
Supplementary Material
Measuring Generalisation to Unseen Viewpoints,
Articulations, Shapes and Objects for 3D Hand
Pose Estimation under Hand-Object Interaction

1 Introduction

In this document, we provide the reader with more analyses of the evaluated
approaches in the main paper and the experiments conducted specifically for
some participating methods.

To give more insights to the readers, Fig. 1 shows different level of errors for
a given test image on the mean joint errors (MJE) in mm when projected on the
2D image. We also provide an overview of the approaches used in the main paper
in Tables 1, 2 and 3. Later, we present qualitative results from the approaches
on each task in Figures 2, 3 and 4.

Furthermore, this document provides more experimental results in Section 2,
conducted by the participated approaches based on different backbone architec-
tures and similarly, Section 3 shows experimental evaluation on the ensembling
techniques in pre-processing, post-processing and methodological level.

Frame success rate analysis with additional approaches are also presented in
Section 4 and followed by the analysis in Section 5 on joint success rates.

Section 6 shows analysis of the methods based on the structured test set for
seen/unseen viewpoints, articulations, shapes and objects. Please refer to Fig. 6,
7 and 8 of the main paper for the error visualizations. These accuracies are also
more meaningful when we refer to the training and test data distribution in Fig.
4 of the main paper.

Fig. 1: Visualization of ground-truth hand pose and poses with varying level
of MJEs, < 5mm, < 10mm, < 20mm, < 30mm, < 40mm, < 60mm. More
specifically, MJE (mm) of the visualized poses are 1.75, 6.88, 13.94, 15.32, 35.67,
52.15, respectively. Best viewed in color.
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Table 1: Task 1 - Methods’ Overview
Username Description Input Pre-processing Post-processing Synthetic Data Backbone Loss Optimizer

Rokid [22]
2D CNN

joint regression

Depth

224×224

Initial pose

est. to crop
7

570K Synthetic

+ Mixed Synthetic
EfficientNet-b0 [16] Wing [1] Adamax

A2J [18]

2D CNN, offset + depth

regression with anchor

points and weighting

Depth

384×384
Bbox crop

Scale+rotation,

10 backbone

models ensemble

7 ResNet-152 Smooth L1 Adam

AWR [5]

2D CNN, dense direction

& offset rep.

Learnable adaptive weighting

Depth

256 × 256 segm.

128 × 128 pose est.

Bbox crop

ESPNet-v2 [7]

for binary segm.

iter. refinement of CoM

Ensemble

from 5 models
7

ResNet-50&101

SRN [9]

HRNet [14]

Smooth L1 Adam

NTIS [8]

3D CNN

Deeper V2V-PoseNet [8]

Weighted sub-voxel

prediction

Voxels

88×88 × 88

Multi-scale

CoM refinement

hand cropping

Models from

6 training epochs

N confident

sub-voxel pred.

Truncated SVD refinement

7 V2V-PoseNet L2 RMSProp

Strawberryfg

Integral Pose

Regression [15]

3D supervision

voxels +volume rendering

Depth image 256 × 256

3D point proj.

Multi-layer depth

Voxels

Coarse-to-fine

hand cropping

by thresholding

7 7 ResNet-50 L1 RMSProb

BT [6]

3D supervision

with cloud reconst.

Permutation invariant [6]

Point-to-pose +

point-to-latent voting.

Point cloud

512 3D vectors
View correction [6] 7 7

ResPel [6]

for feat. extract

FoldingNet [20]

for reconstruction

L2

Chamfer and EMD

KL constraint

Adam

Table 2: Task 2 - Methods’ Overview
Username Description Input Pre-processing Post-processing Synthetic Data Backbone Loss Optimizer

NTIS [8]

3D CNN

Deeper V2V-PoseNet [8]

Weighted sub-voxel

prediction

Voxels

88×88 × 88

Multi-scale

com-ref-net

for hand cropping

Models from

6 training epochs

N sub-voxel pred.,

Truncated SVD and

temporal smoothing refinement

7 V2V-PoseNet L2 RMSProp

A2J [18]

2D CNN offset and

depth regression

with anchor points

and weighting

Depth

256×256
Bbox crop

Ensemble predictions

from 3

training epochs

7 SEResNet-101 [4] Smooth L1 Adam

CrazyHand

2D CNN

tree-like branch

structure regression

with hand morphology

Depth

128×128
Iterative CoM 7 7 ResNet-50 L2 -

BT [6]

Differentiable

Mano [12] layer

Permutation invariant [6]

Point-to-pose+

point-to-latent voting

Point cloud

512 3D points
View correction [6] 7

32K synthetic

+ random objects

from HO-3D [2]

ResPel [6]

L2 pose

L2 Mano vertex

KL constraint

Adam

Table 3: Task 3 - Methods’ Overview
Username Description Input Pre-processing Post-processing Synthetic Data Backbone Loss Optimizer

ETH NVIDIA

[13]

2D CNN, 2D location +

relative depth

Heatmap-regression + an MLP for

denoising absolute root depth

RGB

128×128
Bbox crop 7 7 ResNet-50 L1 SGD

NLE [11]

2D hand proposals + classification of

multiple anchor poses + regression of

2D-3D keypoint offsets w.r.t . the anchors

RGB

640×480
7

Ensemble multiple

pose proposals and

ensemble over

rotated images

7 ResNet-101

Smooth L1 for reg.

Log loss for classif.

RPN [10] for

localization loss

SGD

BT [19]

Multi-modal input

with latent space

alignment [19]

Differentiable Mano [12] layer

RGB 256 × 256

Point cloud - 356
Bbox cropping 7

100K synthetic +

random objects

from HO-3D [2]

EncoderCloud: ResPEL [6]

EncoderRGB: ResNet-18

DecoderMano: 6 fully-connected

L2 pose, L2 Mano vert.

Chamfer, Normal and

Edge length for mesh

KL constraint

Adam



Measuring Generalisation for 3D Hand Pose Estimation 3

Fig. 2: Task 1 - Visualization of the ground-truth annotations and estimations
of Rokid , A2J , AWR, NTIS , Strawberryfg , BT .

Fig. 3: Task 2 - Visualization of the ground-truth annotations and estimations
of NTIS , A2J , CrazyHand , BT .
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(a) Extrapolation (b) Shape (c) Object (d) Interpolation

Fig. 4: Task 3 - Visualization of the ground-truth annotations and estimations
of ETH NVIDIA, NLE , BT . Each column shows different examples used
in our evaluation criteria.
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2 Experiments with Different Backbone Architectures

While Residual Network (ResNet) [3] backbones are well adopted by many
approaches and ResNet-50 or ResNet-101 architectures obtain better results
compared to other backbone models as reported in experiments of AWR and NLE .
However, most approaches adopt ensembling predictions from models trained with
different backbone architectures and this improves the performance as showed in
Table 4 and Table 5.

Table 4: Extrapolation MJE obtained with different backbone architectures
in AWR experiments. ’center1’ denotes using thresholds to compute hand center,
’center2 + original’ denotes using semantic segmentation network to compute
hand center and extract hand region from original depth images, ’center2 +
segmented’ denotes using semantic segmentation network to compute hand center
while extract hand region from network’s output mask.

Backbone Extrapolation MJE (mm)

Resnet50 (center1) 20.70
Resnet50 (center2 + original) 14.89

Resnet50 (center2 + segmented) 14.75
Resnet101 (center2 + original) 14.57

Resnet101 (center2 + segmented) 14.44
HRnet48 17.23

SRN 16.00
SRN multi size ensemble 15.20

HRNet Resnet50 shape ensemble 14.68
model ensemble 13.67

Table 4 shows the experiments for impact of different network backbones
and different ways of obtaining the hand center by AWR. Changing the way of
attaining hand center from ’center1’ to ’center2 + original’ yields an improvement
of 5.81mm, ’center2 + segmented’ further improves by 0.14mm. The best result
is obtained with a backbone of ResNet-101, 14.44mm.

At the final stage, multiple models are ensembled (model ensemble in Ta-
ble 4) including ResNet-101 (center2+segmented), ResNet-101 (center2+original),
ResNet-50 (center2+original), SRN multi size ensemble and HRNet Resnet50-
shape ensemble. Since ESPNetv2 [7] sacrifices accuracy for speed to some extent,

the segmentation results are not accurate enough and may contain wrists or lack
part of the fingers, therefore cropping hand regions from original depth images
sometimes yields better performance.

Among the ensembled networks, SRN [9] is a stacked regression network
which is robust to self-occlusion and when depth values are missing. It performs
the best for Shape extrapolation, but is sensitive to the cube size that are used
when cropping hand region. The mean error of a single-stage SRN with cube size
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200mm already reaches 16mm. Ensembling SRN with cube size 180mm, 200mm
and 220mm, the results of SRN multi size ensemble is 15.20mm.

SRN performs the best on the shape evaluation axis. For example, single SRN
can achieve 12.32mm and SRN multi size ensemble can achieve 11.85mm.

HRNet-48 makes a major success in human pose estimation, but we do not get
desired results after applying it. The mean error of single HRNet-48 is 17.23mm.
Although it converges faster and has relatively lower loss than ResNet-50 and
ResNet-101 in the training stage, it performs worse during inference. HRNet-48
predicts well on some of the shapes. Therefore, the depth images are divided
into 20 categories according to the proportion of hand pixels over all pixels. The
prediction error in training set is used to compute the weight of each category,
which is used to weight the test set results. The weighted results depicted with
HRNet Resnet50 shape ensemble reaches mean error of 14.68mm.

The model ensemble refers to ensembling predictions of five models in-
cluding ResNet-101 (14.44mm), ResNet-101 noseg (14.57mm), ResNet-50 noseg
(14.89mm), HRNet Resnet50 shape ensemble (14.68mm), SRN multi size ensemble
(15.20mm). Among them, the first four models are based on adaptive weighting
regression (AWR) network with different backbones.

Table 5: Impact of different network architectures, in NLE experiments. No
color jittering is applied during training in these experiments. MJE (mm) metric
is used. Please note that for this experiment while ResNet-50 and ResNet-152
backbones results are obtained with 10 different anchor poses while the rest use
5 different anchor poses in NLE ’ settings for Pose Proposal Integration (PPI).

Backbone Extrapolation Interpolation Object Shape

ResNet-50 34.63 5.63 23.22 17.79
ResNet-101 32.56 4.49 18.68 18.50
ResNet-152 37.56 4.24 20.11 18.58
ResNext-50 33.88 4.99 25.67 19.70
ResNext-101 38.09 3.83 21.65 20.93

Table 5 shows comparison of different residual based backbones. Deeper
backbones can obtain lower errors on Interpolation however, the method obtains
higher errors on Extrapolation criteria and ResNet-101 a medium depth seems
to be a reasonable choice in most cases in NLE experiments. While errors on
different evaluation criteria with ResNext based arthictectures tend to vary a lot,
ResNet based backbones are more solid.

Components of V2V-PoseNet architecture include: Volumetric Basic Block,
Volumetric Residual Block, and Volumetric Downsampling and Upsampling
Block. NTIS uses the same individual blocks as in V2V-PoseNet [8] but with a
wider architecture. NTIS ’ experiment, see Table 6 shows that quadrupling the
number of kernels in individual blocks provides the best results.
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Table 6: Impact of widening the architecture used in V2V-PoseNet [8] in NTIS ex-
periments. The number of kernels in each block in V2V-PoseNet architecture is
quadrupled (wider).

Architecture V2V-PoseNet [8] Extrapolation MJE (mm)

Original 38.33
Wider 36.36

3 Impact of Ensembling Techniques

In this section, we provide the experiments to show the importance of ensem-
bling techniques. These techniques include ensembling in data pre-processing,
methodological ensembles and ensembles as post-processing.

NLE’ experiments on methodological and post-processing ensembling techniques.
NLE adopts an approach based on LCR-Net++[11] where poses in the training
set are clustered to obtain anchor poses and during inference, the test samples
are first classified to these anchors and the final hand pose estimation is regressed
from the anchor poses. Table 7 shows the impact of using different number
of anchor poses. Shape extrapolation axis is heavily affected with the number
anchor poses. While the number of obtained anchor poses from the training set
increases from 1 to 50, the shape extrapolation error decreases from 21.08mm to
16.55mm. On the other hand, the number of anchor poses does not seem to have
an observable impact on the other criteria, however; this can be because of the
size of Task 3 test set and also because of the low hand pose variances in Task 3.

Table 7: Impact of number of anchor poses, in NLE experiments, obtained with
k-means clustering for Pose Proposal Integration (PPI). No color jittering is
applied during training in these experiments. ResNet-101 backbone architecture
and MJE (mm) metric is used.

#Anchor poses Extrapolation Interpolation Object Shape

1 37.68 3.99 28.69 21.08
5 32.56 4.49 18.68 18.50
10 37.57 4.35 19.38 18.33
20 34.67 4.38 21.10 16.94
50 35.64 4.86 17.84 16.55

NLE ’s experiments later show the impact of learning and inferencing both
2D and 3D pose, and the impact of pose proposal integration [11] (PPI) compared
to non-maximum suppression approach to obtain the poses. Learning to estimate
2D pose of a hand significantly impacts the extrapolation capability especially in
Object axis. We believe this is because the objects occlude the hands and 2D
information can be better obtained and help to guide estimation of the 3D hand
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Table 8: Importance of pose proposal integration [11] (PPI) compared to non-
max suppression (NMS), and of joint 2D-3D regression in NLE experiments
(ResNet-50 backbone and 5 anchor poses are used). MJE (mm) metric is used.

2D-3D Estimation Post. Extrapolation Interpolation Object Shape

3D only NMS 38.59 8.48 37.31 18.78
2D+3D NMS 38.08 7.60 28.45 18.73
2D+3D PPI 34.63 5.63 23.22 17.79

poses. Later the pose proposal with 5 anchor poses brings a significant boost for
extrapolation capabilities of the method.

Table 9: Importance of rotation data augmentation in NLE experiments, con-
ducted with a ResNet-101 backbone architecture and 5 anchor poses. MJE (mm)
metric is used.

#Test Rot. Extrapolation Interpolation Object Shape

1 29.55 4.85 18.09 17.35
4 28.83 4.63 18.06 16.77
12 29.19 4.06 18.39 15.79

NLE adopts another ensembling technique in the post-processing stage
where test images are rotated by uniformly covering the space and the predictions
obtained from each rotated test sample is ensembled. Experiments of NLE show
that rotation as a post-processing ensemble technique helps significantly on
shape extrapolation as well as interpolation axis and has minor impacts on other
extrapolation criteria. Table 9 shows the impact of different number of rotation
ensembles.

Strawberryfg ensembling as data pre-processing and orientation refinement per
limb. Strawberryfg makes use of different input types obtained from the depth
input image and their combinations to use them in their approach. Different input
types include 3D joints projection, multi-layer depth and voxel representations
and a list of input types and their combinations adopted to train different models
are listed in Table 10. The impact of each mentioned model is reported in Table 11.
The model used with different combination of different input types obtained from
the depth images has no significant impact on evaluation criteria. We believe that
this is because each different input type has different characteristics for the model
to learn from and it’s hard for the model to adapt to each type. Maybe a kind of
adaptive weighting technique as adopted by some other approaches participated
in the challenge can help in this case. However, as ensembling results of different
models is proven to be helpful with all the approaches adopted the technique
seems to be helpful in this case as well. ’Combined’ model as depicted in Table 11
obtains the best results for all evaluation criteria. Strawberryfg ’ experiment report
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to have 10.6% on articulation, 10% on interpolation, 8.4% on viewpoint, 7.2% on
extrapolation, 6.2% on shape criteria improvements with ensembling of 4 models.

Table 12 using Strawberryfg shows the impact of patch orientation refinement
networks adopted for each limb of a hand to show the impact. Orientation
refinement brings a significant impact with 1mm lower error on all evaluation
criteria.

Table 10: Input data types for four different models used in Strawberryfg experi-
ments.

Model Id Input Type

Depth Image 3D Points Projection Multi-layer Depth Depth Voxel

1 3 7 7 7

2 3 3 3 7

3 3 3 7 3

4 3 3 3 3

Table 11: MJE (mm) obtained in Strawberryfg experiments by using different
models trained with different input types, see Table 10. ’Combined’ model refers
to ensembling predictions from all 4 models.

Model Id Extrapolation Viewpoint Articulation Shape Interpolation

1 20.99 14.70 8.42 14.85 9.35
2 21.39 15.34 8.25 15.21 9.17
3 21.02 16.12 8.52 15.30 9.61
4 21.19 15.78 8.36 15.23 9.32

Combined 19.63 14.16 7.50 14.21 8.42

Table 12: Impact of local patch refinement and volume rendering supervision
adopted by Strawberryfg . Model 4 with 4 different inputs are used in this
evaluation, see Table 10.

Model Id - Type Extrapolation Viewpoint Articulation Shape Interpolation

4 - w/o refinement & volume rendering 22.56 16.77 9.20 15.83 10.15
4 - w/ refinement & volume rendering 21.19 15.78 8.36 15.23 9.32

A2J ensembling in post-processing. At inference stage, A2J applies rotation
and scale augmentations. More specifically, A2J rotates the test samples with
−90◦/45◦/90◦ , and scales with factor 1/1.25/1.5. Then these predictions are
averaged. Several backbone models are trained, including ResNet-50/101/152,
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SE-ResNet-50/101, DenseNet-169/201, EfficientNet-B5/B6/B7. Input image sizes
are 256×256/288×288/320×320/384×384. The best single model is ResNet-152
with input size 384× 384, it achieves 14.74mm on the extrapolation axis. Finally,
these predictions are ensembled with weights to obtain a final error of 13.74mm
on the extrapolation axis.

NTIS ensembling in post-processing with confident joint locations, Truncated SVDs
and temporal smoothing. NTIS adopts a post-processing technique for refinement
of hand poses where several inverse transformations of predicted joint positions are
applied; in detail, NTIS uses truncated singular value decomposition transforma-
tions (Truncated SVDs; 9 for Task 1 and 5 for Task 2) with number of components
n ∈ 10, 15, 20, 25, 30, 35, 40, 45, 50 obtained from the training ground-truth hand
pose labels and prepares nine refined pose candidates. These candidates are com-
bined together as final estimation that is collected as weighted linear combination
of pose candidates with weights w ∈ 0.1, 0.1, 0.2, 0.2, 0.4, 0.8, 1.0, 1.8/4.7. Table 13
shows the impact of ensembling confident joint predictions and refinement stage
with Truncated SVDs.

Table 13: Impact of refinement with Truncated SVDs in NTIS experiments on
Task 1. Improvement is 1̃%. N = 100 most confident joint locations are ensembled
for this experiment. Results reported in MJE (mm) metric.

SVD refinement Extrapolation

w/ 15.81
w/o 15.98

Since Task 2 is based on sequences and test samples are provided in or-
der, NTIS applies temporal smoothing on the predictions from each frame and
provides experimental results in Table 14 with different context sizes for smooth-
ing. While temporal smoothing helps to decrease the extrapolation error, large
context sizes do not impact much on the error.

Table 14: Impact of temporal smoothing and the context size (k) for smoothing
in NTIS experiments on Task 2 using exact same V2V-PoseNet [8] architecture.

Smoothing Context Size (k) Extrapolation MJE (mm)

0 39.76
3 38.32
5 38.31
7 38.33

AWR methodological ensembling with AWR operation. Fig. 5 shows the impact
of learnable adaptive weighting regression (AWR) approach on the probability
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maps of the target joints. When the target joint is visible and easy to distinguish,
the weight distribution of AWR tends to focus more on pixels around it as
standard detection-based methods do, which helps to make full use of local
evidence. When depth values around the target joint are missing, the weight
distribution spreads out to capture information of adjacent joint. Later, Table 15
shows the impact of the AWR operation on two other datasets, NYU [17] and
HANDS’17 [21].

(a) w/o AWR

(b) w/ AWR

Fig. 5: Impact of AWR operation on the target joints’ probability maps.

Table 15: AWR experiments for w/o adaptive weighting on NYU [17] and
HANDS’17 [21] datasets. Results reported in MJE (mm) metric.

Dataset w/o AWR w/ AWR

NYU 7.87 7.48
HANDS’17 7.98 7.48
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4 Frame Success Rates for All Participated Users in the
Challenge

Fig. 6 shows the analysis of all participated users in the challenge’s tasks. We
analysed the selected methods (6 for Task 1, 4 for Task 2 and 3 for Task 3)
based on their methodological variances and results in the main paper and this
supplementary document, however the challenge have received 16 submissions for
Task 1, 9 submissions for Task 2 and 7 submissions for Task 3 to be evaluated
from different users in the submission system.
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(c) Task3 - Extrapolation

Fig. 6: All participated methods’ accuracy analysis on different evaluation axis
where each frames’ error is estimated by considering the maximum error of all
joints in that frame.
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5 Joint Success Rates of the Analysed Approaches

In this section, we provide success rate analyses for each of three tasks based on
all joints in the test set. Please note the difference of the figures below compared
to the success rate analysis based on frames as showed in Fig. 7, Fig. 8 and Fig. 9
in the main paper. Comparing the joint based analysis and the frame based
analysis, we can note that all methods have different error variance for different
joints and therefore the approaches tend to obtain higher accuracies based on
considering each joint independently. Readers can find the related discussion in
the main paper Section 5.
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Fig. 7: Task 1 - Success rate analysis on different evaluation axis where each
joints’ error in the set is evaluated for measuring the accuracy.
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Fig. 8: Task 2 - Success rate analysis on different evaluation axis where each
joints’ error in the set is evaluated for measuring the accuracy.

6 Evaluation Criteria Analysis

In this section, we provide more analysis and discussions on the generalisation
power of the methods that could not be discussed in the paper due to space
requirements.

Fig. 6 (f-i) of the main paper shows the average errors obtained on the different
evaluation axis based on if the evaluation criterion has seen in the training set or
not. Overall, while unseen shapes and viewpoints are harder to extrapolate in
most of the cases, some unseen articulations are easier to extrapolate than some
seen articulations which are hard to estimate the hand pose from.

Viewpoint extrapolation. As claimed in the main paper, the approaches tend to
have larger errors on extreme angles like [−180,−150] or [150, 180] for azimuth
viewpoint or similarly in elevation viewpoint and it’s harder to extrapolate to
unseen viewpoints in the training. While the approach by Rokid fills those unseen
gaps with the generated synthetic data, other approaches mostly rely on their
ensemble-based methodologies or their 3D properties. Please see the main paper,
Section 5, for their properties.

Both Fig. 6 (g) for azimuth angles and (h) for elevation angles show the
analysis for the viewpoints. Most of the extrapolation intervals (except the edges
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(a) Extrapolation (b) Shape
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(c) Object (d) Interpolation

Fig. 9: Task 3 - Success rate analysis on different evaluation axis where each
joints’ error in the set is evaluated for measuring the accuracy.

since both edges used to evaluate extrapolation) show distributions similar to a
Gaussian which is expected since the mid-intervals are most far away viewpoints
from a seen viewpoint from the training set. While both elevation and azimuth
extrapolation errors are always higher than the interpolation error obtained
with the corresponding methods, however the azimuth extrapolation tends to be
varying more than the elevation extrapolation for some angles.

Articulation extrapolation. Fig. 6 (i) shows the average errors for 32 articulation
clusters. 16 of those clusters have already seen in the training set while 16 have
never seen and only available in the test set. While the samples that fall into
some clusters, (e.g . 16, 18, 19, 20 and 31) tend to be harder to estimate most of
the time, however some articulations without depending on seen (e.g . 1, 7, 8, 17)
or unseen are hard to estimate as well because of the type of the articulation.
Fig. 13 shows the example frames for the 32 clusters.

Shape extrapolation. Fig. 6 (f) shows average errors obtained for different shape
types seen/unseen. All approaches have higher errors on unseen hand shapes
(2, 3, 4, 5, 9) compared to errors obtained on shapes (1, 6, 7, 8, 10) seen in the
training set.

Fig. 8 (c, f) of the main main paper shows the MJE analysis based on
seen/unseen shapes (c) and objects (f). A list of objects that appear in the task
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test set is given in Fig. 11. Although shape ’S5’ refers to an unseen shape, all
methods can extrapolate to this shape better than some other seen shapes in the
training set. This can be explained with ’S5’ being similar to some other shapes
and it has the lowest number of frames (easy examples) compared to number of
test frames from other shapes in the test set, see Fig. 3 (bottom right) in the
main paper submission for the distributions of the training and test set. A similar
aspect has been observed in [21] where different hand shape analysis has been
provided, see Fig. 12. However, all methods tend to have higher errors on the
frames from another unseen test shape ’S3’ as expected.

Object extrapolation. Poses for hands with unseen objects, ’O3’ power drill and
’O6’ mug, are harder to extrapolate by most methods since their shapes are quite
different than the other seen objects in the training set. Please note that seen
’O2’ object has the lowest number of frames in the test set. Some example frames
for the listed objects are showed in Fig. 10.

7 Dataset Details

(a) O1 - Cracker box (b) O2 - Picher base (c) O3 - Power drill

(d) O4 - Sugar box (e) O5 - Mustard bottle (f) O6 - Mug

Fig. 10: Example frames for the objects appear in Task 3, HO-3D [2] dataset.
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Object Id Object Name Seen in the Training Set

O1 cracker box 3

O2 pitcher base 3

O3 power drill 7

O4 sugar box 3

O5 mustard bottle 3

O6 mug 7

(c) Object List

Fig. 11: Task 3 - Mean joint error analysis for the Shapes and Objects criteria on
the corresponding test sets for the shapes and objects interpolation and extrapo-
lation. Transparent and solid colors represent seen and unseen, respectively.

Fig. 12: Visualization of different hand shape distributions, appear in [21], by
using the first two principal components of the hand shape parameters. Figure is
taken from [21].
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C1 00000
C2 00001
C3 00010

C4 00011
C5 00100
C6 00101

C7 00110
C8 00111
C9 01000

C10 01001
C11 01010
C12 01011

C13 01100
C14 01101
C15 01110

C16 01111
C17 10000
C18 10001

C19 10010
C20 10011
C21 10100

C22 10101
C23 10110
C24 10111

C25 11000
C26 11001
C27 11010

C28 11011
C29 11100
C30 11101

C31 11110
C32 11111

Fig. 13: Examples frames for 32 articulation clusters used in the evaluations. Each
row shows cluster ids and their respective binary representations for two example
images of three clusters. Each binary representation is constructed from thumb
to pinky fingers with 0 representing closed and 1 representing open fingers.
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