks [17]. In general, it aims to generate two classifiers with different parame-
ter weights to perform classification from diverse views. Here, we are inspired to
generate two diverse localization maps, both of which could satisfy the same goal
of classification. We assume that different parts of object regions could achieve
the classification task. Thus, forcing the region-mining models to mine regions of
different patterns could highlight the regions more than the most discriminative
parts.

3 Approach

In this section, first we briefly revisit CAM [32], which is one of the most widely
used region mining approaches based on classification model. Next we introduce
our region mining approach with the proposed Discrepancy loss and Intersection
loss, which is a Splitting vs. Merging process to expand the highlighted region of
the localization maps. Finally we normalize the resultant localization maps and
generate pseudo-annotations to train the final segmentation model.
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3.1 Revisiting CAM

Feature backbone Classifier B

Classifier AFeature backbone Avg Pool

Avg Pool Cls loss B

Cls loss A

Compensatory loss

Feature backbone

Classifier B

Classifier A

Classifier Ref
Feature backbone

Avg Pool

Avg Pool

Avg Pool

Cls loss A

Cls loss B

Cls loss C

Disc loss

Atten 
Detector

Feature Backbone Classifier Avg Pool Cls loss S

Conditional Stream

Compensatory Stream

Feature Extractor Classifier S Avg Pool Cls loss 

Fig. 1. The brief revisiting of CAM [32] approach. It is a classification model with
average pooling step to aggregate the patch-level score map into classification score.
The resultant localization map S is obtained by training the model with classification
loss.

We briefly review CAM [32], which is one of the most widely used region
mining techniques and serves as the basis model for our pipeline. It utilizes global
average pooling to aggregate the pixel-level prediction to the image-level score.
For simplicity, we introduce an equivalent variance of CAM utilized in ACol [31],
which is a more delicate and simple formulation than the original definition [32].
The structure of CAM is illustrated in Fig. 1. The model is sequentially composed
of fully convolutional feature extractor and patch-level classifier, which outputs
feature X ∈ RW×H×D and patch-level score map S ∈ RW×H×C , respectively.
H and W denote the height and width in the spatial dimension. D denotes the
feature dimension and C denotes the number of the classes to classify. Spatial
Average pooling is applied on S to aggregate the patch-level score into the image-
level prediction score s ∈ RC . The whole network is finetuned by calculating and
back-propagating the image-classification loss Lcls(s). For the multi-label case
we utilize MultiLabel Soft Margin Loss, which is a multi-label one-versus-all loss
based on max-entropy. Score map S is the resultant class-specific localization
map which highlights the corresponding region for each individual class. [31] has
proved theoretically that such variance is equivalent to the original CAM [32]
and can directly generate the localization map during the forward pass, instead
of a separate post-processing step for the map generation.

3.2 Splitting vs. Merging

One of the limitations of region-mining approaches, including but are not limited
to CAM [32], is that it is likely to only highlight the most discriminative parts
instead of the integral object region. In this section, we propose to alleviate this
problem by our Splitting vs. Merging pipeline.

The structure of our model is illustrated in Fig. 2. Our structure is mainly
composed of two streams: Reference Stream and Expanding Stream. The Ref-
erence Stream is the original CAM structure which makes sure that the most
discriminative region is always mined out. The Expanding Stream aims to ex-
pand the localization maps to a larger object scale by mining out localization
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Fig. 2. The structure of our region-mining method. Our structure mainly consists
of Reference Stream and Expanding Stream. Expanding Stream aims to expand the
highlighted region of the localization maps. It follows an Splitting vs. Merging process,
which is achieved by our Discrepancy loss (Disc loss) and Intersection loss (Cls loss
inter). Discrepancy loss leads to a splitting effect on the localization maps while the
Intersection loss leads to a merging effect. The combination of both losses helps to
expand the highlighted regions in the union map output by Expansion Stream.

maps of different spatial patterns. Our main contributions lie in the Expand-
ing Stream, which contains the Splitting vs. Merging strategy formed by our
proposed Discrepancy Loss and Intersection Loss.

Our Expanding Stream has similar structure with CAM but with two patch-
level classifiers. For clear notation, we denote the classifiers as Classifier A and
Classifier B, whose output maps are denoted as SA and SB , respectively. Same as
CAM, SA (resp. SB) is aggregated by average pooling to generate classification
prediction score sA (resp. sB) and the corresponding classification loss is denoted
as Lcls(sA) (resp. Lcls(sB)).

Besides the classification loss, in order to enforce SA and SB to have different
spatial patterns, we propose a Discrepancy loss to regularize SA and SB . The
Discrepancy loss is depicted as Disc loss in Fig. 2. The Discrepancy loss is defined
as:

Ldisc = − 1

HWC

∑
i,j,c

‖zAijc − zBijc‖ (1)

where

zAijc =
es

A
ijc∑

i,j e
sAijc

. (2)

sAijc is the gird element value of the map SA, where i, j index the spatial position

and c is the class channel index. zB is calculated following the same spatial
normalization from SB .



Splitting vs. Merging 7

Discrepancy loss Ldisc could effectively generate two maps with distinct spa-
tial patterns. However, the optimization process is likely to fall into a trivial
solution of splitting the original discriminative region, if only using the classi-
fication loss and the Discrepancy loss Ldisc. To avoid such trivial solution, we
add an Intersection loss to regularize the optimization. The Intersection loss is
denoted as Cls loss inter in Fig. 2. Our Intersection loss is defined as follows: we
calculate Sinter as the element-wise minimum value between SA and SB . Aver-
age pooling operation is applied on Sinter to get the image classification score
sinter. The Intersection loss is calculated as the classification loss on sinter, which
is denoted as Lcls(sinter). By adding Intersection loss Lcls(sinter), we force the
input maps of the Discrepancy loss (i.e. , SA and SB) to have large overlapping
high-lighted area, which results in a merging effect of the localization maps.
Optimizing with both the Discrepancy and the Intersection losses, we follow a
Splitting vs. Merging pipeline which forces the Expansion Stream to mine out
larger highlighted regions.

Same as CAM, the Reference Stream is optimized by only the classification
loss denoted as Lcls(sC).

The final optimization objective is formulated as

f∗T =argminG,wa,wb,wc [Lcls(sA) + Lcls(sB) + Lcls(sC) + Lcls(sinter)]
+ β ∗ argminwa,wbLdisc

(3)

where wa, wb and wc denote the parameters of Classifiers A, B and C, respec-
tively. G denotes the parameters of the feature extractors, including the feature
extractors of Reference stream and Expanding stream. β is the weight parameter
of the Discrepancy loss. f∗T is the resultant optimal model parameters.

3.3 Mask Generation

In this section, we introduce how to normalize the localization maps to (0,1)
scale and how to generate the pseudo-annotations for training the segmentation
models.

For each localization map S (i.e. , SA, SB and SC), we pass the map through
a RELU operation and perform min-max normalization for each class channel
to obtain the normalized map M (i.e. ,MA, MB and MC). The union of dif-
ferent localization maps is calculated as the element-wise maximum map be-
tween the normalized maps. We denote the union operation as U . For example,
U(SA, SB) ∈ (0, 1) denotes the element-wise maximum result over MA and MB .

We utilize denseCRF [11] post-processing approach to estimate the hard
annotations from normalized localization maps. The unary term of DenseCRF
for each foreground class is the normalized localization maps M (i.e. MA, MB

and U(SA, SB), etc.). Since the normalized map only indicates the probabil-
ity for each foreground class, we need to estimate the probability of the back-
ground class. Similar to [1]. The background probability Mbg is calculated as
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Mbg = (1−Mfore)
α

, where Mfore is the foreground probability and α is the pa-
rameter to decide the weight of the background class. We utilize the normalized
saliency score Msal ∈ (0, 1) and the normalized localization map M to calculate
Mfore as Mfore(i, j) = max(maxcMijc,M

ij
sal), which is a channel-wise maximum

operation on M followed by an element-wise maximum operation with Msal.
Mbg and M are concatenated as the unary term of the denseCRF to gen-

erate the hard pseudo-annotations for the training images. Then, we train the
segmentation models using the pseudo-annotations. In the testing stage, we di-
rectly apply the segmentation model on the validation/testing images to predict
the segmentation masks.

4 Experiments

4.1 Datasets and Implementation Details

We perform experiments on the PASCAL VOC 2012 datasets [3] which contains
21 semantic classes in total. Following the common practice, we augment the
dataset to 10582 training images with [4] datasets. We report the segmentation
results on 1449 validation images (val) and 1456 testing images (test) using mean
intersection-over-union (mIoU) as the segmentation criteria.

Our region-mining model utilizes vgg-16 model as the backbone. We remove
the original classifier and the last pooling layer. The feature extractor is initial-
ized with the Imagenet-pretrained weights. The feature extractors of the two
streams share weights of the first two blocks. Each of the Classifiers is sequen-
tially composed of a convolutional layer with 512 output channels and a convolu-
tional layer with C output channels, both of the layers are with 1 × 1 kernel size.
A relu layer is added between the two convolutional layers. The training process
lasts for 20 epochs. The learning rate is set as 0.01 for the feature extractor and
0.1 for the classifiers. The training images are augmented with random cropping
and random flipping and are resized to the size 224 × 224.

In our experiments we utilize the saliency model in PoolNet [15] using the
resnet50 backbone w/o edge model.

For the segmentation model, we utilize the Deeplab-v2 like model in [20]
which is based on vgg-16 or resnet50 model. It is similar to Deeplab-v2 structure,
but with a global average pooling stream. The input image is of the size 320 ×
320. The initial learning rate is set as 16e-4 and are diminished by rate 0.1
after 8 epoches. We utilize multi-scale merging technique in the reference stage
following the common practice. The final segmentation output is post-processed
by denseCRF [11] methods.

4.2 Ablation Study

Properties of Mining Region In this section we perform detailed analysis
on our generated localization maps to show the effect of our proposed Splitting
vs. Merging pipeline. Unlike the previous work [29] which needs to evaluate
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Table 1. The Evaluation of the splitting effect of Discrepancy loss. With the increase
of the Discrepancy loss weight β, the similarity score between the two maps regularized
by Discrepancy loss constantly decreases, which shows that the Discrepancy loss helps
to generate two score maps with different spatial patterns.

β 0 10 20 50

similarity score 93.54 78.88 77.64 64.31

the hard-annotations transferred from the soft localization maps, we aim to
directly evaluate the properties of the soft localization maps in a more elegant
way which neglects the influence of other post-processing parameters such as the
hard threshold. Thus, we propose three evaluation criteria for localization map
evaluation: Softoverlap, Softpre and Softrec.

Given the normalized heatmap M ∈ RW×H×C ∈ [0, 1] and one-hot segmen-
tation binary ground-truth G ∈ RW×H×C ∈ {0, 1} of one image, the overlap
score Softoverlap for class c is defined as

Softoverlap =

∑
i,j min(Mijc, Gijc)∑
i,j max(Mijc, Gijc)

, (4)

the precision score Softpre is defined as

Softpre =

∑
i,j min(Mijc, Gijc)∑

i,j Mijc
, (5)

the recall score Softrec is defined as

Softrec =

∑
i,j min(Mijc, Gijc)∑

i,j Gijc
. (6)

The Softpre score indicates whether the highlighted region is located within
the groundtruth object region. The Softrec score indicates whether the range
of the target object is covered by the highlighted regions. The Softoverlap score
is the overall criteria to evaluate the quality of the localization maps. We utilize
the mean score over all foreground classes (excluding the background), which
are denoted as mSoftoverlap, mSoftpre and mSoftrec as our final criteria.

First, we show that our Discrepancy loss helps to generate two localization
maps with different spatial patterns. We calculate the similarity score between
the input maps of the Discrepancy loss, which are SA and SB . To calculate the
similarity of the maps we rely on the mSoftoverlap defined as Eq. 4 with the input
maps replaced by MA and MB . The results are shown in Table 1. It shows that
with the increase of the Discrepancy loss weight β, the similarity score between
the two maps constantly decreases, which shows that the Discrepancy loss helps
to generate two localization maps with different spatial patterns. We also provide
visualization results of the input maps (i.e. SA and SB) with different weight
of the Discrepancy loss in Fig. 3. It clearly shows that the localization maps
regularized by larger weight of Discrepancy loss are more visually different.
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input image ground-truth SA(β = 10) SB(β = 10) SA(β = 50) SB(β = 50)

Fig. 3. Visualization results of the input localization maps (SA and SB) of the Dis-
crepancy loss with weights β = 10 and β = 50. It shows that with the larger weight of
Discrepancy loss, the spatial patterns of the input localization maps are more visually
different.

Next we investigate the expansion effect of the Discrepancy loss over the
union maps. We generate map U(SA, SB), which is the union map of the input
maps of the Discrepancy loss, and evaluate its variance with the increase of
Discrepancy loss weight. The results are listed in the lower block of Table 2.
It shows that with the increase of Discrepancy loss weight (β), the recall score
mSoftrec constantly increases, which means it is likely to cover more of the
target objects. The precision score mSoftpre constantly decreases, which shows
that it is more likely to leak out of the boundary of target object regions. It
shows that larger Discrepancy loss helps to expand the highlighted regions of
the localization maps. For more intuitive understanding of the expansion effect
caused by the Discrepancy loss, we provide the visual examples of the union
maps U(SA, SB) in Fig. 4. It shows that with the increase of the weight of the
Discrepancy loss the expansion effect of the union map becomes more obvious.

Third we evaluate the effect of the Intersection loss. The results are listed
in Table 2. The upper block lists the results without Intersection loss while the
lower block lists the results with Intersection loss. We observe that in general
the Discrepancy loss helps expand the target region whether with or without the
Intersection loss. However, the expansion effect without Intersection loss is not
stable or obvious enough, especially under large Discrepancy loss weight. One
reasonable explanation is that if the Discrepancy loss weight is too large, the
optimization with only the Discrepancy loss may likely to be stuck into a tricky
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input image ground-truth β=0 β=10 β=20 β=50

Fig. 4. The visual examples of the union maps U(SA,SB). It shows that with the
increase of the weight of the Discrepancy loss (β) the expansion effect of the union
map becomes more obvious.

Table 2. Evaluation of the union maps of the input maps of the Discrepancy loss on
the val images. It shows that with the increase of the weight of the Discrepancy loss
(β), the recall mSoftrec increases while the precision mSoftpre decreases, which shows
the expansion effect of the Discrepancy loss. It also shows that adding the Intersection
loss (Inter loss) helps the expansion effect more stable and obvious.

β Inter loss 0 10 20 50

mSoftpre - 51.65 45.86 45.25 45.5
mSoftrec - 28.5 32.96 26.48 34.00
mSoftoverlap - 22.6 24.0 20.0 24.5

mSoftpre X 52.01 50.03 48.92 36.82
mSoftrec X 26.31 30.77 32.24 49.15
mSoftoverlap X 21.22 23.7 24.17 27.35

solution of simply splitting the original discriminative region. Thus we utilize
Intersection loss to regularize the optimization with Discrepancy loss for more
stable effect of the region expansion. We visually compare the localization maps
generated with/without the Intersection loss in Fig. 5. It shows that without the
Intersection loss, the large Discrepancy loss weight mainly leads to splitting a
single discriminative region instead of having obvious expansion effect.
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Fig. 5. The visual comparison of the union localization maps generated with/without
the Intersection loss. It shows that without the Intersection loss, the large Discrep-
ancy loss mainly leads to split a single discriminative region instead of having obvious
expansion effect.

Table 3. mSoftoverlap of the union of different localization maps on the val images.
It shows that the union of all the three maps achives the highest mSoftoverlap score.

β 0 10 20 50

Sc 22.25 23.65 23.56 24.36

SA 20.96 22.48 22.80 24.47

SB 20.93 22.71 23.33 24.96

U(SA, SB) 21.22 23.70 24.17 27.35

U(SA, SB , SC) 24.57 26.58 27.07 28.57

Fourth we show that our pipeline outputs complementary localization maps.
The results are listed in Table 3. We report the mSoftoverlap score over different
localization maps, such as SA, SB and U(SA, SB). It shows that the union of
maps SA and SB has higher mSoftoverlap score than each single map alone. The
union of all the three maps SA,SB and SC shows the highest mSoftoverlap score.
Thus we utilize the union of the three maps for pseudo-mask generation.

Finally, we generate pseudo-annotations following the practice in Sec. 3.3.
We set the background parameter α=2. We utilize the traditional intersection-
over-union criteria mIoU on hard masks to evaluate our generated annotations.
The results are listed in Table 4, which show that we achieve better quality of
the pseudo-masks over the case without Discrepancy loss. We utilize the pseudo-
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Table 4. mIoU of the generated pseudo-annotations on the train images with differ-
ent localization maps. Compared with other two methods, our maps lead to pseudo-
annotations of higher quality.

Ours, β=0 Ours, β=10 Ours, β=20 Ours, β=50 SeeNet [6] OAA+ [8]

mIoU 59.65 60.92 61.27 57.22 54.47 57.96

Table 5. Segmentation results on val and test images using vgg16 segmentation back-
bone. We list the condition whether additional training data (web data) are added and
whether supervised saliency (S-Sal) are utilized.

Method web data S-Sal val test

SEC [10] - - 50.7 51.7
Two-phase [9] - - 53.1 53.8

Decou-Net[29](vgg16) - - 55.4 56.4
Affinity [1] Deeplab - - 58.4 60.5

STC [23] X X 49.3 51.2
Crawled-Video [5] X - 58.1 58.7

BoostTrap [20](vgg16) X - 58.8 60.2
DCSP-VGG16 [2] - X 58.6 59.2

AE-PSL [22] - X 55.0 55.7
DSRG (vgg16) [7] - X 59.0 60.4

FickleNet (vgg16)[12] - X 61.2 61.9
MDC [24] - X 60.4 60.8
GAIN [13] - X 55.3 56.8

SeeNet (vgg16) [6] - X 61.1 60.7
OAA+ (vgg16) [8] - X 63.1 62.8

Ours (vgg16) - X 63.7 64.5

masks of the highest quality (β=20) to train the final segmentation models. We
further generate annotations using the localization maps provided by SeeNet [6]
and OAA+ [8] using our methods and report the mIoU in Table 4. We observe
that our mask quality outperforms that of SeeNet and OAA+.

4.3 Segmentation Results

Finally we train the segmentation networks using the pseudo-masks generated by
our localization maps and report our segmentation results in Table 5 and Table 6.
For clear and fair comparison, we list the extra information knowledge that may
improve the segmentation results, such as whether extra images are added into
training images or whether supervised saliency methods are utilized. It shows
that we achieve the state-of-the-art weakly supervised semantic segmentation
results. We list the segmentation results of each category in Table 7. We also
generate pseudo-annotations by applying Affinitynet [1] on localization maps,
which does not enclose supervised saliency. The mIoU of segmentation results
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Table 6. Our Segmentation results on val and test images using resnet segmentation
backbone. We list the condition whether additional training data (web data) are added
and whether supervised saliency (S-Sal) are utilized.

Method web data S-Sal val test

Decou-Net[29](resnet101) - - 58.2 60.1
Affinity [1] Resnet-34 - - 61.7 63.7
Co-segmentation [19] X - 56.4 56.9

BoostTrap [20](resnet50) X - 63.0 63.9
DCSP-ResNet-101 [2] - X 60.8 61.9
DSRG (resnet101) [7] - X 61.4 63.2

FickleNet (resnet101)[12] - X 64.9 65.3
SeeNet (resnet101)[6] - X 63.1 62.8
OAA+ (resnet101)[8] - X 65.2 66.4

Ours (resnet50) - X 66.6 66.7

Table 7. Our Segmentation results for each class on val and test images. We utilize
both vgg16 and resnet50 as the base model of the segmentation model.

bkg plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mIoU

vgg16 val 89.9 84.6 36.0 79.7 57.7 65.5 81.2 75.5 82.3 23.2 65.5 31.5 78.0 72.1 72.4 74.8 36.8 75.5 31.6 70.7 52.3 63.7

vgg16 test 90.4 78.7 34.5 82.2 50.7 63.8 76.5 74.1 80.1 24.6 69.7 35.4 77.7 77.1 78.3 74.9 46.6 78.5 34.8 70.5 54.4 64.5

resnet50 val 90.4 85.6 38.9 78.9 62.0 73.4 83.7 74.3 82.9 25.8 77.8 30.1 81.1 79.3 76.1 73.9 38.6 85.0 32.7 72.8 55.7 66.6

resnet50 test 90.7 85.9 37.3 82.5 50.5 64.8 83.1 77.6 82.8 28.4 76.8 34.6 81.2 82.9 80.5 73.6 43.9 85.7 32.0 71.7 55.2 66.7

with resnet50 model on val/test dataset is 61.7/62.7, which is competitive with
other state-of-the-arts without supervised saliency.

5 Conclusion

In this paper, our goal is to propose a region-mining method in order to generate
pseudo-masks for weakly supervised semantic segmentation. We aim to train
a region mining model which identifies the integral object regions instead of
only the most discriminative parts. In order to achieve this goal, we tackle the
problem from a novel perspective of the backward optimization pass. We propose
a Splitting vs. Merging pipeline, which is mainly composed of a Discrepancy loss
and an Intersection loss. With the pseudo annotations generated from our region
mining models, we achieve the state-of-the art weakly supervised segmentation
results on the PASCAL VOC12 benchmark.
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