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Abstract. Frequency aliasing in the digital capture of display screens
leads to the moiré pattern, appearing as stripe-shaped distortions in
images. Efforts to demoiréing have been made recently in a learning
fashion due to the complexity and diversity of the pattern appearance.
However, existing methods cannot satisfy the practical demand of
demoiréing on camera phone capturing more pixels than a full high
definition (FHD) image, which poses additional challenges of wider
pattern scale range and fine detail preservation. We propose the Full High
Definition Demoiréing Network (FHDe2Net) to solve such problems.
The framework consists of a global to local cascaded removal branch
to eradicate multi-scale moiré patterns and a frequency based high-
resolution content separation branch to retain fine details. We further
collect an FHD moiré image dataset as a new benchmark for training and
evaluation. Comparison experiments and ablation studies have verified
the effectiveness of the proposed framework and each functional module
both quantitatively and qualitatively in practical application scenarios.
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1 Introduction

The moiré pattern is a widely observed image degradation induced by frequency
aliasing between the display and camera. Such an interference between the
periodic arrangement patterns of LCD sub-pixels and camera sensors results
in conspicuous stripe shaped color distortions across the image, severely
deteriorating its visual quality and feature fidelity in visual tasks. Thus
demoiréing, indicating the removal of moiré patterns, is an issue of great interest
to explore, yet with major challenges.

Demoiréing’s challenges reside in the fact that moiré patterns led by camera
aliasing can hardly be expressed using an analytical model with a handful of
variables. Besides, it is ambiguous to classify the patterns into several typical

? Ling-Yu Duan is the corresponding author.
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Input (a) Demoired by FHDe2Net (b)

Fig. 1. 2K resolution (2560 × 1440) image with moiré pattern degradation (a) and
demoiréing result of the proposed FHDe2Net (b). Red and blue boxes provide zoomed-
in views of local regions.

categories, considering the diversities in shape and the highly spatially varying
structures, as shown in Figure 1. Efforts have been made to alleviate the
influence of moiré patterns with both optical filters [19] and post-processing
algorithms. Nonetheless, the filters often bring over-smoothing artifacts, thus
signal processing based optimization algorithms with the assumptions of sparsity
in frequency domain [17] and layered model [33], become more practical
solutions. With the surge of deep learning, recent methods [28, 4] exploiting the
comprehensive modelling capability of deep features have been proposed, and
more promising demoiréing results have been achieved on the data, consisting
of images captured from screens [28]. These methods [33, 28, 4] usually take the
entire image as direct input for global processing, and work reasonably well on
images with limited resolution like 384× 384.

However, in the context of the prevailing usage and evolving of camera
phones, new challenges have emerged for demoiréing. A prominent issue is
the growing resolution of the inputs (e.g., camera phones with FHD, 2K or
even higher resolution are mainstream), which cannot be handled by existing
methods, especially learning based ones. The challenges brought by the high
resolution4 of images are as follows: 1) High resolution expands the range of
the pattern scales, as shown in the comparison between Figure 2 (a) and (b),
and commonly used deep networks usually have a total receptive field of about
100 × 100, which is not sufficiently large for detecting large-scale patterns on
full-size high-resolution inputs. 2) An obvious high-resolution detail loss can be
observed as a side effect of demoiréing as the example result shown in Figure 2
(c). The over-smoothing distortion is mainly caused by pixel modifications in
spatial domain, which ignores the difference between periodic patterns and
edges in high-frequency sub-bands. 3) Learning based demoiréing methods suffer
performance drop on real high-resolution images. Models trained with existing
low-resolution cropped screen images [28] have limited generalization capability
on high-resolution images, which is a more practical scenario.

In this paper, we propose the Full High Definition Demoiréing Network,
named FHDe2Net, whose framework is shown in Figure 3, to cope with
above three challenges in high-resolution image demoiréing: 1) The upper moiré
pattern removal branch aims at enlarging the receptive field to address the

4 Higher than FHD (1920× 1080) throughout this paper.
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Low res. (a) High res. (b) Demoireing result of [4] (c)

Fig. 2. Comparison between low-resolution image from existing TIP18 benchmark [28]
(a), high-resolution moiré image (b), and state-of-the-art [4] result on high-resolution
image (c). Moiré pattern residues and over-smoothing distortion can be observed in
zoom-in regions marked by red and blue boxes.

expanded pattern scale range in high-resolution images, and eradicating pattern
residues, with a cascade of two networks focused on global and local level
removal respectively. 2) The lower high-resolution content separation branch
is proposed to preserve the fine details against the distortions in processing,
by exploiting frequency domain features to disentangle high-frequency contents
from moiré patterns. 3) Moreover, we newly collect a Full High Definition
Moiré image (FHDMi) dataset as a benchmark to facilitate and evaluate our
proposed method. FHDe2Net is verified to deliver satisfying demoiréing results
on images with FHD (1080p) or higher resolution, as shown in Figure 1. Our
major contributions can be summarized as follows:

– We are the first to explore the emerging problem of high-resolution image
demoiréing, and propose a global to local moiré pattern removal strategy to
cope with the issues of the wider pattern scale range and demoiréing residues
in images of FHD or higher resolution.

– We propose a frequency based high-resolution content separation mechanism,
to compensate the fine detail distortions in demoiréing by exploiting signal
properties in the frequency domain.

– We contribute the first high-resolution moiré image dataset to benchmark
demoiréing tasks, which is composed of FHD camera phone captured screen
image pairs. In addition to the high-resolution demoiréing task, we hope our
dataset could inspire future research on image restoration towards practical
scenarios with latest camera phones.

2 Related work

Moiré pattern removal. The formation of moiré patterns are closely related
to the camera imaging process, especially the frequency of the color filter
array (CFA). Thus, methods targeted at improving the imaging pipeline have
been proposed to eliminate moiré patterns, including anti-aliasing filter on
lens [19, 23] and interpolating the output of CFA [18, 21]. However these methods
achieve limited success, hence post-processing methods originated from assumed
properties of moiré patterns are more frequently adopted for various types of
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Fig. 3. The framework of proposed FHDe2Net. The input is passed into two branches:
The global to local removal branch (upper) is a cascade of Global Demoiréing Network
(GDN) and Local Refinement Network (LRN), to eliminate moiré patterns across
all scales. High-resolution content separation branch (lower) conserves high-resolution
fine details with Frequency based Disentangling Network (FDN). The complimentary
outputs of two branches are combined in YUV color space and further refined in Fusion
Refining Network (FRN) to deliver the final output.

moiré-contaminated images. Space-variant filters concerning different screening
frequencies [27, 25] are proposed for eliminating the simple halftone moiré
patterns in scanned images. Liu et al. [17, 32] propose a low-rank constrained
sparse matrix decomposition method to handle highly textured images. Yang
et al. [33] propose a layer decomposition model to describe the formation of
screen-shot moiré patterns, but at a high computational cost for optimization.

With deep learning booming, demoiréing also starts to benefit from convolu-
tional neural networks recently. Sun et al. [28] propose a multi-scale learning
strategy with a benchmark dataset captured on LCD screens. He et al. [4]
improve the learning based methods with property-oriented modules. Generative
and adversarial learning framework [8, 15, 34] and synthesized data [6] are also
resorted to for removing moiré patterns. These learning based methods have
achieved promising results on corresponding testing sets, however they cannot
effectively cope with high-resolution images, which are more often confronted in
practical applications, especially images captured with latest camera phones.

High-resolution image restoration. Limited research efforts have been
dedicated to addressing the high-resolution issue in image restoration. For
example. many state-of-the-art image restoration methods for denoising [3, 11],
deraining [36], dehazing [12], and reflection removal [30, 39],the targeted inputs
are restricted at a relatively low level, ranging from 180 × 180 to 512 × 512.
The images in corresponding benchmark datasets also have similar limited
resolutions [22, 9, 13, 29], with rare exceptions of 720p or higher resolution.

To deal with high-resolution inputs at affordable computational cost, existing
computer vision methods often adopt patch based strategy, but has a major
drawback of artifacts on patch boundary and low running efficiency (e.g., [5,
31]). Another solution is to downscale the input then conduct super-resolution
to the results (e.g., [4]), but such a strategy leads to unavoidable defects including
blurry boundaries [35]. A strategy to explicitly deal with high-resolution input
for image restoration, particularly the demoiréing task, has yet to be found.
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Fig. 4. Visual comparison among images from TIP18 dataset [28] (a), AIM [6] (b) and
our proposed FHDMi dataset (c). The multiple curve centers in (c) are denoted by
yellow boxes. (d) shows the superimposition result of original region and recaptured
FHD image. Please zoom-in to check details.

3 Full high definition moiré image dataset

There exist two datasets serving the task of demoiréing, but neither of them
can be applied to benchmarking demoiréing on high-resolution images. The AIM
dataset [6], composed of synthesized images based on camera imaging stimulation
pipeline, suffers from deviation from real data. The dataset proposed by Sun et
al. [28] (denoted as TIP18 dataset), contains cropped screen captured real images
with limited resolution. This motivates us to create a new Full High Definition
Moiré image dataset, named FHDMi dataset.

FHDMi dataset contains 9981 image pairs for training and 2019 for testing.
The image pairs are constructed with a moiré-free image as the ground truth,
which is the source of moiré image of the same content displayed on screens.
The data capture involves various combinations of different models of camera
phones and display monitors, for the diversity of data intrinsic distributions5.
Comparisons among three datasets are shown in Figure 4 and Table 1, and the
characteristics of FHDMi dataset are presented as follows:

– High resolution: All data in FHDMi dataset have a FHD (1920 × 1080)
resolution, in contrast, the majority of cropped images in existing benchmark
TIP18 dataset [28] only have resolution of around 400× 400.

– Pattern complexity in full-screen images: Moiré patterns in the
full-screen captured images of FHDMi dataset contain more diverse and
sophisticated structures, like multiple curve centers and streaks of extremely
large scale, as shown in Figure 4 (c). Such a complexity can hardly be
modelled from cropped images [28] and synthetic data [6].

– Diverse scenes for practical application: The ground truth images
are collected according to 18 categories of frequently observed contents
on screens: wallpapers, sports video frames, film clips, documents, etc. In
contrast, AIM [6] cannot meet the requirements for real implementation due
to the domain gap of homogeneous synthesized data including document
screenshots only. TIP18 dataset [28] includes many categories, however does
not cover the scenarios concerning screen display like webpages or slides.

Apart from the resolution, another unique characteristic of FHDMi dataset
is that we adopt unaligned image pairs. This is because that captured FHD

5 The detailed settings are presented in the supplementary material
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Table 1. Comparison among TIP18 dataset [28], AIM [6] and our proposed FHDMi
dataset. “FS” stands for full screen, and ”Real” for real captured data.

Dataset Resolution Amount Content FS Real

TIP18 [28] 384× 384 ∼ 700× 700 135,000 ImageNet × X
AIM [6] 1024× 1024 10,200 Documents only × ×
FHDMi 1920× 1080 12,000 Films, sports, etc. X X

images tend to contain nonlinear distortions introduced by cameras, which can
be visualized in Figure 4 (d), with ghosting edges on the superimposition of
two layers. Such distortions inevitably make the accurate pixel-wise calibration
and alignment to the original images less reliable. To the best of our knowledge,
the FHDMi dataset is currently the only high-resolution benchmark dataset for
demoiréing, and it will be publicly available once the paper is published.

4 Methodology

As shown in Figure 3, the framework of FHDe2Net comprises cascaded global to
local removal branch, high-resolution content separation branch and a fusion
module integrating the intermediate results. The methodology and training
details will be introduced in following subsections.

4.1 Cascaded global to local moiré pattern removal

The moire pattern structures vary in terms of scales of the streaks, ranging from
thin scanned lines to wide curved stripe regions, and patterns of larger scales
are more difficult to eliminate due to their wide coverage and low periodicity.
Particularly, in high-resolution images, the scale range is expanded as shown
in Figure 2, which makes networks with limited receptive field [4] fail to infer
the complete distribution of large-scale patterns, resulting in visible residues
after a global-only removal as shown in Figure 2 (c). Patch targeted models
breaks the spatial connection across patches, and thus incapable of capturing
large-scale patterns across patches, but its focus on local regions can benefit
cleaning pattern residues. By taking a trade-off, we propose a cascaded global
to local removal strategy to address the pattern scale issues beyond global-only
removal and naive patch based methods, as shown in the upper part of Figure 3.

The cascaded branch consists of two sequential parts, the global demoiréing
network (GDN) emphasizing on large-scale patterns, and the local refinement
network (LRN) to further erase local pattern residues. For GDN, the network
takes the downsampled version of the moiré-contaminated high-resolution image
XI as input, denoted as X↓, and passes on a dense block based autoencoder
with a succession of pooling operations. As such the receptive field of bottleneck
neurons of GDN can be consecutively enlarged to more than 400 × 400 when
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Fig. 5. The observed intensity of moiré patterns, indicated by edge intensity and color
variation within pattern regions (left), shows a strong correlation to the brightness of
the background (right).

converted back to full high definition size, greatly surpassing common models.
Furthermore, to strengthen the internal spatial connection of large-scale moiré
patterns on feature maps, non-local blocks [16] are also applied at the bottleneck
of GDN, with correlation computation across the feature map. Thereby, with
downsampling based receptive field enlarging and non-local features facilitating
global removal, the majority of moiré patterns on X↓, especially the large-scale
ones, can be erased by GDN.

Though GDN works well globally, local pattern residues in its result XGD

of GDN still need to be further eliminated by region-targeted LRN. Inspired
by the local enhancement strategy in super-resolution methods [10], we adopt a
stage-adaptive strategy to make LRN focus on regional refinement, and employ
a full convolutional network for the backbone of LRN. The stage-adaptive data
flow, denoted by green arrows next to LRN in Figure 3, consists of regions from
bilinearly upsampled X↑ in training stage, for concentration on learning local
residue distributions. In testing stage, the data flow is substituted by the entire
X↑ for efficient refinement across the image.

We observe that the intensity of moiré pattern, indicated by edge intensity
and color variance of moiré covered region, is generally in accordance with the
brightness of the region it occupies as shown in Figure 5. Thus to accelerate the
learning of local residues for better convergence, we distill the training regions
with a mask based selection algorithm. The mask originates from threshold on
region brightness using [20], narrowing down potential moiré-sensitive regions,
and the masked regions in X↓ are selected according to its edge difference to
corresponding clean regions, which implies the intensity of moiré residues.

With GDN and LRN cascaded, the output of proposed global to local moiré
pattern removal is a pseudo high-resolution moiré-free image XLR, and the
overall process can be formulated as follows:

XLR = LRN(↑ (GDN(↓ (XI)))), (1)

where ↑ and ↓ denote the upsampling and downsampling operation.
The proposed cascaded global to local moiré pattern removal strategy

consequently tackles the challenge of expanded pattern scale range in high-
resolution inputs with receptive field enlarging in GDN, and further emphasizes
on more delicate residue elimination within local regions by LRN. Apart from
erasing residues in a cleaner manner, computational overload caused by high-
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Fig. 6. Illustration of spatial-to-frequency domain transformation (left) and its reverse
counterpart (right) realized by convolutions. Each transformation consists of a patch
manipulation (patch extraction or rebuilding) and a discrete transformation (DCT or
IDCT). Convolution kernels are expressed as Cin ×W ×H × Cout.

resolution input can also be averted with the separately training GDN and LRN,
with downsampled image and cropped regions respectively, which makes the
branch potentially capable of handling higher resolution.

4.2 Frequency based high-resolution content separation

Higher resolution gives images the capability to contain more details such
as subtle edges and textures. These extra fine details are sensitive to image
modifications, thus moiré pattern removal without explicit consideration on
content conservation tends to degenerate such high-frequency signals in the
image. Moreover, as shown in the red box in Figure 3, high-resolution details
are severely lost in XLR due to previous downsampling operation. Therefore,
it is necessary to separate the contents with high-resolution details from the
original input, to compensate the degradation caused by detail loss. However,
how to disentangle high-frequency content from moiré patterns turns out to be
the prominent problem. Among moiré patterns, high-frequency patterns within
a local region are generally periodical thin lines, which are closely arranged in
a unified direction. Such patterns can be easily differentiated from the edges in
natural images, considering their periodicity in the frequency domain, since the
latter ones are more sparse and diverse in directions.

Therefore, we propose a Frequency based Disentangling Network (FDN)
to extract a moiré-free content layer with undistorted high-resolution details,
exploiting frequency domain features. We first extract the luminance (Y) channel
XY

I from the original high-resolution image represented in the YUV color space,
since the luminance measures the intensity of light at each pixel according to a
particular weighted combination of frequencies. The spatial to frequency domain
transformation can be realized by convolution operations [2]. As shown in the
left part of Figure 6, the 8×8 overlapped patches in Y channel are first collapsed
into 64-dimension vectors with 64 one-hot filters, and then convoluted with
64× 1× 1 filters initialized by DCT matrix to complete domain transformation.
Hence we can obtain the DCT coefficients of the image across channels as
shown in Figure 7, which correspond to different frequency bands. The sub-
band coefficients are arranged according to the relative location of patches in
obtained feature FY

I , thus the spatial relations in images are retained in feature
maps, which reasonalizes the subsequent convolutional operations upon FY

I .
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Input Band-3 Band-12Band-11

Fig. 7. Visualization of different feature channels after convolutional DCT transfor-
mation. Red and blue boxes show zoom-in local regions, where band-3 and band-12
contain patterns with different scales, and band-11 mainly contains high-resolution
content details.

Considering the correspondence between feature channels and frequency
sub-bands, we adopt the squeeze-and-excitation (SE) block [14, 4] in FDN to
learn different weights for each channel to emphasize the disentanglement of
high-frequency moiré patterns and image details. Furthermore, to alleviate the
difficulty of the disentanglement for patterns of lower frequencies, we introduce
guidance from the result of removal branch XLR , which suppresses moiré
patterns but lacks high-resolution details. Similarly, we convert the luminance
of XLR into DCT representation, then concatenate the guidance FY

LR with
the frequency domain features FY

I and integrate them with 1 × 1 convolution
as shown in Figure 3. The integrated features pass through SE blocks and
convolutional layers with different dilation sizes, and the multi-scale frequency
domain features are further merged and transformed back to targeted content
layer with convolutional inverse DCT and patch rebuilding as shown in Figure 6.
The obtained moiré-free high-resolution content layer in luminance can be
further fused with the color information from pseudo high-resolution result XLR.
The overall process of the high-resolution content separation can be presented
with the following equation:

XY
FD = D∗(FDN(D(XY

LR)⊕D(XY
I ))), (2)

where XY
LR and XY

I stand for luminance channel for corresponding image, D and
D∗ for DCT and its inverse operation, and ⊕ indicates the feature concatenation.
In training phase, similar to LRN, FDN is trained with cropped regions to
focus on local extraction of high-frequency signals. Particularly, to cooperate
with LRN and following fusion module, the regions are cropped from the same
locations in original input XI as the regions for LRN. In testing phase, the
entire image XI is fed into FDN to acquire the complete high-resolution content
layer. Thereby FDN can address the fine detail loss due to downsampling and
distortions in removal process, with complementary high-resolution content in
luminance channel. Therefore, integrated with the moiré-free color information
from the global to local removal branch, the separated high-resolution content
can contribute to a faithfully restored result with details preserved.
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4.3 Layer fusion and refinement

Now that we have acquired the moiré pattern removal result XLR that lacks
fine details, and separated high-resolution content XY

FD in luminance without
chrominance information, we finally fuse them to form a complete colored
high-resolution output, where fine details are retained and moiré patterns are
eliminated. Whereas the direct superimposition of fine details like sharp edges
onto blurry layers of XLR leads to artifacts like boundary shifts, we propose a
light-weighted fusion and refinement network (FRN) to implement the fusion.

FRN also employs a similar stage-adaptive input strategy to conform to the
regional outputs from LRN and FDN for fusion. We convert the result of LRN to
YUV color space and extract the chrominance channels (U and V channels), and
concatenate them with the high-resolution luminance layer XY

FD. As such the
FRN receives and fuses a complete YUV color space representation of desired
output, refines the artifacts in fusion, then finally converts the result back to
RGB color space. Therefore, the complete symbolic description of our proposed
pipeline can be formulated as:

XO = FRN(XY
FD ⊕XU

LR ⊕XV
LR), (3)

where XO stands for the demoiréd output image, XU
LR and XLRV for U, V

channel of XLR respectively.

4.4 Training loss and implementation details

Noticing that the distortions caused by equipped cameras on phones cannot be
accurately calibrated pixel-wise, we adopt the Contextual Bilateral loss (CoBi
loss) [38] to address such a misalignment. It matches features from source
and target images to measure the similarity between unaligned image pairs.
Specifically, the CoBi loss can be formulated as:

LCoBi(P,Q) =
1

N

N∑
i

min
j=1,...,M

(D(pi, qj) + wsD
′
(pi, qj)), (4)

where pi, qj stand for the feature vectors from source image P and target image
Q. N , M denote the amounts of features, D is the cosine distance to measure
feature similarity, D′

is L2 distance between spatial coordinates, and ws denotes
the weight of spatial awareness. In the training process of each network, P is
substituted with the outputs of GDN, LRN, or FRN, and Q is the corresponding
ground truth images. We substitute CoBi Loss with perceptual loss [7] for FDN
to suppress the artifacts emerging in the frequency to spatial transformation.

We implement the proposed framework6 with PyTorch platform, on a PC
equipped with an Intel i7-7700 3.60GHz CPU and NVIDIA 1080 Ti GPU. As
for training data, we apply the FHD images in FHDMi dataset as the training
input for GDN, and 384 × 384 regions cropped from the former images as the

6 Detailed network architecture can be found in the supplement.
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Table 2. Quantitative comparisons evaluated on different benchmarks measured by
average PSNR, SSIM, and LPIPS. Larger values (↑) indicate better image quality for
PSNR and SSIM, and in contrast, smaller values (↓) in LPIPS denote higher similarity
to the ground truth. Red and blue denote the first and second-best method respectively.

Dataset Method PSNR↑ SSIM↑ LPIPS↓

FHDMi

Input 17.9740 0.7033 0.2837
DMCNN [28] 21.5377 0.7727 0.2477
MDDM [1] 20.8314 0.7343 0.2515
MopNet [4] 22.7559 0.7958 0.1794
FHDe2Net 22.9300 0.7885 0.1688

TIP18 [28]
Input 20.3000 0.7380
MopNet [4] 27.7500 0.8950
FHDe2Net 27.7850 0.8960

input for LRN and FDN. Concerning parameters in training, we set the batch
size at 2, initial learning rate at 0.0002, weight decay at 0.0001, and momentum
at 0.9. We extracted deep feature by VGG-19 [26], and adopt conv3 2 feature
for CoBi loss and conv1 2, conv2 2 feature for perceptual loss.

5 Experiments

We conduct quantitative and qualitative comparisons to evaluate the perfor-
mance of FHDe2Net against state-of-the-art demoiréing methods, and testify
the effectiveness of each part through ablation studies. For comparison, we refer
to the multi-scale learning method DMCNN [28] and MDDM [1], and channel-
wise edge and binary classification guided MopNet [4]7. The framework of these
previous methods cannot directly handle the high-resolution input, because of
the excessive memory occupation of their frameworks in training. Therefore, for
fair comparison on high-resolution data, the methods are all trained with high-
resolution regions cropped from FHDMi dataset, whose sizes are determined
according to the original input size in their works. And in testing, to alleviate the
boundary artifacts of patch stitching, we feed the entire high-resolution images
into the retrained models, similar to the training strategy for LRN.

5.1 Quantitative evaluation

For quantitative comparison on FHDMi dataset, apart from the widely adopted
metrics of PSNR and SSIM, we adopt a more recently proposed quality
assessment metric LPIPS [37] for image pairs with distortions. PSNR and SSIM
are purely pixel-wise metrics, and LPIPS measures perceptual image similarity

7 According to [28, 4], the learning based methods by and large outperform traditional
optimization based methods [33, 32], thus only learning methods are included.
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Fig. 8. Visual quality comparison among DMCNN [28], MDDM [1], MopNet [4], and
FHDe2Net. Red boxes show zoom-in regions for demonstrating better details. More
results are in the supplement.

using a pre-trained deep model, which evaluates the image quality beyond aligned
pixels. In our case, with moderate misalignment caused by lens distortions,
the pixel-wise metrics are basically fair, since most regions of the images are
marginally affected by the distortions except the corners. And as a feature level
perceptual metric that correlates well with human perception [37, 24], LPIPS can
better handle unaligned data pairs [38] like the camera phone captured ones.

When tested with high-resolution full-screen data, it can be observed in
Table 2 that FHDe2Net significantly improves the visual quality of original
moiré-contaminated input, and outperforms state-of-the-art methods on PSNR
and LPIPS with obvious gains. Also, FHDe2Net achieves the second best
quantitative result by a very narrow margin on SSIM. This verifies the efficacy of
FHDe2Net for practical implementation of demoiréing on camera phone captured
FHD images. Global-only DMCNN [27] and MDDM [1] cannot provide decent
performance because of their simple learning strategy and over reliance on
pixel-wise constraints. MopNet [4] delivers better results since it takes several
assumptions on moiré pattern properties as learning prior, and employs feature
level supervision in training. However the restriction of addressable input size
within its framework design makes it only capable of learning from cropped
region of high-resolution images.

To testify the generalization capability of FHDe2Net framework on general
moiré datasets, we fine-tune and test the GDN module of our model with existing
low-resolution moiré image benchmark [28]. The results are shown in the lower
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Table 3. Quantitative results of different variants of FHDe2Net.

w/o GDN w/o LRN w/o FDN w/o FRN FHDe2Net

PSNR↑ 18.5392 20.3143 22.9017 22.4153 22.9300
SSIM↑ 0.7239 0.7652 0.7644 0.7800 0.7885
LPIPS↓ 0.2577 0.1941 0.2582 0.2101 0.1688

part of Table 2, note the data in [28] are well aligned, only the pixel-wise
metrics are reported. We can find that only one part of FHDe2Net can still
slightly surpasses the SOTA method MopNet [4]. And if we further compare
the performances across datasets, it is evident that PSNR and SSIM on high-
resolution data still have a large gap to those on low-resolution data. This can
be attributed to the challenging nature of high-resolution data, including the
misalignments of 5-10 pixel shifts on edges as shown in Figure 4 (d), which can
also be inferred from the lower quantitative scores of high-resolution inputs. We
have also tested on AIM [6] (LCDMoiré), the performance of FHDe2Net is 41.4
on PSNR (the only metric reported on AIM online leaderboard), comparable to
the second-best method (41.8) in the challenge.

5.2 Qualitative evaluation

We present the FHD qualitative comparisons against other methods in Figure 8.
As we can observe, DMCNN [28] cannot thoroughly remove the moiré patterns
in images, because its multi-scale learning strategy fails to catch the wide
scale range of moiré patterns in high-resolution inputs. Besides, the direct
superimposition of results across different scales sometimes induces block-shaped
artifacts into the results, as shown in the left example of Figure 8. In contrast,
FHDe2Net can conserve the fine details that can only be seen with high resolution
while other methods cannot, like the subtle edges of the tennis net in the left
example. MDDM [1] only lightens the color of the pattern stripes, and also
induces undesired blurriness to the fine details in image as shown in the first
column, due to its simple learning constraint. MopNet [4] generates more visually
pleasing results, yet the results also show moderate pattern residues as the moiré
patterns are hard to eradicate in a single pass either globally or at patch level.
On the contrary, FHDe2Net effectively eliminates the patterns across different
scales, including local thin steaks (middle example) and wide patterns of larger
scale (right example), which is more obvious at global level.

5.3 Ablation study

In this section, we investigate the performance of different variants of proposed
FHDe2Net. The numerical results are presented in Table 3, where we can con-
clude that all functional modules contribute to a performance gain. Specifically,
the global to local pattern removal modules, i.e., GDN and LRN, make up
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Input w/o  GDN w/o  LRN w/o  FDN w/o  FRN Full modelZoom in

Fig. 9. Visual comparison among different variants of FHDe2Net. Red boxes show
zoom-in regions for better details. More results are in the supplementary material.

the major backbone of FHDe2Net, as the models without GDN or LRN face
a remarkable performance drop on all metrics. The high-resolution separation
module FDN and fusion module FRN contribute to the enhancement of results
more perceptually, as we can observe in Table 3, the lack of the two modules
leads to an obvious gap to the complete model on the perceptual metric LPIPS.

Qualitative comparisons among different model variants are exhibited in Fig-
ure 9. From the zoomed-in regions, we can infer that GDN and LRN determine
the existence of pattern residues. Colored stripes remain in the results by model
without GDN, since such a model variant loses global perception of pattern
distributions. Without the local refinement of LRN, there tend to be fragmented
pattern residues in results, as shown in the top example. Deterioration of high-
resolution details emerges when FDN is missing, with blurriness and jagged edges
as shown in the bottom example. And FRN prevents the results from artifacts
in fusion like the spots along the edges in the second shown case.

6 Conclusion

We propose a framework named FHDe2Net to tackle the challenges of high-
resolution image demoiréing in practical application scenarios, and provide a full
high definition screen captured moiré image dataset for benchmarking this task.
To the best of out knowledge, FHDe2Net is the first demoiréing method capable
of handling FHD images. This framework leverages a global to local pattern
removal strategy, and a frequency based high-resolution content separation
mechanism, to address the problems of wider pattern scale range and fine
detail preservation in high-resolution images. Experimental comparisons across
different datasets validate the effectiveness of FHDe2Net on eradicating moiré
patterns on FHD images, outperforming existing SOTA demoiréing methods.
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image demoiréing. arXiv preprint arXiv:1909.11947 (2019)

2. Guo, J., Chao, H.: Building dual-domain representations for compression artifacts
reduction. In: Proceedings of the European Conference on Computer Vision. pp.
628–644 (2016)

3. Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L.: Toward convolutional blind
denoising of real photographs. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 1712–1722 (2019)

4. He, B., Wang, C., Shi, B., Duan, L.Y.: Mop moire patterns using mopnet. In:
Proceedings of the IEEE International Conference on Computer Vision. pp. 2424–
2432 (2019)

5. Huang, H., Nie, G., Zheng, Y., Fu, Y.: Image restoration from patch-based
compressed sensing measurement. Neurocomputing 340, 145–157 (2019)

6. Ignatov, A., Timofte, R., Ko, S.J., Kim, S.W., Uhm, K.H., Ji, S.W., Cho, S.J.,
Hong, J.P., Mei, K., Li, J., et al.: Aim 2019 challenge on raw to rgb mapping:
Methods and results. In: Proceedings of the IEEE International Conference on
Computer Vision. vol. 5, p. 7 (2019)

7. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer
and super-resolution. In: European conference on computer vision. pp. 694–711.
Springer (2016)

8. Kim, T.H., Park, S.I.: Deep context-aware descreening and rescreening of halftone
images. ACM Transactions on Graphics 37(4), 1–12 (2018)

9. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: Blind
motion deblurring using conditional adversarial networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. pp. 8183–8192
(2018)

10. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken,
A., Tejani, A., Totz, J., Wang, Z., et al.: Photo-realistic single image super-
resolution using a generative adversarial network. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 4681–4690 (2017)

11. Lefkimmiatis, S.: Universal denoising networks: a novel cnn architecture for image
denoising. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 3204–3213 (2018)

12. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: Aod-net: All-in-one dehazing network.
In: Proceedings of the IEEE International Conference on Computer Vision. pp.
4770–4778 (2017)

13. Li, S., Araujo, I.B., Ren, W., Wang, Z., Tokuda, E.K., Junior, R.H., Cesar-
Junior, R., Zhang, J., Guo, X., Cao, X.: Single image deraining: A comprehensive
benchmark analysis. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 3838–3847 (2019)

14. Li, X., Wu, J., Lin, Z., Liu, H., Zha, H.: Recurrent squeeze-and-excitation context
aggregation net for single image deraining. In: Proceedings of the European
Conference on Computer Vision. pp. 254–269 (2018)
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