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Abstract. Traffic signs are essential map features for smart cities and
navigation. To develop accurate and robust algorithms for traffic sign de-
tection and classification, a large-scale and diverse benchmark dataset is
required. In this paper, we introduce a new traffic sign dataset of 105K
street-level images around the world covering 400 manually annotated
traffic sign classes in diverse scenes, wide range of geographical loca-
tions, and varying weather and lighting conditions. The dataset includes
52K fully annotated images. Additionally, we show how to augment the
dataset with 53K semi-supervised, partially annotated images. This is
the largest and the most diverse traffic sign dataset consisting of im-
ages from all over the world with fine-grained annotations of traffic sign
classes. We run extensive experiments to establish strong baselines for
both detection and classification tasks. In addition, we verify that the
diversity of this dataset enables effective transfer learning for existing
large-scale benchmark datasets on traffic sign detection and classifica-
tion. The dataset is freely available for academic research1.

1 Introduction

Robust and accurate object detection and classification in diverse scenes is one
of the essential tasks in computer vision. With the development and application
of deep learning in computer vision, object detection and recognition has been
studied [5,17,24] extensively on general scene understanding datasets [4,11,18].
In terms of fine-grained detection and classification, there are also datasets that
focus on general hierarchical object classes [11] or domain-specific datasets, e.g .
on bird species [32]. In this paper, we will focus on detection and fine-grained
classification of traffic signs on a new dataset.

Traffic signs are key map features for navigation, road safety and traffic
control. More specifically, traffic signs encode information for driving directions,
traffic regulation, and early warning. Accurate and robust perception of traffic
signs is also essential for localization and motion planning in different driving
scenarios.

As an object class, traffic signs have specific characteristics in their appear-
ance. First of all, traffic signs are in general rigid and planar. Secondly, traffic

1www.mapillary.com/dataset/trafficsign

www.mapillary.com/dataset/trafficsign
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Table 1. Overview of traffic sign datasets. The numbers include only publicly available
images and annotations. Unique refers to datasets where each traffic sign bounding
box corresponds to a unique traffic sign instance (i.e. no sequences showing the same
physical sign). ∗70,428/17,666 (train-val/test) signs are within the taxonomy. ∗∗ All
includes train, val, test, and partial (semi) sets. †TT100K provides only 10,000 images
containing traffic signs. ‖45 classes have more than 100 examples. ¶MVD contains
back vs. front classes. ‡video-frames covering only 15,630 unique signs. §signs within
the partially annotated set correspond to physical signs within the training set

Dataset Images Classes Signs Attributes Region Boxes Unique

MTSD (train/val)

MTSD (test)

MTSD (all)
∗∗

41,909
10,544

105,830
400

∗206,386
∗51,155
354,154

occluded, exterior,
out-of-frame, dummy,
ambiguous, included

global
3

3

3

3

3
§7

TT100K [35] †100,000 ‖221 26,349 7 China 3 3

MVD [22] 20,000 ¶2 174,541 7 global 3 3

BDD100K [34] 100,000 1 343,777 7 USA 3 7

GTSDB [10] 900 43 852 7 Germany 3 7

RTSD [26] ‡179,138 156 ‡104,358 7 Russia 3 7

STS [13] 3777 20 5582 7 Sweden 3 7

LISA [21] 6610 47 7855 7 USA 3 7

GTSRB [29] 7 43 39,210 7 Germany 7 7

BelgiumTS [31] 7 108 8851 7 Belgium 7 7

signs are designed to be distinctive from their surroundings. In addition, there is
limited variety in colors and shapes for traffic signs. For instance, regulatory signs
in European countries are typically circular with a red border. To some degree,
the aforementioned characteristics limit the appearance variation and increase
the distinctness of traffic signs. However, traffic sign detection and classifica-
tion are still very challenging problems due to the following reasons: (1) traffic
signs are easily confused with other object classes in street scenes (e.g . advertise-
ments, banners, and billboards); (2) reflection, low light condition, damages, and
occlusion hinder the classification performance of a sign class; (3) fine-grained
classification with small inter-class difference is not trivial; (4) the majority of
traffic signs—when appearing in street-level images—are relatively small in size,
which requires efficient architecture designs for small objects.

Traffic sign detection and classification have been studied extensively in com-
puter vision [14,20,25,35]. However, these studies were done in relatively con-
strained settings in terms of the benchmark dataset: the images and traffic signs
are collected in a specific country; the number of traffic sign classes is relatively
small; the images lack diversity in weather conditions, camera sensors, and sea-
sonal changes. Extensive research is still needed for detecting and classifying
traffic signs at a global scale and under varying capture conditions and devices.

The contributions of this paper are manifold:

– We present the most diverse traffic sign dataset with 105K images from
all over the world. The dataset contains over 52K fully annotated images,
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Fig. 1. Top: Taxonomy overview. The sizes are relative to the number of samples within
MTSD. Bottom: Example images in MTSD with bounding box and class annotations
(green boxes without template indicate other-sign).

covering 400 known traffic sign classes and other unknown classes, resulting
in over 255K signs in total.

– Without introducing any additional annotation cost, we show how to aug-
ment the dataset with real semi-supervised samples by propagating
labels to nearby images which helps to get more samples, especially in the
long-tail of the class distribution. The dataset includes about 53K extra
images collected in this way.

– We establish extensive baselines for detection and classification on the
dataset, shedding light on future research directions.

– We study the impact of transfer learning using our traffic sign dataset
and other datasets released in the past. We show that pre-training on our
dataset boosts average precision (AP) of the binary detection task by 4–
6 points, thanks to the completeness and diversity of our dataset.

Related Work. Traffic sign detection and recognition has been studied exten-
sively in the previous literature. The German Traffic Sign Benchmark Dataset
(GTSBD) [30] is one of the first datasets that was created to evaluate the clas-
sification branch of the problem. Following that, there have also been other
traffic sign datasets focusing on regional traffic signs, e.g . Swedish Traffic Sign
Dataset [12], Belgium Traffic Sign Dataset [20], Russian Traffic Sign Dataset [26],
and Tsinghua-Tencent Dataset (TT100K) in China [35]. For generic traffic sign
detection (where no class information of the traffic signs is available), there
has been work done in the Mapillary Vistas Dataset (MVD) [22] (global) and
BDD100K [34] (US only). A detailed overview and comparison of publicly avail-
able traffic sign datasets can be found in Table 1.

For general object detection, there has been substantial work on CNN-based
methods with two main directions, i.e. one-stage detectors [17,19,23] and two-
stage detectors [3,5,6,24]. One-stage detectors are generally much faster, trading
off accuracy compared to two-stage detectors. One exception is the one-stage
RetinaNet [17] architecture that outperforms the two-stage Faster-RCNN [24]
thanks to a weighting scheme during training to suppress trivial negative su-
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pervision. For simultaneous detection and classification, recent work [2] shows
that decoupling the classification from detection head boosts the accuracy sig-
nificantly. Our work is related to [2] as we also decouple the detector from the
traffic sign classifier.

To handle the scale variation of objects in the scene, many efficient multi-scale
training and inference algorithms have been proposed and evaluated on existing
datasets. For multi-scale training, in [15,27,28], a few schemes have been pro-
posed to distill supervision from different scales efficiently by selective gradient
propagation and crop generation. To enable efficient multi-scale inference, fea-
ture pyramid networks (FPN) [16] were proposed to utilize lateral connections
in a top-down architecture to construct an effective multi-scale feature pyramid
from a single image.

To develop the baselines presented in this paper, we have chosen Faster-
RCNN [24] with FPN [16] as the backbone. Given the aforementioned charac-
teristics of traffic sign imagery, we have also trained a separate classifier for
fine-grained classification as in [2]. We elaborate on the details of our baseline
methods in Section 4 and Section 5.

2 Mapillary Traffic Sign Dataset

In this section, we present a large-scale traffic sign dataset called Mapillary2

Traffic Sign Dataset (MTSD) including 52K images with 257K fully annotated
traffic sign bounding boxes and corresponding class labels. Additionally, it in-
cludes a set of over 53K nearby images with more than 84K semi-supervised
class labels, making it more than 105K images. In the following we describe how
the dataset was created and present our traffic sign class taxonomy consisting
of 400 classes. Examples can be found in Figure 1 (bottom).

2.1 Image Selection

There are various conventions for traffic signs in different parts of the world
leading to strong appearance differences. Even within a single country, the dis-
tribution of signs is not uniform: some signs occur only in urban areas, some
only on highways, and others only in rural areas. With MTSD, we present a
dataset that covers this diversity uniformly. In order to do so, a proper pre-
selection of images for annotation is crucial. The requirements for this selection
step are: (1) to have a uniform geographical distribution of images around the
world, (2) to cover images of different quality, captured under varying conditions,
(3) to include as many signs as possible per image, and (4) to compensate for
the long-tailed distribution of potential traffic sign classes.

In order to get a pool of pre-selected images satisfying the aforementioned
requirements, we sample images in a per-country manner. The fraction of target

2www.mapillary.com/app is a street-level imagery platform hosting images collected
by members of their community.

www.mapillary.com/app
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images for each country is derived from the number of images available in that
country and its population count weighted by a global target distribution over
all continents (i.e. 20 % North America, 20 % Europe, 20 % Asia, 15 % South
America, 15 % Oceania, 10 % Africa). We further make sure to cover both rural
and urban areas within each country by binning the sampled images uniformly
in terms of their geographical locations and sample random images from each of
the resulting bins. In the last step of our image sampling scheme, we prioritize
images containing at least one traffic sign instance according to the traffic sign
detections given by the Mapillary API and make sure to cover various image
resolutions, camera manufacturers, and scene properties3. Additionally, we add
a distance constraint so that selected images are far away from each other in
order to avoid highly correlated images and traffic sign instances. Statistics of
the dataset can be found in Section 3.

2.2 Traffic Sign Class Taxonomy

Traffic signs vary across different countries. For many countries, there exists no
publicly available and complete catalogue of signs. The lack of a known set of
traffic sign classes leads to challenges in assigning class labels to traffic signs
annotated in MTSD. The potential magnitude of this unknown set of traffic
signs is in the thousands as indicated by the set of template images described in
Section 2.3.

For MTSD, we did a manual inspection of the templates that have been
chosen by the annotators and selected a subset of them to form the final set of
400 classes included in the dataset as visualized in Figure 1 (top). This subset
was chosen and grouped such that there are no overlaps or confusions (visual or
semantic) among the classes. All these classes defined by disjoint sets of templates
build up our traffic sign class taxonomy. We map all annotated traffic signs in
MTSD that have a template selected within this taxonomy to a class label. We
would like to emphasize that our flexible taxonomy allows us to incrementally
extend MTSD. It enables to add more classes by grouping templates to new
classes and mapping traffic sign instances to these new classes based on already
assigned templates.

2.3 Annotation Process

The process of annotating an image including image selection approval, traffic
sign localization by drawing bounding boxes, and class label assignment for each
box is a complex and demanding task. To improve efficiency and quality, we split
it into 3 consecutive tasks, with each having its own quality assurance process.
All tasks were done by 15 experts in image annotation after being trained with
explicit specifications for each task.

3Details on how scene properties are defined and derived are included in the sup-
plementary materials.
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Image Approval. Since initial image selection was done automatically based
on the heuristics described in Section 2.1, the annotators needed to reject images
that did not fulfill our criteria. In particular, we do not include non-street-
level images or images that have been taken from unusual places or viewpoints.
Further we discarded images of very low quality that could not be used for
training (i.e. extremely blurry or overexposed). However, we still sample images
of low quality in the dataset which include recognizable traffic signs as these are
good examples to evaluate recognition of traffic signs in real-world scenarios.
Sign Localization. In this task, the annotators were instructed to localize all
traffic signs in the images and annotate them with bounding boxes. In contrast
to previous traffic sign datasets where only specific types of traffic signs have
been annotated (e.g . TT100K [35] includes only standard circular and triangular
shaped signs), MTSD contains bounding boxes for all types of traffic related signs
including direction, information, highway signs, etc.

To speed up the annotation process, each image was initialized with bounding
boxes of traffic signs extracted from the Mapillary API. The annotators were
asked to correct all existing bounding boxes to tightly contain the signs (or reject
them in cases of false positives) and to annotate all missing traffic signs if their
shorter sides were larger than 10 pixels. We provide a statistical analysis of the
manual interactions of the annotators in supplemental material.
Sign Classification. This task was done independently for each annotated
traffic sign. Each traffic sign (together with some image context) was shown
to the annotators who were asked to provide the correct class label. This is
not trivial, since the number of traffic sign classes is large. To the best of our
knowledge, there is no globally valid traffic sign taxonomy available; even then,
it would be impossible for the annotators to keep track of the different traffic
sign classes.

To overcome this issue, we used a set of previously harvested template images
of traffic signs from Wikimedia Commons [33] and grouped them by similarity
in appearance and semantics. This set of templates (together with their group-
ing) defines the possible set of traffic sign classes that can be selected by the
annotators. In fact, we store an identifier of the actual selected template which
allows us to link the traffic sign instances to our flexible traffic sign taxonomy
without even knowing the final set of classes beforehand (see Section 2.2).

Since it would still be too time-consuming to scroll through the entire list
of templates to choose the correct one out of thousands, we trained a neural
network to learn an embedding space (with the grouped template images) which
is predicting the similarities between an arbitrary image of a traffic sign instance
and the templates. We used this proposal network to assist the annotators in
choosing the correct template by pre-sorting the template list for each individual
traffic sign.

Specifically, we use a metric learning approach [1] to train a 3-layer network
(similar to but shallower than the baseline classification network mentioned in
Section 5) to learn a function f(x) : Rd → Rk that maps a d-dimensional input
vector to a k-dimensional embedding space. In our case, x are input images
encoded as vectors of size d = 40 × 40 × 3 and k = 128. We train the network
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with a contrastive loss [7] such that the cosine similarity

sim(x1, x2) =
xT
1x2

‖x1‖2 ‖x2‖2
(1)

between two embedding vectors x1 and x2 with group labels ŷ1, ŷ2 should be
high if the samples are within the same template group, whereas the similarity
should be lower than a margin m if the samples are from different groups:

L =

{
1− sim(x1, x2), if ŷ1 = ŷ2

max [0, sim(x1, x2)−m] else
. (2)

We choose m = 0.2 and train the network using a generated training set by
blending our traffic sign templates to random background images after scaling,
rotating and sheering it by a reasonable amount.

For cases in which this strategy fails to provide a matching template, we
provided a text-based search for templates. For details about the annotation UI,
we refer to the supplemental material.
Additional Attributes. In addition to bounding boxes and the matching traf-
fic sign templates, the annotators were asked to provide additional attributes:
occluded if the sign is partly occluded; ambiguous if the sign is not classifiable at
all (e.g . too small, of bad quality, heavily occluded etc.); dummy if it looks like a
sign but is not (e.g . car stickers, reflections, etc.); out-of-frame if the sign is cut
off by the image border; included if the sign is part of another bigger sign; and
exterior if the sign includes other signs. Some of these attributes were assigned
during localization (if context information is needed). The rest was assigned
during classification.
Annotation Quality. All annotations in MTSD were done by expert annota-
tors going through a thorough training process. Their work was monitored by
a continuous quality control (QC) process to quickly identify problems during
annotation. Moreover, our step-wise annotation process (i.e. approval followed
by localization followed by classification) ensures that each traffic sign was seen
by at least two annotators. The second annotator operating in the classification
step was able to reject false positive signs or to report issues with the bounding
box in which case the containing image was sent back to the localization step.

In additional quality assurance (QA) experiments done by a 2nd annotator on
5K images including 26K traffic signs, we found that (1) only 0.5 % of bounding
boxes needed correction; (2) the false negative rate was 0.89 % (corresponding to
a total number of only 212 missing signs, most of them being very small); (3) the
false positive rate was at 2.45 %. Note that this is in the localization step before
classification, where a second annotator has been asked to classify the sign and
could potentially fix false positives.

2.4 Partial Annotations

In addition to the fully-annotated images, we provide another set of images
with partially annotated bounding boxes and semi-supervised class labels. Given
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Fig. 2. Example from the partially annotated set. The leftmost image is from the fully
annotated set. The 3 other images show the same sign from different perspectives in
the partial set with propagated class labels. Best viewed zoomed in and in color.

the fully-annotated images, the annotations of this set of images are generated
automatically in a semi-supervised way.

We achieve this by finding correspondences between the manual annotations
in the fully-annotated images and automatic detections in geographically neigh-
boring images from the Mapillary API. To find these correspondences, we first
use Structure from Motion (SfM) [8] to recover the relative camera poses between
the fully-annotated images and the partially annotated images. With these es-
timated relative poses, we find correspondences between annotated signs and
automatically detected signs by triangulating and verifying the re-projection er-
rors for the centers of the bounding boxes between multiple images. Having these
correspondences, we propagate the manually annotated class labels to the auto-
matic detections in the partially annotated images. Since there is no guarantee
that all traffic signs are detected through Mapillary’s platform, this results in a
set of images with partially annotated bounding box annotations. Note that, for
unbiased evaluation, we ensure that the extension is done only in the geograph-
ical neighborhood of images in the training set (based on the split discussed in
Section 2.5). Example images can be found in Figure 2 and the effect on the
class distribution in Figure 3 (top/right). A more detailed description of how
this set was created can be found in supplemental material.

2.5 Dataset Splits

As common practice with other datasets such as COCO [18], MVD [22] and
PASCAL VOC [4], we split MTSD into training, validation and test sets, con-
sisting of 36,589, 5320, and 10,544 images, respectively. We provide the image
data for all sets as well as the annotations for the training and validation set;
the annotations for the test set will not be released in order to ensure a fair eval-
uation. Additionally, we provide a set of 53,377 images with partial annotations
as discussed in Section 2.4 for training as well.

Each split is created in a way to match the distributions described in Sec-
tion 2.1. Especially, we ensure that the distribution of class instances is similar for
each split, to avoid rare classes being under-represented in the smaller sets (i.e.
validation/test sets). The same holds true for the additional sign attributes (e.g .
ambiguous, etc.).
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3 Statistics

In this section, we provide image and traffic sign statistics of MTSD and compare
with previous datasets (TT100K [35] and MVD [22]). Unless stated otherwise,
all numbers refer to the fully-supervised set of MTSD only.

3.1 Image Properties

For a dataset to reflect a real-world image capturing setting with diverse geo-
graphical distribution, the image selection strategy described in Section 2.1 used
for MTSD ensures a good distribution over different capturing settings.

Camera Sensors. In Figure 3 (top/left), we show the distribution of camera
manufacturers used for capturing the images of MTSD. In total, the dataset cov-
ers over 200 different sensor manufacturers (we group the tail of the distribution
for displaying purposes) which results in a large variety of image properties sim-
ilar to the properties described in [22]. This is in contrast to the setup used for
TT100K [35] which contains only images taken by a single sensor setup, making
MTSD more challenging in comparison.
Image Sizes. The diversity in camera sensors further results in a diverse distri-
bution over image resolutions as shown in Figure 3 (bottom/left). MTSD covers
a broad range of image sizes starting from low-resolution images with 1 MPixels
going up to images of more than 16 MPixels. Additionally, we include 1138 360-
degree panoramas stored as standard images with equi-rectangular projection.
Besides the overall larger image volume compared to other datasets, MTSD also
covers a larger fraction of low-resolution images, which is especially interesting
for pre-training and validating detectors applied on similar sensors, e.g . built-in
automotive cameras. For comparison, TT100K only contains images of 20482 px
and even for this resolution the volume of images is smaller than in MTSD.
Geographical Distribution. The heat map in the middle of Figure 3 (top)
shows the resulting geographical distribution of the images, covering almost all
habitable areas of the world with higher density in populous areas.
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Fig. 4. Results from our detection and classification baseline on the validation set
(green colored: true positive, red: missing detections).

3.2 Traffic Sign Properties

The fully-annotated set of MTSD includes a total number of 257,541 traffic
sign bounding boxes out of which more than 88K have a class label within our
taxonomy covering 400 different traffic sign classes. The remaining traffic signs
sum up as ambiguous signs, directional signs, information signs, highway shields,
exterior signs, barrier signs, and other signs that do not fall into our taxonomy.

Class Distribution. The right plot in Figure 3 (top) shows a comparison of
the traffic sign class distribution between MTSD and TT100K. Note that MVD
is not included here since it does not have labels of traffic sign classes. MTSD
has approximately twice as many traffic sign classes as TT100K; if we use the
definition of a trainable class in [35] (which are classes with at least 100 traffic
sign instances within the dataset) this factor increases to approximately 3 be-
tween TT100K and MTSD. This difference gets even higher if we consider the
instances from the partially annotated set of MTSD.
Sign Sizes. The plot in the middle of Figure 3 (bottom) compares the areas of
signs in terms of pixels in the original resolution of the containing image. MTSD
covers a broad range of traffic sign sizes with an almost uniform distribution
up to 2562 px. MVD has a similar distribution with a lower overall volume. In
comparison to TT100K, MTSD provides a higher fraction of extreme sizes which
poses another challenge for traffic sign detection.
Signs per Image. Finally, the plot on the right of Figure 3 (bottom) shows
the distribution of images over the number of signs within the image. Besides
the higher volume of images, MTSD contains a larger fraction of images with
a large number of traffic sign instances (i.e. > 12). One reason for this is that
the annotations in MTSD cover all types of traffic signs, whereas TT100K only
contains annotations for very specific types of traffic signs in China.

4 Traffic Sign Detection

One task defined on MTSD is binary detection of traffic signs, i.e. localization
without inferring specific class labels. The goal is to predict a set of axis-aligned
bounding boxes with corresponding confidence scores for each image.

Metrics. Given a set of detections with estimated scores for each image, we
first compute the matching between the detections and annotated ground truth
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within each image separately. A detection can be successfully matched to a
ground truth if their Jaccard overlap (IoU) [4] is > 0.5; if multiple detections
match the same ground truth, only the detection with the highest score is a
match while the rest is not (double detections); each detection will only be
matched to one ground truth bounding box with the highest overlap.

Having this matching indicator (TP vs. FP) for every detection, we define
average precision (AP) similar to COCO [18] (i.e. APIoU=0.5 which resembles AP
definition of PASCAL VOC [4]). Specifically, we compute precision as a function
of recall by sorting the matching indicators by their corresponding detection
confidence scores in descending order and accumulate the number of TPs and
FPs. AP is defined as the area under the curve of this step function. Additionally,
we follow [18] and compute AP in different scales: APs, APm, and APl refer to
AP computed for boxes with area a < 322, 322 < a < 962, and a > 962.
Baseline and Results. In Table 2, we show experimental results using a Faster
R-CNN based detector [24] with FPN [16] and residual networks [9] as the back-
bone. During training we randomly sample crops of size 1000 × 1000 at full
resolution instead of down-scaling the image to avoid vanishing of small traffic
signs, as traffic signs can be very small in terms of pixels and MTSD covers traffic
signs from a broad range of scales in different image resolutions. We use a batch
size of 16, distributed over 4 GPUs for FPN50 models; for FPN101 models, we
use batches of size 8. Unless stated otherwise, we train using stochastic gradi-
ent descent (SGD) with an initial learning rate of 10−2 and lower the learning
rate when the validation error plateaus. For inference, we down-scale the input
images such that their larger side does not exceed a certain number of pixels
(either 2048 px or 4000 px) or operate on full resolution if the original image is
smaller.

Besides training on MTSD, we conduct transfer-learning experiments on
TT100K and MVD4 to test the generalization properties of the proposed dataset.
We use the same baseline as for the MTSD experiments and train it on both
datasets, one with ImageNet initialization and one with MTSD initialization.
The models trained with ImageNet initialization are trained to convergence.
To ensure a fair comparison, we fine-tune only for half the number of epochs
when initializing with MTSD weights. The results in Table 2 show that MTSD
pre-training boosts detection performance by a large margin on both datasets,
regardless of the input resolution. This is a clear indication for the generalization
qualities of MTSD.

5 Simultaneous Detection and Classification

The second task on MTSD is simultaneous detection and classification of traffic
signs, i.e. multi-class detection. It extends the detection task to demand a class

4We convert the segmentations of traffic-sign–front instances to bounding boxes by
taking the minimum and maximum in the x, y axes. Note that this conversion can be
inaccurate if signs are occluded.
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Table 2. Detection baseline results on MTSD, TT100K and MVD.Numbers in brack-
ets refer to absolute improvements when pre-training on MTSD in comparison to Im-
ageNet. ∗[35] using multi-scale inference with scales 0.5, 1, 2, and 4

Max 4000px Max 2048px

AP APs APm APl AP APs APm APl

MTSD

FPN50 ours 87.84 72.91 91.88 93.54 80.08 52.12 88.81 94.72
FPN101 ours 88.38 73.89 92.10 93.69 81.65 56.32 89.18 94.80

TT100K

multi-scale∗ 91.79 84.56 96.40 92.60 - - - -

FPN50 ours - - - - 91.27 84.01 95.87 90.13
+ MTSD - - - - 97.60 (+6.33) 93.13 99.03 98.44

MVD (traffic signs)

FPN50 ours 72.90 46.60 79.93 85.42 64.00 30.70 75.28 86.50
+ MTSD 76.31 (+3.41) 51.00 83.49 88.33 68.29 33.60 79.45 89.53

label for each traffic sign instance within our taxonomy. For instances that do
not have a label within our taxonomy, we introduce a general class other-sign.

Metric. The metric for this task is mean average precision (mAP) over all
400 classes; per-class AP is calculated as described in Section 4. The matching
between predicted and ground truth boxes is done in a binary way by ignoring
the class label. After that, we filter out all other-sign ground truth instances and
detections since we do not want to evaluate on this general class.
Baseline. A trivial baseline for this task would be to extend the binary de-
tection baseline from Section 4 to the multi-class setting by adding a 401-way
classification head. However, preliminary experiments showed that a straight-
forward training of such a model does not yield acceptable performance. We
hypothesize that this is due to (1) scale issues for small signs before RoI pooling
and, (2) under-represented class variation within the training batches given that
the majority of traffic sign instances are other-sign.

To overcome the scale issue and to have better control over batch statistics
during training, we opted for a two-stage architecture that uses our binary de-
tectors in the first stage and a decoupled shallow classification network in the
second stage. Such decoupling has been shown to improve detection and recogni-
tion accuracy [2]. The classification network consists of seven 3× 3 convolutions
(each followed by batch normalization) with 2 × 2 max-pooling layers after the
2nd and 6th convolution layer. We start with 32 features in the first layer and
double this number after each pooling layer. The last convolution is followed by
spatial average pooling and a fully-connected layer with 256 features resulting in
a 401-way classification head with softmax activation (400 and other-sign) and
a single sigmoid activation for foreground/background classification.

We use image crops predicted by the detector (both foreground and back-
ground) together with crops from the ground truth scaled to 40× 40 px as input
and optimize the network using cross-entropy loss. To balance the distribution
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Table 3. Simultaneous detection and classification results. + det/cls MTSD refer to
MTSD pre-training of detection/classification models. The numbers in brackets are
absolute improvements over [35]

mAP mAPs mAPm mAPl

MTSD

FPN50 ours 81.7 73.0 84.1 84.2
FPN101 ours 81.8 74.4 84.4 84.9

TT100K

multi-scale 81.6 68.3 86.5 85.7

FPN50 ours 89.9 (+8.3) 83.9 93.0 84.3
+ det MTSD 93.4 (+11.8) 88.2 94.8 93.6
+ cls MTSD 95.7 (+14.1) 91.3 96.9 96.7

of traffic sign classes in a batch, we uniformly sample 100 classes with 4 samples
each and add another 100 background crops per batch. We train the network
with SGD for 50 epochs starting with a learning rate of 10−3 lowered by a factor
of 0.1 after 30 and 40 epochs.
Results. We show results of our baseline in Table 3. Our classifier with FPN101
binary detector reaches 81.8 mAP over all 400 classes. Figure 4 shows visual
examples of our baseline’s predictions and Figure 5 (left) shows typical failure
cases of the classification network.

To verify our baseline, we train with the same setup on TT100K and compare
the results with the baseline in [35]5. Our two-stage approach outperforms their
baseline by 8.3 points, even though the performances of the binary detectors are
similar (see Table 2). This validates that the decoupled classifier, even with a
shallow network, is able to yield good results. The accuracy is further improved
when we pre-train the classifier and the detector on MTSD and then fine-tune
them on TT100K, which further validates the generalization effectiveness of
MTSD.

6 Classification with Partial Annotations

To evaluate the quality and existence of complementary information in our par-
tially annotated, semi-supervised training set, we conduct classification exper-
iments with and without the additional traffic sign samples and evaluate the
performance on 53.3K traffic sign crops (17.6K of the MTSD test set + 35.7K
additional crops). After 14 independent trainings for each data configuration,
we found a consistent improvement of 0.6 points in terms of mean class accuracy
(standard deviation of multiple trainings is shown in Figure 5 (right). However,
major improvements can be found in the long-tail of the class distribution where
we have limited numbers of fully-supervised annotations. Figure 5 (right) shows

5We convert their results to the format used by MTSD and evaluate using our
metrics.
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Fig. 5. Left: Failure cases of the classification network on MTSD. Right: Evaluation of
the semi-supervised training set with varying number of classes. Reporting mean/std
of multiple trainings.

mean class accuracy over varying number of classes where classes are added start-
ing from the long-tail of the original class distribution. We can see a consistent
gain of 1–4 points for the long-tail up to the first 100 classes. The gain decreases
but is still noticeable when we add more classes that are well represented in the
fully-supervised training set.

This shows the value of our partially annotated set as a straightforward way
to augment existing datasets to better represent the long-tail of classes without
introducing additional labeling costs. We want to point out that this method is
a continuous data source for additional training data as it can be repeated as
often as new nearby images become available.

7 Conclusion

In this work, we introduce MTSD, a large-scale traffic sign benchmark dataset
that includes 105K images with full and partial bounding-box annotations, cov-
ering 400 traffic sign classes from all over the world. MTSD is the most diverse
traffic sign benchmark dataset in terms of geographical locations, scene charac-
teristics, and traffic sign classes. We show in baseline experiments that decou-
pling detection and fine-grained classification yields superior results on previous
traffic sign datasets. Additionally, in transfer-learning experiments, we show that
MTSD facilitates fine-tuning and improves accuracy substantially for traffic sign
datasets in a narrow domain.

We see MTSD as the first step to drive the research efforts towards solving
fine-grained traffic sign detection and classification at a global scale. With the
partial annotated set, we show a new scalable way to collect additional training
images without the need of extra manual annotation work. Moreover, we also
see it paving the way for further research in semi-supervised learning in both
classification and detection. In the future, we would like to extend MTSD towards
a complete traffic sign taxonomy globally. To achieve this, we see the potential
of applying zero-shot learning to efficiently model the semantic and appearance
attributes of traffic sign classes.
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