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Abstract. We propose a novel representation learning technique for mea-
suring the similarity of user interface designs. A triplet network is used
to learn a search embedding for layout similarity, with a hybrid encoder-
decoder backbone comprising a graph convolutional network (GCN) and
convolutional decoder (CNN). The properties of interface components
and their spatial relationships are encoded via a graph which also models
the containment (nesting) relationships of interface components. We su-
pervise the training of a dual reconstruction and pair-wise loss using an
auxiliary measure of layout similarity based on intersection over union
(IoU) distance. The resulting embedding is shown to exceed state of the
art performance for visual search of user interface layouts over the public
Rico dataset, and an auto-annotated dataset of interface layouts collected
from the web. We release the codes and dataset3.

1 Introduction

Layout is fundamental to user experience (UX) design, where arrangements of
user interface components form the blueprints for interactive applications. Vast
repositories of UX layouts are openly shared online. The ability to easily search
these repositories offers an opportunity to discover and re-use layouts, democra-
tizing access to design expertise.

This paper contributes a novel technique for visually searching UX designs,
leveraging a graph based representation that integrates both the properties of
interface components and their spatial relationships. Representation learning
for UX design is challenging, as layouts typically exhibit complex geometry and
even nesting of interface components; properties we encode explicitly within
our representation. We propose a triplet architecture to learn a metric search
embedding for layout similarity from this representation, leveraging a hybrid
encoder-decoder backbone that combines a graph convolutional network (GCN)
encoder with a convolutional network (CNN) decoder.

Representation learning is a fundamental computer vision task, that has
previously been tackled for UX layout search by leveraging pixel-based (raster)
renderings of designs, for example to train auto-encoders (AEs) [20]. Whilst

3 https://github.com/dips4717/gcn-cnn
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such unsupervised representations are convenient to train, they are typically
inaccurate at recalling detail in the design, do not explicitly encode common
UX design properties (such as component nesting), and do not encourage metric
properties in the search embedding. We mitigate against this using a dual loss
that combines a reconstruction loss and a triplet loss that weakly supervises
learning via a weighted auxiliary metric, based upon intersection over union
(IoU). Our core technical contributions are two-fold:
1. Graph Representation for UI Layout. We encode the semantic and
geometric properties of user interface controls and their geometric relationships
via a graph. We encode this representation via a GCN with self-attention to
learn a latent representation for UI layout.
2. GCN-CNN Architecture for Layout Search. We present a novel siamese
GCN-CNN architecture for learning a metric embedding for layout search. The
embedding delivers state-of-the art results on two UX design datasets.

We demonstrate a search application of our learned embedding using the
public RICO dataset of mobile UX designs [7]. We also search a new dataset of
UX designs collected from the web, annotated automatically via a Faster-RCNN
detector trained on RICO, that we release as a further contribution of this work.

2 Related Work

Layout has been primarily studied through the lens of automated design and
reflow tasks [16] within the domains of document pagination and graphic design.
The prediction of aesthetic score for document layout is a well studied problem
with early work exploring heuristics relating to white space and content balance
[14], with such metrics being leveraged to drive layout decisions in [8, 9]. Sub-
sequently, optimization strategies leveraging learnable metrics from exemplar
designs [22, 23] and from gaze [34] has been explored. Representation learning
was explored for synthesis in LayoutGAN, where layouts were learned using a
differentiable wireframe renderer [19] operating over a list of layout components
and their geometric parameters. Whilst a variable length representation is un-
suitable for search via deep metric learning, LayoutGAN showed generation of
several document layout types, including UX designs. Generative approaches to
layout were also explored for salience guided reflow of graphic designs [5].

Layout search is more sparely researched, and limited public datasets exist.
Component detection has been combined with learned design heuristics to parse
graphic layouts for re-use [35, 30] and even for code generation [2]. Rico is a crowd-
annotated dataset [7] of mobile app screenshots, and is most closely aligned to our
work in that it also proposed a classical MLP autoencoder to learn a latent space
for search – using rasterized representations of UX layout. Liu et al. similary
explored convolutional autoencoders for layout search on Rico [20]. Whilst such
embeddings do not require supervision to train, they are not constrained to metric
properties suitable for similarity search and require layout rasterization as an
intermediate step to build the search index. Our work is unique in leveraging a
graph convolutional network (GCN) [3] to encode a graph-based representation
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Fig. 1. Proposed GCN-CNN encoder-decoder architecture to learn a latent search
embedding for UX layout. The input is a set of bounding boxes with associated class
labels, encoding the relative positions and types of UI component. A combination of
linear layers, GCN and self-attention map these to the latent space. At training time, a
25-channel raster representation of the UI is decoded from the latent space. Triplets of
layouts are presented through this backbone in siamese architecture, to learn the latent
representation which forms the search embedding.

of UX layout, which we show to significantly outperform raster layout encoders
both in unsupervised training. This performance is even more pronounced when
combining this approach with triplet (siamese) learning [29] commonly used to
learn deep metric embeddings for visual search of photographs [32, 25, 10] and
sketches [27, 4].

Graph convolutional networks (GCN) [3, 28, 6] have recently gained popular-
ity in analysing non-Euclidean data for deep learning, e. g. social graphs, com-
munication and traffic networks [36]. Scene graphs are emerging as a robust
representations for encoding objects and their relationships, and embedded via
have been applied to automatic captioning [11], scene [17] and action recognition
[13], and image synthesis from coarse layout descriptions [31, 1]. GCNs have also
been explored to search for visually similar scenes in [33]. Our work also exploits
GCN for visual similarity, addressing for the first time search of UX layouts by
encoding user interface components and their geometric relationships.

3 Method

The architecture of the proposed GCN-CNN framework is shown in Fig. 1. It
consists of triplet (siamese) backbone which constitutes a graph-based encoder
encoding the input UI layout into a latent space, and a transposed convolutional
decoder that reconstructs a multi-channel raster rendering of the layout. Our
network is trained using a dual loss,

Ltotal =
∑

x∈{a,p,n}

Lrec(x, x
′) + λLtri(a, p, n) (1)
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where (a, p, n) is a triplet of anchor, positive, and negative UI layouts. (a, p)
forms a positive pair representing similar layouts, and (a, n) is a negative pair
dissimilar layouts. Lrec(x, x

′) is reconstruction loss which may used to train
the GCN-CNN in an unsupervised way, but we show performs better when
combined with Ltri(a, p, n) as triplet loss trained in a weakly supervised manner
to also encourage the metric property in search embedding. We now describe in
greater detail our graph representation for layout (subsec.3.1), its encoding via
the network (subsec. 3.2) and the training methodology and loss (subsec. 3.3).

3.1 Graph representation

We describe a UI layout with its components and their geometric properties.
Formally, we represent UI layout, with height h and width w, as a spatial graph
G = (V, E) where V = {c1, · · · , ci, · · · , cκ} is set of nodes representing its κ UI
components, and E = {e11, · · · , eij , · · · eκκ} is the set of edges that denoting
the existence of a relationship between them. Each node carries two types of
information. The first feature is associated with semantic property si; a one-hot
vector denoting the UI component class. Second, geometric property gi capturing
the spatial location of the component in UI are encoded; we adapt the scheme of
[12]. Let (xi, yi) and (wi, hi) be the centroid, width and height of the component
ci, and Ai =

√
wihi, then the geometric feature gi is

gi =

[
xi
w
,
yi
h
,
wi
w
,
hi
h
,
Ai
wh

]
. (2)

Next, we define the edges features rij associated with edge eij using the pairwise
geometric features between components ci and cj given by Eq.(3)

rij =

[
ψij , θij ,

∆x

Ai
,
∆y

Ai
,
wj
wi
,
hj
hi
,

1

D

√
∆x2 +∆y2

]
(3)

where ∆x = xj − xi and ∆y = yj − yi are the x- and y- shifts between the
components and constant D =

√
w2 + h2 normalises against the diagonal. In

addition, the feature rij incorporates various geometric relations such as relative

distance, aspect ratios, orientation θ = atan2
(
∆y
∆x

)
∈ [−π, π]. We explicitly

include a containment feature ψij taking into account the Intersection over Union
(IoU) between components capturing the nesting of the UI components:

ψij =
M(ci) ∩M(cj)

M(ci) ∪M(cj)
(4)

where M(.) indicates the mask of the single component (ψij is computable via
bounding box intersection without rasterization). We explore both undirected and
directed graph representations for UIs. For undirected representation, we create a
single edge between two components ci and cj i.e. E = {eij} for ∀i, j = 1, 2, ..., κ
such that j ≥ i. In directed representation, we create all the possible edges
between the nodes i. e. two directed edges are created between the pair ci and
cj as shown in Fig. 1. For the associated geometric features, note that rij 6= rji.
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3.2 GCN-CNN Encoder-Decoder

Layout Encoder We propose a hybrid GCN-CNN encoder-decoder architecture
to learn the latent space in an unsupervised manner. The GCN encoder maps
the layout graph into embedding space. The node features ni in the graph hold
both the semantic class label si as well as the geometric property gi of the UI
component ci. The semantic class si is first encoded into Ns trainable embeddings,
Ns = 25 being the number of semantic classes of UI components (subsec 4.1).
The geometric feature gi is concatenated with the semantic embedding, and
projected by a linear layer to obtain the node features ni

ni = En ([Es(si) gi])) (5)

where Es is the embedding layer that learns the UI class embeddings and En is a
linear layer that projects the semantic and geometric features into node feature
ni. Similarly, the edge features rij are projected by Er(rij). Next, the node
features and the edge (relation) features are operated by graph convolutional
networks gn(·) and gr(·). The node and relational feature outputs of the GCN
network are computed by

xni = gn(ni) (6)

xrij = gr([niEr(rij)nj ]) (7)

The relation graph network gr operates on tuples < ni, Er(rij),nj > passing
the information through the graph to learn the overall layout. Both gn(·) and
gr(·) are learned via fully-connected layer passed through ReLU (Fig. 1, left).
We obtain two set of features from GCNs.

Xn = {xn1
,xn2

, ...xnκ} and Xr =
{
xr11 ,xr12 , ...xrκ′

}
(8)

where κ and κ′ are the number of components (node features) and the total
number of the relationship features which vary for different UI layouts. Next, the
sets of features are passed through self-attention modules which learn to pool
the node features and relational features given by

fattn =

κ∑
i=1

αnixni and fattr =

κ′∑
i=1

αrixri ; (9)

αni =
exp(wᵀ

nxni)

Σκ
l=1 exp(wT

nxnl)
and αri =

exp(wᵀ
rxri)

Σκ′
l=1 exp(wT

r xrl)
(10)

where, αni and αri are attention weights learned with wᵀ
n and wᵀ

r parameters.
Subsec 4.4 compares learnable pooling via this self-attention module, with

‘Average’ pooling commonly used in CNN encoder-decoder architectures to read-
out latent features. Further, we also explore ‘Inverse’ pooling where the weights
are inversely proportional to the area of UI components; the motivation being to
prioritize the small UI components and capture them well into the representation.
In all cases, we obtain a d−dimensional latent embedding that encodes the UI
layout; fe = Ee([f

att
n , fattr ]) where Ee is the final linear layer that outputs the

embeddings. We also explore choice of d in subsec 4.4.



6 Dipu Manandhar, Dan Ruta, and John Collomosse

Fig. 2. Left: Schematic of UI layout, showing the features encoded in our graph rep-
resentation for individual interface components ci and their geometric relationships.
Right: Visualization of raster reconstructions rendered from a RICO graph layout input
by the GCN-CNN network. The 25-C decoded raster and input UI layout are projected
to false color RGB space where different colors represent different UI components. Lay-
outs are progressively reconstructed with higher fidelity (lower error) as the GCN-CNN
optimizes the reconstruction loss (Eq. (11)). Note the input layout images are here for
visualization only, and are not actual input to the network.

Layout Decoder The embedding fe encoded by the GCN encoder are decoded
into an image raster using transposed convolutional network which have been stud-
ied for vision-related problems such as semantic segmentation [21] and saliency
detection [18]. Typically, the transposed convolution (also called deconvolution)
network learns increasingly localized representations while upsizing the feature
maps. Our decoder network consists of 4 deconvolutional layers each consisting
of 25 filters with receptive field 3 × 3 followed by ReLU activations. We use
unpooling layer (Upsample) before each deconvolution operation to progressively
increase the spatial dimension of features. Since the upsampling operation is
often prone to information loss, we also experiment with the strided convolution
operation with stride-2 that upsizes the feature maps without requiring to upsam-
ple/unpool features. We later show that the strided deconvolution outperforms
upsampling (subsec. 4.4).

The decoder outputs a raster ρ′ ∈ RH×W×Ns , Ns being the number of the
semantic UI component classes, H and W are height and width empirically set to
256 and 128 respectively. Ns is set to 25, the number annotated semantic classes
in RICO. We refer to the decoder output as 25-C raster in the remainder of the
paper. We train the entire GCN-CNN network end-to-end, using mean square
error (MSE) as the reconstruction loss (Lrec) between the output rater and its
groundtruth layout rasterized to ρ to match the dimension of the output.

Lrec(ρ, ρ
′) = Σ25

m=1Σ
H
n=1Σ

W
p=1(ρmnp − ρ′mnp)2 (11)

In Fig. 2, we project the 25-C raster into false color RGB-space visualizing the
maximum likelihood class. This illustrates how the GCN-CNN encoder decoder
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progressively learn to reconstruct the UI components in their respective locations
in the layout.

3.3 Metric Learning via Triplet Training

In order to learn metric properties in embedding space which is desirable for the
effective search, we propose to train a triplet-based siamese architecture of the
GCN-CNN encoder-decoder as shown in Fig. 1. We refer this framework as GCN-
CNN-TRI in the remainder of the paper. The input to the network is a triplet of
UI layout graphs denoted by (Ga,Gp,Gn) which are anchor, positive and negative
UI layouts. We subsequently denote the triplet by (a, p, n) for conciseness. Our
aim is to map the similar UI layouts (a, p) into closer points in the embedding
space, and separate the dissimilar ones (a, n).

Triplets commonly are selected using the ground-truth labels to form anchor-
positive-negative in typical metric learning frameworks [24, 15, 29]. However, in
our case, we do not have labels for UIs on layout similarity. We propose to use
average intersection over union (IoU) between component bounding boxes of two
layouts as a weak label for selecting the triplets. We select two layout as anchor-
positive pairs if their IoU value is greater than a threshold, which is empirically
set to 0.6 upon visual observations. We select any layout as negative if the IoU
value is below 0.4. The triplet loss for the selected layouts (a, p, n) is given by

Ltri(a, p, n) =
[
‖f (a)e − f (p)e ‖2 − ‖f (a)e − f (n)e ‖2 + ν

]
+

(12)

where (f
(a)
e , f

(p)
e , f

(n)
e ) are encoded embedding for (a, p, n), ν = 0.2 is a positive

margin, and [x]+ = max(x, 0).
We train our overall framework using both reconstruction loss and triplet

loss Eq.(1) typically requiring 50 epochs to converge; setting λ = 0 for first
half of training, and λ = 10−1 for the second using Adam optimizer with ini-
tial learning rate of 10−3. The trained embedding can be efficiently compared
using L2-distance to search similar layouts. We show that training with weakly
supervised triplet loss consistently boosts the layout search performance of the
proposed method (subsec. 4.4).

4 Experiments and Discussion

We evaluate the proposed layout search technique for UX designs (GCN-CNN-
TRI), benchmarking against several ablations of our method, and two existing
baselines using unsupervised non-graph based representations [7, 20].

4.1 Datasets

We evaluate over RICO [7]; the largest publicly available dataset of UX designs
containing 66K screenshots of mobile apps curated by crowd-sourcing and mining
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9.3K free Android apps. The screenshots are annotated using bounding boxes
to create semantic view hierarchies which are each assigned to one of Ns = 25
classes S = [s1, . . . , s25] of user interface (UI) component. We partition the
dataset into 53K training samples T , reserving a test set of 13K samples as
the corpus of layouts L for search. An additional 50 samples are held out as
a queryset Q = [Q1, . . . , Q50] to retrieve UIs from the search corpus. We also
evaluate over GoogleUI; a new dataset of 18.5K UX design obtained by harvesting
UX designs from the web, and annotated with a FasterRCNN detector trained
using T . The purpose is to explore how well our model transfers to automatically
parsed layouts from image data (subsec 4.6).

4.2 Evaluation Metrics

For each query Qi we obtain a ranked list of layouts R(Qi) = [L1, . . . , Lk] for
each layout in test set L up to result rank k. Annotating L is infeasible for all
Q, therefore we measure accuracy via two measures of precision over the top
k = [1, 5, 10] results. For baseline comparisons, we also provide a subjective
evaluation via Amazon Mechnical Turk (AMT).

Mean Intersection over Union (MIoU). The mean average of the Inter-
section over Union (IoU) score for all queries, taken across all classes sj ∈ S:

MIoU(Q;L) =
1

Q
∑
Qi∈Q

25∑
j=1

Sj(Qi)
⋂
Sj(Li)

Sj(Qi)
⋃
Sj(Li)

(13)

where Sj(.) is region of the layout occupied by components of class sj .
Mean Pixel Accuracy (MPixAcc). We rasterize the layout Li to a W ×

H×Ns) and compute the pixel-wise mean accuracy across all Ns channels against
the rasterized query Qi. This score is averaged for all queries Qi ∈ Q.

Precision @ k (P@k). For comparative evaluation with baselines, we also
compute P@k curves by crowd-sourcing the relevance of each ranked result.

P@k(Q;L) =
1

kQ
∑
Qi∈Q

k∑
j=1

rel(Lj , Qi) (14)

where rel(Lk, Qi) is a binary indicator for the relevance of Lk given query Qi:

4.3 Baseline comparisons

We compare our proposed technique with the raster-based methods proposed
in [7][20] for UX design similarity search. Deka et al. [7] used an MLP-based
autoencoder (AE) to reconstruct images obtained by rasterizing semantic UIs. Liu
et al. [20] employed a convolutional auto-encoder (CAE) to learn the embeddings.
Table 1 shows layout retrieval performances in terms of topk- MIoU and MPixAcc.
Our GCN-CNN achieves a top-10 MIoU of 47.1% and MPixAcc of 56.7%, which
is further boosted by triplet training (GCN-CNN-TRI) to 50.3% and 60.0%
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Table 1. Performance comparison of baselines to the proposed method both
unsupervised (GCN-CNN) and with triplet supervision (GCN-CNN-TRI)
over RICO. Quantified via MIoU and MPixAcc at k = [1, 5, 10]. The final
column reports Precision @ k for k = [1, 5, 10, 20] for crowd-annotated results.

Method MIoU (%) MPixAcc (%) AMT P@k (%)
k 1 5 10 1 5 10 1 5 10

AE [7] 43.0 34.7 28.9 46.9 40.6 35.1 18.0 6.0 8.0
CAE [20] 59.5 47.1 43.9 66.6 54.3 50.8 42.0 12.0 12.0
GCN-CNN (Ours) 60.0 51.6 48.3 68.3 58.9 56.5 42.0 26.0 18.0
GCN-CNN-TRI (Ours) 61.7 54.1 51.3 70.1 64.0 61.0 46.0 30.0 36.0

Fig. 3. Quantifying performance over RICO via AMT crowd annotation of results. Left:
representative top-5 search results for a random UX design query. Right: Precision @ k
curve for the proposed method GCN-CNN(-TRI) and baselines CAE [20] and AE [7]

.

respectively. Our method significantly outperforms existing methods by +21.6%
[7] and +6.6% [20] in terms of top-10 MIoU.

We also report a crowd-sourced annotation undertaken on Amazon Mechani-
cal Turk (AMT) in which 67 users (turkers) annotated the top k = 20 results for
all 50 queries produced by all 4 methods. Turkers were asked to ignore color and
the content of any text or visuals, and indicate if the structure of each UI layout
matched the query. Representative search results presented to Turkers are given
in Fig 3 (left). The question was asked of 5 turkers independently, yielding 5K
annotations. A result was recorded relevant only when the majority (3 or more
turkers) so indicated. Table. 1 (final col.) reports the results for k = [1, 5, 10]
and the P@k curve for k = [1, 20] is in Fig. 3 (right). The pattern reflects that
of MIoU and MPixAcc, and shows for this metric closer performance of CAE to
unsupervised GCN-CNN at k = 1, but with the CAE performance falling away
as k > 1. This reflects the RICO dataset content; in several cases a couple of
near duplicate screens from the same app are well-matched by both CAE and
GCN-CNN – but beyond these, the fine-grain structural information encoded by
the GCN enables more robust matching. Overall the results clearly demonstrate
the benefits of the Graph-based backbone for training a layout embedding (GCN-
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Table 2. Performance of variants of the proposed method GCN-CNN
for (D)irected vs. (U)ndirected graph representation, and (Str)ided vs.
(Ups)ampling (dec)oder stage for embedding (dim)ensionality 2048. Unsu-
pervised and (tri)plet supervision are evaluated at k = [1, 5, 10] over RICO.
Numbers in parentheses indicate triplet supervision.

.
Method Dec. MIoU (%) MPixAcc (%)
top-k 1 5 10 1 5 10

U(+tri) Ups 58.0(59.0) 50.4(51.6) 48.0(49.4) 65.5(66.6) 59.4(60.7) 57.7(59.3)
U(+tri) Str 58.9(61.6) 50.9(53.4) 48.1(51.0) 66.3(70.2) 59.7(62.5) 57.6(60.6)
D(+tri) Ups 59.0(60.4) 50.2(52.9) 47.1(50.3) 66.4(69.3) 59.2(62.4) 56.3(59.7)
D(+tri) Str 60.0(61.7) 51.6(54.1) 48.3(51.3) 68.1(70.1) 61.4(64.0) 58.0(61.0)

Fig. 4. Performance of the proposed GCN-CNN model for different embedding dimen-
sionalities over RICO. Larger embedding dimensions offer better performances. For both
directed and undirected graph, and upsampling and strided decoder model, training
GCN-CNN with triplet loss boosts both MIoU and MPixAcc.

CNN), and the boost due to metric learning in GCN-CNN-TRI. Note that our
aim is to search for structurally similar UI layouts rather than visually similar
screenshots. Please refer to the supplementary material for more retrieval results.
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4.4 Ablation studies

We conduct detail ablation studies on the variants of our proposed model in
different stages of the framework; embedding dimensionality, the decoder model,
the graph representation, and the impact of training supervision. Table 2 and
Fig. 4 summarise the overall results. In the following, we break down these factors
and outline the key observations.
Dimensionality and Architecture: From Fig. 4, we observe a 1024-D or
higher embedding is necessary for sufficient representation of layout, with gains
of 1-3% on top-5 and top-10 (for both MIoU and MPixAcc) obtained at 1024D
or 2048-D over other lower dimensional embeddings. Extensive experiments were
performed over dimensionality to search for best performing configuration and
these are tabulated within the supplementary material.

Next, we analyse the impact of replacing strided convolution with up-sampling
in the decoder (CNN) stage of the network. Across all configurations, strided
convolution delivers improved results as the up-sampling operations often lead to
information loss. For example, for directed graph at 2048D dimension, there is an
improvements of 1.2% top-10 MIoU and 1.7% top-10 MPixAcc while using the
strided convolution. Further experiments supporting this choice are tabulated in
the supplementary material.
Graph representation: We contrast the performance of directed and undi-
rected variants of the UI layout graph encoding (subsec. 3.1); note that relational
feature between a pair of components rij : ci 7→ cj is non-commutative. From
Table 2, it is observed that there is a performance gain of ∼1-2% on both MIoU
and MPixAcc for this best performing embedding size, however for lower dimen-
sionalities which perform more poorly this gain is not present. We conclude that
a directed graph supports a best performing configuration.
Metric Learning We compare the performance of the proposed framework
with/without triplet training to study the advantage of weakly supervised metric
learning. As seen from Table 2, there is consistent improvements (values in
parenthesis) for all the variants of the proposed method while training with a
dual loss comprised of auxiliary triplet loss as in Eq.(1). The improvement is
easily seen in the Fig. 4. We observe clear improvements using triplet training;
top-10 MIoU and MPixAcc are improved by 3.2% and 3% respectively to obtain
the best performing values.
GCN Readout: We compare three strategies for pooling the GCN features to
form the latent representation at the bottleneck of our GCN-CNN encoder/decoder
architecture (Table 3). We evaluate our proposed self-attention mechanism for
learnable pooling (Attend), with two procedural approaches: Average and Inverse
presented in subsec 3.2. Performance is compared for the GCN-CNN backbone
with and without triplet supervision, and for low (512) as well as high (2048) di-
mensional embeddings. Whilst the Average/Inverse strategies perform similarly,
the learnable pooling via self-attention (Attend) yields ∼ 2% performance gain
on both MIoU and MPixAcc metrics.
Containment feature ψ: Table 4 evaluates the benefit of explicitly encod-
ing the containment feature (ψ) within rij . We report performances for pres-
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Table 3. Comparing of different types of readout, pooling GCN features via
mean-pooling (Average), inverse area weighted mean-pooling (Inverse) and
learned pooling via Self-Attention, over RICO.

Method Dim. GCN ReadOut MIoU (%) MPixAcc (%)
top-k Layer 1 5 10 1 5 10

GCN-CNN 512 Attend 59.4 49.3 47.1 68.3 58.9 56.5
GCN-CNN 512 Average 57.1 50.2 47.4 64.5 58.9 56.5
GCN-CNN 512 Inverse 59.3 50.4 48.3 67.3 59.3 57.7

GCN-CNN 2048 Attend 60.0 51.6 48.3 68.1 61.4 58.0
GCN-CNN 2048 Average 57.4 49.9 48.0 63.6 58.0 56.9
GCN-CNN 2048 Inverse 58.6 50.5 48.3 66.4 59.7 57.7

GCN-CNN-TRI 512 Attend 63.2 53.3 50.5 71.0 62.7 60.0
GCN-CNN-TRI 512 Average 59.3 53.8 51.3 68.1 62.5 60.3
GCN-CNN-TRI 512 Inverse 60.2 53.2 51.0 68.7 61.6 59.9

GCN-CNN-TRI 2048 Attend 61.7 54.1 51.3 70.1 64.0 61.0
GCN-CNN-TRI 2048 Average 60.0 53.7 51.1 69.8 62.3 60.2
GCN-CNN-TRI 2048 Inverse 60.1 53.6 51.1 68.0 62.2 60.1

Table 4. Evaluating performance of undirected (-Undir) vs. proposed di-
rected graph connectivity, and the inclusion (or not) of component contain-
ment feature ψ. Unsupervised (GCN-CNN) and triplet supervised (-TRI).

Method dim contFeat MIoU (%) MPixAcc (%)
top-k (ψ) 1 5 10 1 5 10

Average Average

GCN-CNN-UnDir 2048 56.0 49.5 47.1 63.4 58.7 56.9
GCN-CNN-UnDir 2048 X 58.9 50.9 48.1 66.3 59.7 57.6

GCN-CNN 2048 61.9 51.0 47.7 70.5 60.6 57.2
GCN-CNN 2048 X 60.0 51.6 48.3 68.1 61.4 58.0

GCN-CNN-TRI-Undir 2048 59.0 52.2 50.1 65.6 61.3 59.8
GCN-CNN-TRI-Undir 2048 X 61.6 53.4 51.0 70.2 62.5 60.6

GCN-CNN-TRI 2048 62.4 53.4 51.1 70.5 63.3 60.8
GCN-CNN-TRI 2048 X 61.7 54.1 51.3 70.1 64.0 61.0

ence/absence of the containment feature, with setting 2048D embedding for the
unsupervised GCN-CNN as well as weakly supervised GCN-CNN-TRI. The per-
formance gain using ψ is equally pronounced with and without supervision at
around 1-2% for top-5 and top-10 scores, but lower for top-1. This indicates
benefit in fine-grain discrimination of UI layouts.

4.5 Cumulative ablation study:

Our best configuration given the variants evaluated in subsec. 4.4 is a directed
graph with containment feature (ψ) encoded via a GCN-CNN with self-attention
and strided up-convolution, trained via metric learning to yield a 2048-D bottle-
neck. We perform a further ablation study (Table 5) demonstrating the cumu-
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Table 5. Cumulative ablation study over RICO, exploring the benefit of
(C)ontainment features and (DI)rected graph connectivity in the repre-
sentation, and GCN feature pooling (via Self-Attention (SA) vs. Inverse
mean-pooling) and (TRI)plet supervision vs. unsupervised training.

Ablation Dim. MIoU (%) MPixAcc (%)
top-k 1 5 10 1 5 10

GCNCNN 2048 57.3 49.9 47.4 64.5 58.5 56.6
GCNCNN+C 2048 58.7 50.1 48.0 66.3 58.9 57.0
GCNCNN+C+DI 2048 58.6 50.5 48.3 66.4 59.7 57.7
GCNCNN+C+DI+SA 2048 60.0 51.6 48.3 68.1 61.4 58.0

GCNCNN+C+DI+SA+TRI 2048 61.7 54.1 51.3 70.1 64.0 61.0

lative contribution to overall performance for each of these design components
in the representation and the GCN-CNN architecture. Adding the containment
feature (+C) to the set of relative geometry features and the directed connections
in the graph (+DI) contribute around +1% accuracy. Pooling via self-attention
(+SA) adds a further 1%, and the triplet supervision adds around 3% further.

4.6 Searching auto-parsed layouts

We evaluate the transferability of our RICO-trained model to GoogleUI; UI
layouts automatically parsed from UX designs on the web. Google Image search
retrieved 21K images with keywords ’mobile User Interface Design’ and ’mobile
UX Design’. AMT was used to segment images into individual layouts and discard
false positives yielding 18.5K individual UI layouts for the search corpus. A query
set of 50 layouts were randomly held out.

We train a Faster-RCNN detector [26] on the RICO classes S using RICO
training data (T ) and annotate all 18.5K GoogleUI images using a threshold of
probability > 0.5 to identify bounding boxes and labels for the UI components
present. GoogleUI contains very few near-duplicates and has noisier annotation
due to automation. Using our best performing GCN-CNN-TRI configuration
we build a search index and evaluate performance in Table 6, which exceeds
both the AE [7] and CAE [20] baselines by 15-20% and 10-15% respectively
across the top k = [1, 10, 15] results for both the MIoU and MPixAcc metrics.
Representative GoogleUI search results are given in Fig. 5. Compared to RICO,
the performances of all the methods likely due to inaccuracy in annotation.
However, it is interesting to note that the performance improvements of the
proposed method over existing methods [7][20] have been significantly increased
(Table 1 vs. Table 6) indicating that graph-based layout representations may be
more robust to noisy data encountered in the wild.

5 Conclusion

We proposed a novel search embedding to measure similarity of user interface
layouts. Our representation is learned using a hybrid encoder-decoder backbone
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Table 6. Performance comparison on automatically annotated UX designs
from the web (GoogleUI). Comparing baselines to the proposed GCN-CNN-
TRI framework on GoogleUI. Quantified via MIoU and MPixAcc.

Method MIoU (%) MPixAcc (%)
k 1 5 10 1 5 10

AE [7] 30.3 30.7 31.1 36.2 36.9 36.7
CAE [20] 41.2 40.3 39.3 44.8 43.7 42.8
GCN-CNN-TRI (Ours) 51.6 46.5 45.1 57.6 51.1 49.4

Fig. 5. GoogleUI auto-annotated UX designs searched by our RICO-trained model.
Left: Representative top-5 search results for 3 queries. Right: Sample UI layouts.

comprising a graph convolutional network (GCN) and convolutional decoder
(CNN). Our directed graph representation encodes the relative positioning and
types of user interface control, including component nesting. The graph is en-
coded via GCN with self-attention to pool learned GCN features to a vector
embedding suitable for similarity search. In order to encourage metric properties
in the embedding, a siamese network is formed from the GCN-CNN backbone
and training supervised with dual reconstruction and triplet loss. We showed that
both unsupervised, and supervised training of the latter, yield performance gain
over raster autoencoder networks previously used to search UI layout. We demon-
strate the benefits of our approach over both the public dataset of crowd-mined
annotated mobile UX designs (RICO [7]) and a new automatically annotated
corpus of UX designs from the web (GoogleUI).

Future work could incorporate appearance properties of the user interface
components (for example the actual text or pixels in a label or image control) as
additional features on the nodes. Currently our work has focused upon matching
only the structural similarity of the UI layout. It would be interesting to exploit
the learned representation for alternative tasks such as a structural prior on
detecting UI components within screenshots or even as an user-assistive tool
for partial design completion, for example where a graph decoder added to the
architecture to make the model generative.
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