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Abstract. We present Progressive Refinement Network (PRNet), a novel
single-stage detector that tackles occluded pedestrian detection. Moti-
vated by human’s progressive process on annotating occluded pedestri-
ans, PRNet achieves sequential refinement by three phases: Finding high-
confident anchors of visible parts, calibrating such anchors to a full-body
template derived from occlusion statistics, and then adjusting the cali-
brated anchors to final full-body regions. Unlike conventional methods
that exploit predefined anchors, the confidence-aware calibration offers
adaptive anchor initialization for detection with occlusions, and helps
reduce the gap between visible-part and full-body detection. In addition,
we introduce an occlusion loss to up-weigh hard examples, and a Recep-
tive Field Backfeed (RFB) module to diversify receptive fields in early
layers that commonly fire only on visible parts or small-size full-body re-
gions. Experiments were performed within and across CityPersons, ETH,
and Caltech datasets. Results show that PRNet can match the speed of
existing single-stage detectors, consistently outperforms alternatives in
terms of overall miss rate, and offers significantly better cross-dataset
generalization. Code is available.1

Keywords: Occluded pedestrian detection, Progressive Refinement Net-
work, anchor calibration, occlusion loss, Receptive Field Backfeed.

1 Introduction

Pedestrian detection is a fundamental computer vision problem and has been
widely used in broad applications such as autonomous driving [10], robotics [9],
and surveillance [21]. Although promising progress was made, occluded pedes-
trians remain difficult to detect [18,22,32]. The major challenges involve a wide
range of appearance changes due to occlusion by other pedestrians or objects
(e.g ., cars or trees), which decrease detection accuracy to various extents.

Reviewing the literature, most methods in pedestrian detection handle occlu-
sions by exploiting visible parts as an additional supervision to improve detection
performance. These methods broadly leverage three types of designs: 1) Inde-
pendent detectors trained for each occlusion pattern [6, 7, 20, 23, 25, 30, 34, 36],
2) Attention maps to enforce learning on visible parts [27,40], and 3) Auxiliary

? These authors contributed equally.
1 https://github.com/sxlpris

https://github.com/sxlpris


2 X. Song, K. Zhao, W.-S. Chu, H. Zhang, and J. Guo

Annotate Visible Part Annotate Full BodyOcclusion Statistics

occ

vis
+XPDQ·V
Annotation
Process

PRNet
(proposed)

Visible-part Estimation Anchor Calibration Full-body Refinement

Fig. 1. Progressive Refinement Network (PRNet) imitates human’s progressive an-
notation process on occluded pedestrians (e.g ., [5, 39]), and gradually infers full-body
regions from visible parts.

visibility classifiers to fuse prediction confidence into final scores [22,42,44]. Al-
though these methods could benefit occluded pedestrian detection, at least three
issues remain. First, independent detectors are computationally expensive, as
each detector is trained for individual occlusion patterns, which are difficult to
enumerate in practice. Second, attention-based methods can be slow for inference
because attention modules are usually exhausted with proposals in architectures
like Faster R-CNN [29]. Attention-based methods emphasize only visible parts,
and thus could be suboptimal for full-body detection. Finally, detectors are usu-
ally initialized with predefined anchors, which, as will be demonstrated in Sec. 4,
are suboptimal to generalize across diverse datasets.

To address the above challenges, we propose Progressive Refinement Network
(PRNet), a novel single-stage detector for occluded pedestrian detection. Fig. 1
illustrates our main idea. Inspired by human’s progressive annotation process of
occluded pedestrians (e.g ., [5,39]), PRNet performs pedestrian detection in three
phases. First, visible-part estimation generates high-confident anchors of visible
parts from one single-stage detector (e.g ., SSD-based [14, 18]). Second, anchor
calibration adjusts the visible-part anchors to a full-body template according to
occlusion statistics, which is derived from over 20,000 annotations of occluded
pedestrians. Finally, we train a full-body refiner using the calibrated anchors
and a separate detection head from the one for visible-part estimation. Using
two separate detection heads allows us to fit the progressive design into a single-
stage detector without adding much complexity. In addition, to improve training
effectiveness, we introduce an occlusion loss to up-weigh hard examples, and a
Receptive Field Backfeed (RFB) module to provide more diverse receptive fields,
which help shallow layers to detect pedestrians in various sizes. Experiments on
three public datasets, CityPersons [39], ETH [8], and Caltech [5], validate the
feasibility of the proposed PRNet.
Our contributions in this paper can be summarized as follows:



Progressive Refinement Network for Occluded Pedestrian Detection 3

1. Present a novel Progressive Refinement Network (PRNet) that embodies
three-phase progression into a single-stage detector. With helps of the pro-
posed occlusion loss and RFB modules, PRNet achieves competitive results
with little extra complexity.

2. Analyze statistically on 20,000 visible-part and full-body regions, and derive
an anchor calibration strategy that covers ∼97% occlusion patterns in both
CityPersons and Caltech datasets.

3. Offer comprehensive ablation study, and experiments showing that PRNet
achieves state-of-the-art within-dataset performance on R and HO subsets
on CityPersons, and the best cross-dataset generalization over ETH and
Caltech benchmarks.

4. Provide analysis on extreme occlusions, showing insights behind the metrics
and suggesting a realistic evaluation subset for the community.

2 Related Work

CNN-based Pedestrian Detection: Along with the development of CNN-
based object detection, pedestrian detection has achieved promising results. We
broadly group these methods into two categories: anchor-based and anchor-free.

For anchor-based methods, two-stage detectors (e.g ., Faster R-CNN [29])
and one-stage detectors (e.g ., SSD [17]) are two common designs. Most two-
stage detectors [1, 2, 11, 13, 27, 35, 37, 40–42, 44] generate coarse region proposals
of pedestrians and then refine the proposals by exploiting domain knowledge
(e.g ., hard mining [37], extra learning task [2, 27, 40, 44], or cascaded labeling
policy [1]). RPN+BF [37] used a boosted forest to replace second stage learning
and leveraged hard mining for proposals. However, involving such downstream
classifier could bring more training complexity. SDS-RCNN [2] jointly learned
pedestrian detection and bounding-box aware semantic segmentation, thus en-
couraged model learning more on pedestrian regions. AR-Ped [1] exploited se-
quential labeling policy in region proposal network to gradually filter out better
proposals. These two-stage detectors need to generate proposal in first stage, and
thus are slow for inference in practice. On the other hand, single-stage detec-
tors [14, 18, 22] enjoy real-time inference due to the one-shot design. GDFL [14]
included semantic segmentation task from end to end, which guided feature
layers to emphasize on pedestrian regions. Generally, detection accuracy and
inference time are trade-offs between single-stage and two-stage detectors. To
obtain both accuracy and speed, ALFNet [18] involved anchor refinement into
SSD training process. The proposed PRNet takes advantage of high speed of
single-stage detector, and simultaneously outperforms these conventional meth-
ods in consideration of occlusion-aware supervision.

For anchor-free methods [19, 32], topological points of pedestrians and pre-
defined aspect ratio are introduced as new annotations to replace original bbox
annotations. TLL [32] predicts the top and bottom vertexes of the somatic topo-
logical line while CSP [19] predicts central points and scales of pedestrian in-
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stances. Although the above CNN-based pedestrian detectors obtains potential
performance, occluded pedestrian detection is still a challenging problem.

Occluded Pedestrian Detection: Methods tackling occluded pedestrians
can be broadly categorized into four types: part-based, attention-based, score-
based, and crowd-specific. Part-based methods have been widely received in the
community, where each detector was separately trained for individual occlusion
pattern with inference done by fusing all predictions. See [6, 7, 20, 23–25, 30, 34,
36,43] for comprehensive reviews. Moreover, exhaustively enumerating occlusion
patterns is non-practical, computationally expensive, and generally infeasible.
Instead of considering each occlusion pattern, [22, 41] partitioned a proposal or
bounding box into fixed number parts and predict their visibility scores. Al-
though training complexity was decreased, these methods still require manually
designing the partitions.

In recent years, learning robust representations and better anchor scoring
have become a popular topic. On one hand, attention-based methods [27, 40]
learn robust features using guidance from attention maps. Zhang et al. [40] and
MGAN [27] exploited channel-wise and pixel-wise attention maps respectively in
feature layers, to highlight visible parts and suppress occluded parts. However,
emphasizing visible-parts solely could be sub-optimal for full-body prediction.
On the other hand, score-aware methods learn extra anchor scores by introduc-
ing additional learning task in the second stage of Faster R-CNN. For instance,
Bi-box [44] constructs two classification and regression tasks for visible-part
and full-body anchors, and then fuses the two anchor scores during inference.
Similarly, [42] uses a separate discriminative classification by enforcing heavily
occluded anchors to be close to easier anchors, and high confident scores were
obtained for anchors. In addition, other studies [16,26,28,33,35] focused on tack-
ling crowded pedestrians. RepLoss [35] designs a novel regression loss to prevent
target proposals from shifting to surrounding pedestrians. The aforementioned
methods are generally initialized with predefined anchors. In contrast, the pro-
posed PRNet learns occluded pedestrian detection under confidence-aware and
adaptive anchor initialization, which helps improve detection accuracy and gen-
eralization across dataset.

3 Progressive Refinement Network (PRNet)

3.1 PRNet Architecture

Motivated by human’s progressive process on annotating occluded pedestrians
(e.g ., CityPersons [39] and Caltech [5]), we construct PRNet to gradually mi-
grate high-confident detection on visible parts toward more challenging full-body
localization. For this purpose, we propose to adopt a single-stage detector with
three training phases: Visible-part Estimation (VE), Anchor Calibration (AC),
and Full-body Refinement (FR). Unlike most methods that detect full bodies
only [18,35] or independently with visible parts [44], we interweave them into a
single-stage framework. To bridge the detection gap between visible parts and
full bodies, we introduce AC to align anchors from VE to FR.
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Fig. 2. Architecture of PRNet. From top to bottom, PRNet uses a detection backbone
illustrated with four blocks of features maps. The network is trained in three phases:
Visible-part Estimation (VE), Anchor Calibration (AC), and Full-body Re-
finement (FR). VE and FR take visible-part and full-body ground truth as references,
respectively. Given initial anchors (A0), VE learns to predict visible-part anchors (A1),
which are improved by AC to obtain calibrated anchors (A2). Final detection is ob-
tained by post-processing anchors and scores from VE and FR. Detection Head (DH),
Calibrator, and RFB modules are depicted in Fig. 3 and detailed in Sec. 3.1.

Fig. 2 illustrates the PRNet architecture. The top row depicts the back-
bone, where we truncated first 5 stages of ResNet-50 [12] with modification of
appending 1 extra stage with 3x3 filters and stride 2, which provide diverse re-
ceptive fields and help capture pedestrian with various scales. Out of the 6-stage
backbone, we treat the last four as detection outputs. The network is trained
following three phases: Visible-part Estimation (VE), Anchor Calibration (AC),
and Full-body Refinement (FR). VE and FR are trained with visible-part and
full-body ground truth, respectively; AC leverages occlusion statistics to bridge
the gap between visible-part anchors and full-body anchors. Details of each mod-
ule are illustrated later in this section. On top of each detection layer, we attach
a detection head (DH) separately for VE and FR.

Specifically, denote x as an input image, Φ(x) as feature maps from backbone,
A0 as a set of predefined anchors (as in SSD [17]), B∗ as the predicted bounding
boxes that are obtained by post-processing anchors collected from all layers
(i.e., via Non-Maximum Suppression). Given an initial set of feature maps and
anchors, PRNet can be formulated as a progressive detector:

Detections = F (Ef (C(Ev(Φ(x),A0)))) = {B∗, s∗}, (1)
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Fig. 3. Modules used in PRNet architecture (as in Fig. 2): DH, Calibrator and RFB.

where Ev(Φ(x),A0) is the 1st-phase visible-part estimation (VE) whose outputs
are a set of visible-part anchors and confidence scores {A1, s1}, C(·) is the 2nd-
phase anchor calibration (AC) that aligns visible-part anchors A1 to full-body
anchors A2, and Ef (Φ(x),A2) is the 3rd-phase full-body refiner (FR) that out-
puts the final full-body anchors to compute B∗ and their scores s∗ using inference
F (see Sec. 3.2). Note that Φ(x) represents different feature maps during VE and
FR due to their complementary objectives. Below we discuss each phase in turn.

Visible-part Estimation (VE): To train the visible-part estimation Ev(·),
we adopt a standard detection approach that learns to localize anchors A1 as
regression (from predefined anchors A0), and anchor scores as classification.
Fig. 3(a) depicts the detection head, whose loss can be written as:

LV E = Lfocal + λv[y = 1]LsmoothL1, (2)

where Lfocal is focal loss [15] for classification, LsmoothL1 is a smooth-L1 loss for
regression (as adopted in Faster R-CNN [29]), [y=1] is an indicator for positive
samples, and λv is a tuning parameter. As VE is trained on visible parts, its
prediction (i.e., A1) on visible parts is generally more confident and accurate
than detectors trained with occlusions.

Anchor Calibration (AC): After VE obtains confident visible-part anchors
A1, we propose a simple and effective anchor calibration C(·) to migrate visible-
part anchors toward full-body anchors A2, which are then passed to the next

phase for bull-body refinement. Briefly, PRNet updates anchors as: A0
Ev−−→A1

C−→
A2. Three are our motivations:
1. The aspect ratio of visible-part boxes is much more diverse than that of full-

body boxes [5, 39], making regression from visible-part to full-body boxes
rather challenging.

2. Adaptive anchor initialization can reduce unnecessary search space and lead
to better detection (e.g ., [3]), compared to most methods that use predefined
anchors (e.g ., [18, 39,41,42]).

3. The IoU discrepancy between visible-part anchors and full-body ground truth
boxes is large; proper calibration can significantly improve IoU.

Fig. 4 shows the distribution of IoU between ground truth full-body boxes
and visible-part boxes before/after Anchor Calibration (AC) in CityPersons
dataset [39]. The visible-part boxes before AC were taken from the annota-



Progressive Refinement Network for Occluded Pedestrian Detection 7

IoU Distribution

8 3
9 5

12
7

21
14

50

71

Fig. 4. IoU distribution be-
fore and after anchor cali-
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Fig. 5. Occlusion statistics from CityPersons [39] (left)
and Caltech [5] (right): (a) Occlusion statistics with
blue indicating occlusion; red indicates visible parts, (b)
Horizontal occlusions, (c) Vertical occlusions, (d) Non-
occlusion, (e) Others. Percentage (%) denotes the likeli-
hood of each occlusion pattern.

tions in the original dataset. As can be seen, calibration significantly shifts the
distribution toward higher IoU, e.g ., +21% for IoU in (0.8, 1.0], and thus can
help detectors approximate final full-body regions. In addition, AC addresses
discrepancy during anchor assignment between VE and FR, i.e., without AC, a
positive A1 could be assigned as a negative anchor for FR, making VE and FR
fail to complement each other.

To achieve AC, we first derive a statistical analysis of occlusion patterns on
two popular datasets CityPersons [39] and Caltech [5] using their standardized
0.41 box aspect ratio. Please see supplementary materials for detailed process.
Fig. 5 illustrates occlusion distribution over a full-body box and four occlusion
types (i.e., horizontal, vertical, non-occlusion, and others, similar to [40]) with
respective likelihood in each dataset. As can be seen in Fig. 5(a), over the two
datasets, the upper box is consistently visible (i.e., the head), with most occlu-
sions appearing in the lower box (i.e., the feet). This serves as strong evidence
for humans and PRNet to leverage visible parts for full-body detection.

Observing the occlusion statistics, we reach two types of anchor updates
according to the aspect ratio of A1, as depicted in Fig. 3(b). For the anchors
with ratio >0.41, we vertically stretch them downwards until 0.41 aspect ratio,
due to heads being frequently visible, as shown in Fig. 5(b) and [5]. Anchors with
ratio <0.41 are horizontally extended to 0.41 w.r.t. the center of A1, as they
likely involve vertical occlusion, as shown in Fig. 5(c). Anchors with 0.41 ratio
(i.e., Fig. 5(d)) remain unchanged. The anchor updates can also be rationalized
with human’s annotation protocol in CityPersons [39], where a full-body box is
generated by fitting a fixed-ratio (0.41) box onto a line drawn from head to feet.
According to Fig. 5(b)-(d), we justify the two simple updates can cover ∼97%
data in both datasets, while the remaining ∼3% is shown in Fig. 5(e).

Full-body Refinement (FR): With the calibrated anchors A2 from AC,
PRNet’s last phase trains a full-body refiner Ef (·) that refines the final full-
body localization. Similar to VE, FR also uses the same backbone, yet performs
training on a separate detection head. Different from VE that sees only visible
parts, FR starts to see hard positive samples whose anchor boxes are still far
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Fig. 6. Saliency maps highlighted by
the third FR phase: (a) w/o RFB and
(b) w/ RFB. “Shallow” indicates the
2nd layer, and “Deep” indicates the
3rd layer.

from ground truth full-body region. As LsmoothL1 in Eq. (2) treats every positive
sample equally, it could be less effective when dealing with hard samples in FR.
To encourage learning on hard positive samples, we weigh the regression loss
LsmoothL1 with an occlusion weight, which is defined as a reverse IoU between
A2 and ground truth full-body boxes Bgt. Given a ∈A2 and its corresponding
b∈Bgt, the weighted loss, termed as occlusion loss, can be rewritten as:

Locc =
∑
a∈A2

(1− IoU(a, b))
{

[|s| < 1] 0.5s2 + [|s| >= 1] (|s| − 0.5)
}
, (3)

where s is the difference between predicted offsets and ground truth offsets (see
[29] for details). The less overlap between the calibrated anchors A2 and Bgt,
the higher Locc is. As a result, the loss for FR becomes:

LFR = Lfocal + λf [y = 1]Locc. (4)

Despite of up-weighting hard positive anchors, another challenge in FR re-
gards training shallow layers, which often activate on visible parts or small-size
full-body regions due to limited receptive field. In every layer of FR, we intro-
duce a Receptive Field Backfeed (RFB) module to diversify receptive fields, as
depicted in Fig. 3(c). RFB aims to enlarge the receptive fields of shallower lay-
ers by back-feeding features from deeper layers to the previous layer with 2X
upsampling, and then summing up their feature maps in a pixelwise manner.

Fig. 6 shows the saliency maps [31] of the 2nd layer (denoted as “shallow”)
and the 3rd layer (i.e., “deep”) with/without the RFB module. As can be seen
in Fig. 6(a), without RFB, visible parts are identified in the shallow layer, while
the deeper layer emphasizes full-body regions. The effects of RFB can be clearly
observed in Fig. 6(b). In the shallow layer, RFB not only enhances visible parts
but also complements the full-body region. Similar observation can be made
on the deep layer, showing that RFB can propagate larger receptive fields to
shallower layers and help refine full-body detection.

3.2 Training & Inference

Training: In training, a batch of pedestrian images goes through the three
phases (i.e., VE, AC, and FR) sequentially–the first phase VE is trained inde-
pendently and then the first detection head is frozen to train FR. Fig. 2 illus-
trates the architecture and examples of pedestrian annotation. Given predefined
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anchors A0 and visible-part ground truth boxes associated to the image batch,
we first train VE with loss LV E in Eq. (2), and obtain visible-part anchors A1.
Then AC transforms A1 into more adaptive anchors A2, which better approx-
imates full-body regions. Finally, initialized with A2, FR is trained with loss
LFR in Eq. (4). Note that VE and FR use two different detection heads in one
single-stage detector, so they learn complementary outputs.

An anchor is assigned as positive if intersection-over-union (IoU) between an
anchor bbox and ground truth bbox is above a threshold θp, as negative if IoU
is lower than θn, and otherwise ignored during training. Note that VE and FR
adopt different annotation of boxes, i.e., VE consumes visible-part boxes, while
FR uses full-body boxes.

Inference: In inference, we obtain predicted anchor boxes from FR, and asso-
ciate anchor scores by multiplying the scores from VE and FR. The score fusion
provides complementary guidance so to improve detection robustness (similar
to [44]). We obtain the final bounding boxes B∗ by first filtering out candidate
anchor boxes with scores lower than 0.05 and then merging them with NMS (0.5
threshold is used here).

3.3 Comparisons with Related Work

The closest studies to PRNet are ALFNet [18] and Bi-box [44]. As most cas-
cade designs, ALFNet tackles successively the same task (FR→FR), which re-
quires occlusion patterns to be extensively illustrated in training data. Mimick-
ing human’s annotation process, PRNet exploits different tasks (VE→AC→FR),
starting from detecting only visible parts (regardless of occlusion patterns as in
full-body boxes), and thus relaxes training data requirements. Note that jointly
tackling different tasks is non-trivial. Instead, we interweave these tasks with
occlusion loss and the RFB module (Sec. 3.1) to up-weigh hard samples and
facilitate training for shallow layers. As can be seen in Sec. 4.4, PRNet achieved
impressive cross-dataset generalizability compared to ALFNet, showing that the
PRNet structure is more effective. Similar to ALFNet [18], PRNet enjoys com-
petitive inference time due to the use of a single-stage detector.

In terms of involving different tasks, Bi-box [44] also takes visible parts into
account but by training a two-branch detector for visible parts and full body in
the second stage of Faster R-CNN. During training, there is no interaction be-
tween the two branches, making their complementary benefits relatively indirect.
PRNet leverages the hybrid cascade structure to progressively refine predictions
from visible-part to full-body regions, providing adaptive anchor initialization
to achieve the final full-body estimation.

4 Experiments

4.1 Settings

Datasets: We conducted experiments on three public datasets: CityPersons [39],
ETH [8], and Caltech [5]. CityPersons [39] has high-res 2048×1024 images with
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Table 1. Ablations of three-phase
components and an alternative.

Architecture VE AC FR R HO

PRNet-F X 15.6 45.7
PRNet-VA X X 11.7 51.3
PRNet-VAF X X X 11.4 45.3

PRNet-VRF X reg X 12.6 44.7

Table 2. Ablations of occlusion loss and
the RFB module.

Architecture +Occ. +RFB R HO

PRNet-VAF 11.4 45.3
PRNet-VAF-OCC X 11.0 45.7
PRNet-VAF-RFB X 11.6 44.9
PRNet (ours) X X 10.8 42.0

visible-part and full-body annotations, where 2,975 images are for training and
500 for validation. We trained PRNet on the training set and reported perfor-
mance on the validation set in ablations and within-dataset experiments. To eval-
uate model generalizability, we performed cross-dataset analysis using ETH [8]
and Caltech [5]. ETH dataset [8] contains 11,941 labeled persons, providing a
benchmark in evaluating model’s robustness to occluded pedestrians. For Cal-
tech [5], we adopted published test set with 4,024 images with both old [5] and
new annotations [38]. Both ETH and Caltech have lower-res 640×480 images
that represent more cross-dataset challenges. Following [35, 40], we performed
training and evaluation on pedestrians with height larger than 50 pixels.

Metrics: Evaluation was reported on the standard MR−2 (%) [5], which
computes the log-average miss rate at 9 False Positive Per Image (FPPI). The
lower MR−2, the better. To ensure the results are directly comparable with the
literature, we represented each test set as 6 subsets according to visibility ratio of
each pedestrian. Specifically, we reported R (reasonable occlusion with visibility
in [0.65,1]), HO (heavy occlusion with [0.2, 0.65]), R+HO with [0.2, 1] from
Zhang et al [40], and Bare with [0.9, 1.0], Partial with [0.65, 0.9], and Heavy
with [0, 0.65] from [35]. To complement the visibility range covered by R and
HO, we added EO (extreme occlusion) to represent visibility in [0, 0.2].

Implementation details: We augmented our pedestrian images following
standard techniques [18,19]. When assigning labels to anchor boxes, θp =0.5 and
θn = 0.3 for VE, and θp = 0.7 and θn = 0.5 for FR. We set λv = 1 and λf = 4
empirically. The backbone ResNet-50 is pre-trained on ImageNet [4]. PRNet is
then fine-tuned with 160k iterations, a learning rate of 10−4, batch size 8 and
an Adam optimizer. All experiments were performed on 2 GTX 1080Ti GPUs.

4.2 Ablation Study

To analyze PRNet, we performed extensive ablations on CityPersons validation
set [39] using subsets of R (reasonable) and HO (heavy occlusion).

Three-phase components: To analyze the effect of PRNet’s three-phase
design, we performed ablation study on each phase without occlusion loss and
RFB module in FR. In Table 1, we trained a standalone FR (denoted as PRNet-
F) initialized by predefined full-body anchors. PRNet-VA used only VE+AC,
treating calibrated anchorsA2 as the detection outputs. PRNet-VAF employed
all three phases (VE+AC+FR), using calibrated anchors A2 to initialize FR.
Comparing PRNet-F and PRNet-VA, PRNet-VA performs 3.9 points better in



Progressive Refinement Network for Occluded Pedestrian Detection 11

R while 5.6 points worse in HO. This shows that plain calibrated anchors A2

in PRNet-VA can achieve better result while occlusion level is reasonable. In
contrast, PRNet-F better addressed heavy occlusions. PRNet-VAF combines the
benefits from both, showing a consistent improvement over both R and HO.
Please see supplementary for detection examples of the three-phase progression.

Anchor calibration vs. box regression: A possible alternative to AC
is a box regressor from the visible-part anchors A1 to full-body boxes. Here we
reused FR for the regression task. To perform a fair comparison, we implemented
PRNet-VRF by replacing AC with the regressor. Table 1 summarizes the re-
sults. As can be seen, PRNet-VAF consistently outperformed PRNet-VRF by
9.5% in R, showing no significant benefits of adding an extra box regressor. An
explanation can be that the visible boxes change rapidly due to various occlusion
types, and make the regressor hard to map the coordinates to full-body boxes
with relatively constant aspect ratio. Unlike a regression network that require
extra complexity and training efforts, AC provides a more generalizable strategy
that better fits into the proposed three-phase approach.

Occlusion loss and RFB: Table 2 studies PRNet w/ and w/o occlusion loss
and RFB module. PRNet-VAF was reused as the baseline that considers neither
occlusion loss nor RFB, and compared against PRNet-VAF-OCC (with only
occlusion loss) and PRNet-VAF-RFB (with only RFB). Including occlusion
loss alone, PRNet-VAF-OCC improved the baseline 0.4 points on R yet lowered
0.4 points on HO. This shows that occlusion loss improves detection with rea-
sonable occlusion (i.e., over 0.65 visibility), yet could be insufficient to address
heavy occlusion (i.e., 0.2 to 0.65 visibility). Including RFB alone, PRNet-VAF-
RFB improved the baseline 0.4 points on HO yet lowered 0.2 points on R. This
suggests that the feedback from RFB could supply full-body info by enlarging re-
ceptive field, and thus offers improvement when occlusion is severe. Otherwise,
when occlusion level is light, enlarging receptive field may introduce unneces-
sary context and hence slightly hurt. PRNet couples occlusion loss and RFB,
achieving significant improvement over R and especially HO.

4.3 Within-dataset Comparisons

This section compares PRNet in a within-dataset setting against 3 types of al-
ternatives: Occlusion-free, occlusion-aware, and closest to PRNet. We reported
MR−2 on all 6 subsets, where R is the major evaluation criteria in CityPer-
sons Challenge2. Table 3 shows comparisons with scale ×1 and ×1.3 of original
resolution (2048×1024).

Occlusion-free methods: Occlusion-free methods aim to detect pedestrians
without considering occlusion info. Adapted FasterRCNN [39] is an anchor-based
benchmark, while TLL+MRF [32] and CSP [19] are anchor-free. Among the
three methods, CSP achieved the state-of-the-art results without considering
occlusion, as summarized in Table 3. PRNet, on the other hand, takes occlusion
info into account, and provides performance gain over CSP on R, Partial, and

2
https://bitbucket.org/shanshanzhang/citypersons/

https://bitbucket.org/shanshanzhang/citypersons/
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Table 3. Comparisons on CityPersons [39]. Results of alternatives were obtained from
original paper. On scale×1, bracketed and bold numbers indicate the best and the
second best results, respectively. Inference time (sec) is measured on scale×1 images.

Method Occ. Scale R HO R+HO Heavy Partial Bare Time

Adapted
FasterRCNN [39]

×1 15.4 64.8 41.45 55.0 18.9 9.3 -

TLL+MRF [32] ×1 14.4 - - 52.0 15.9 9.2 -
CSP [19] ×1 11.0 - - [49.3] 10.4 7.3 0.33
FasterRCNN+ATT [40] X ×1 16.0 56.7 38.2 - - - -

×1 13.2 - - 56.9 16.8 7.6 -
RepLoss [35] X ×1.3 11.6 - - 55.3 14.8 7.0 -

OR-CNN [41] X
×1 12.8 - - 55.7 15.3 [6.7] -
×1.3 11.0 - - 51.3 13.7 5.9 -

MGAN [27] X ×1 11.3 [42.0] - - - - -
FRCN+A+DT [42] X ×1.3 11.1 44.3 - - 11.2 6.9 -
ALFNet [18] ×1 12.0 43.8 26.3 51.9 11.4 8.4 0.27
Bi-box [44] X ×1.3 11.2 44.2 - - - - -
PRNet (ours) X ×1 [10.8] [42.0] [25.6] 53.3 [10.0] 6.8 0.22

Bare subsets, but not the Heavy subset. One possible reason is because CSP
used box-free annotations, which is different from the original annotations and
might help reduce ground truth noises in heavily occluded cases.

Occlusion-aware methods: Occlusion-aware methods consider occlusion
information in training, including FasterRCNN+ATT [40], RepLoss [35], OR-
CNN [41], FRCN+A+DT [42], and MGAN [27]. Table 3 summarizes the results.
On the R subset (CityPersons’ evaluation criteria), occlusion-aware methods are
generally better than occlusion-free methods, except for CSP that used different
box-free annotations. In contrast, PRNet consistently achieved the best MR−2

of (10.8, 42.0, 25.6, 10.0) on (R, HO, R+HO, Partial) and compared favorably
with the best performer for Bare. The comparisons firmly validate PRNet’s ef-
fectiveness by dealing with occlusion using progressive refinement.

Closest alternatives: Closest to PRNet are ALFNet [18] and Bi-box [44]
per discussion in Sec. 3.3. We reported ALFNet results using the same settings
and the authors’ released code. We did not reproduce Bi-box due to lack of source
code. Regarding inference time, PRNet performed comparably with ALFNet, as
both methods are single-stage based. We infer that PRNet is substantially faster
than Bi-box due to the Faster-RCNN-like design in Bi-box (e.g ., 2-6X speedup
as demonstrated in [1, 18]). Compared to ALFNet and Bi-box, PRNet is also
preferred in detection performance because of better anchor initialization and
its ability to recover full-body region from confident visible parts. Due to space
constraint, please refer to supplementary for examples that are mis-detected
by alternative methods but successfully detected by PRNet. Observing the last
three rows in Table 3, PRNet consistently outperformed Bi-box and provided
performance gain upon ALFNet in all cases except for the Heavy subset.

Breakdowns in Heavy: In the Heavy subset, we noticed the occlusion-
aware methods, including PRNet, were less effective than occlusion-free methods
(e.g ., ALFNet). We performed an analysis by partitioning Heavy into HO and
EO, i.e., Heavy=HO ∪ EO. EO represents the most extreme occlusion with vis-
ibility in only [0, 0.2]. In HO, PRNet outperformed all other methods (e.g ., 1.8
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Table 4. Cross-dataset on ETH [8].

Method R+HO Time

FasterRCNN [39] 35.6 -
FasterRCNN+ATT [40] 33.8 -
CSP [19] 37.2 61.3
ALFNet [18] 31.1 39.2
PRNet (ours) [27.0] 42.1

Table 5. Cross-dataset results on Caltech [5].

Method R (o) R+HO (o) R (n) Time

ALFNet [18] 25.0 35.0 19.0 39.2
CSP [19] 20.0 [27.8] 11.7 61.3
PRNet (ours) [18.3] 28.4 [10.7] 42.1

points better than the state-of-the-art ALFNet), while being 1.4 points worse
than ALFNet in Heavy. We hypothesize that PRNet fails to compete against
ALFNet only in EO, and re-evaluated their performance on EO. Not surpris-
ingly, PRNet and ALFNet result in very high MR2 at 80.8 and 70.2 respec-
tively. Fig. 7 shows the distribution of visibility ratio and examples of EO from
CityPersons validation set. As can be seen, visible parts are barely visible and
sometimes very low-res, making it perceptually challenging even for human to
detect. Ground truth boxes by human annotators in EO can thus be noisy and
make performance comparisons on EO less meaningful. In addition, the propor-
tion of EO is relatively small. As shown in top-left of Fig. 7, less than 10% are
in EO and more than 90% belong to R and HO. These findings reveal that R
and HO render more realistic occlusion scenarios than EO. The above analyses
suggest the proposed PRNet achieved state-of-the-art performance.

4.4 Cross-dataset Generalization

To validate generalizability of the proposed method, we performed cross-dataset
experiments on ETH [8] and Caltech [5] datasets. For comparison, we picked
two top-performing methods, CSP [19] and ALFNet [18], where the models are
available from the authors’ GitHub release. For fair comparisons, PRNet was
also trained on CityPersons training set and shared the same pre-processing.

Table 4 shows ETH results on the R+HO as in [40]. For reference, we also
included numbers reported in the Faster-RCNN and FasterRCNN+ATT [40]
without reproducing their results. CSP and ALFNet showed surprising opposite
results comparing their performance within- and cross-dataset. In cross-dataset
setting, ALFNet outperformed CSP by 6.1 points (from 37.2 to 31.1), while CSP
reported consistently better performance in within-dataset setting (see Table 3).
On the contrary, our method achieved the state-of-the-art MR−2 on R+HO by
a significant margin. For Caltech [5], we reported R+HO and R using the old [5]
(denoted as “(o)”) and the new [38] annotations (denoted “(n)”), as summarized
in Table 5. PRNet consistently outperformed CSP and ALFNet in R using both
old and new annotations. On R+HO, PRNet performed comparably with CSP.

Rationale: PRNet’s gain is evident in cross-dataset settings for two major
reasons. One, PRNet’s progressive structure imitates human’s annotation pro-
cess, which formulates the principles humans have established for annotating
occluded pedestrians (e.g ., CityPersons, Caltech). PRNet mimics every step in
human’s principles, and thus fits the problem more naturally. Two, most methods
(e.g ., ALFNet) consider only full body detection, which demands training data
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Fig. 7. Distribution of visibility ratio on CityPersons (top left), and examples of Ex-
treme Occlusion (EO), such as partial head, arm, leg, and torso. Blue and green boxes
indicate visible parts and full-body boxes, respectively.

with various occlusions (e.g ., cars, trees, other pedestrians). When the occlusion
pattern is rare or unseen in training data (i.e., cross-dataset settings), such meth-
ods tend to perform less favorably. As shown in supplementary, ALFNet tends
to fire false positives on uncommon objects (e.g ., wheel, car windshield). On the
contrary, PRNet propagates detection from visible parts (regardless of occlusion
patterns as in full-body boxes), and thus provides better generalizability.

5 Conclusion

We have proposed PRNet, a novel one-stage approach for occluded pedestrian
detection. PRNet incorporates three phases (VE, AC, and FR) to evolve an-
chors toward full-body localization. We introduced an occlusion loss to encour-
age learning on hard samples, and an RFB module to diversify receptive fields
for shallow layers. We provided extensive ablation studies to justify the three-
phase design. Within-dataset experiments validated PRNet’s effectiveness with 6
occlusion scenarios. On cross-dataset settings, PRNet outperformed alternatives
on ETH and Caltech datasets by a noticeable margin. Analysis on extreme occlu-
sions provided insights behind metrics and suggested a more realistic choice for
evaluation. Potential extensions of PRNet include providing weak annotations
of visible parts for occluded pedestrian datasets.
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