
End-to-End Low Cost Compressive Spectral
Imaging with Spatial-Spectral Self-Attention

Ziyi Meng∗1,2[0000−0001−8294−8847], Jiawei Ma∗,†3[0000−0002−8625−5391], and
Xin Yuan�4[0000−0002−8311−7524]

1 Beijing University of Posts and Telecommunications, Beijing, 100876, China,
mengziyi@bupt.edu.cn

2 New Jersey Institute of Technology, Newark, NJ 07102, USA
3 Columbia University, New York NY 10027, USA, jiawei.m@columbia.edu

4 Nokia Bell Labs, Murray Hill NJ 07974, USA, xyuan@bell-labs.com

Abstract. Coded aperture snapshot spectral imaging (CASSI) is an
effective tool to capture real-world 3D hyperspectral images. While a
number of existing work has been conducted for hardware and algorithm
design, we make a step towards the low-cost solution that enjoys video-rate
high-quality reconstruction. To make solid progress on this challenging
yet under-investigated task, we reproduce a stable single disperser (SD)
CASSI system to gather large-scale real-world CASSI data and propose a
novel deep convolutional network to carry out the real-time reconstruction
by using self-attention. In order to jointly capture the self-attention
across different dimensions in hyperspectral images (i.e., channel-wise
spectral correlation and non-local spatial regions), we propose Spatial-
Spectral Self-Attention (TSA) to process each dimension sequentially,
yet in an order-independent manner. We employ TSA in an encoder-
decoder network, dubbed TSA-Net, to reconstruct the desired 3D cube.
Furthermore, we investigate how noise affects the results and propose to
add shot noise in model training, which improves the real data results
significantly. We hope our large-scale CASSI data serve as a benchmark
in future research and our TSA model as a baseline in deep learning
based reconstruction algorithms. Our code and data are available at
https://github.com/mengziyi64/TSA-Net.

Keywords: Compressive spectral imaging, Spatial-Spectral Self-Attention,
Large-scale real data.

1 Introduction

Coded aperture snapshot spectral imaging (CASSI) [49] has led to emerging
researches during the last decade on compressive spectral imaging. The underlying
principle is to modulate each spectral channel in the 3D scene e.g.(x, y, λ) by
different masks (can be shifted versions of the same one). As shown in Fig. 1, the
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Fig. 1: (a) Single disperser coded aperture snapshot spectral imaging (SD-CASSI) and
our experimental prototype. (b) 25 (out of 28) reconstructed spectral channels. (c)
Principle of hardware coding.

detector captures a compressed 2D measurement in a snapshot, which includes the
information from all spectral channels. Following this, the inversion algorithms,
inspired by compressive sensing [9, 10], are employed to recover the desired 3D
(spatial-spectral) cube. Motivated by CASSI, snapshot compressive imaging has
also been used to capture video [22,34,35,68], polarization [46] and depth [23].

In the original CASSI [49] with single disperser (SD) design (Fig. 1(a)), the
main issues left to solve are 1) the imbalanced response of SD and 2) the slow
reconstruction. Notably, the imbalanced response, (please refer to Fig. M1 in the
supplemental material (SM)), is a spatial distortion along the dispersion direction,
which is caused by the path length difference between each two wavelength
channels and leads to significant reconstruction performance degradation. The
CASSI systems with direct view disperser [50] or dual-disperser [13] were proposed
in the optical design to avoid the imbalanced response, but may suffer from high
expense or system instability. Recently, DeSCI in [21] has achieved the state-of
the-art (SOTA) performance among iterative algorithms on both video and
spectral compressive imaging. Besides, various algorithms have been used [3,65]
and developed [51,55,60,61, 70] but still requires exhausting running time. Our
goal in this paper is to make a step forward and study a low-cost solution that
enjoys high-speed image capture and video-rate high-quality reconstruction, thus
to provide an end-to-end solution of compressive spectral imaging.

To make progress on this fundamental problem, we first reproduced a SD-
CASSI system and then gather the large-scale real CASSI data serving as a
benchmark in our CASSI research. We have collected a group of images from
different indoor scenes by using our setup shown in Fig. 1; for each measurement,
a large-scale spatial-spectral 3D cube can be recovered and 28 is the number of
channels determined by the hardware setup, i.e., the filters, prisms and mask. As
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Fig. 2: Real data: The reconstructed hyperspectral video. The video totally contains
35 frames (0.028s per frame) captured from our real SD-CASSI system, and each frame
has 28 spectral channels between 450 and 650nm. 7 frames and 13 spectral channels
are extracted and shown here. The object is moving from left to right. Please refer to
the video files in the Supplementary Material (SM).

noted above, the imbalanced response and noise are introduced in our collected
real data, which lead to severe performance degradation compared with the
testing result on simulated noise-free data. This motivated us to employ deep
learning as a tool to mitigate this challenge as well as the slow reconstruction.

Deep learning methods [29,30,52,56] showed the potential to speed up the
reconstruction and improve image reconstruction quality. HSSP [52] is a SOTA
deep unfolding method and exploit convolution network to estimate the spatial
and spectral priors. Though this has led to promising results, the real data is
usually captured by the CASSI system with the expensive direct-view disperser
(more than 1000 US dollars based on [50]). In addition, HSSP recovers the whole
hyperspectral image based on blocks and may lose non-local information.

Recently, Self-attention mechanism has been proposed in [47] for sequence
modeling tasks such as machine translation, which is able to get rid of the
sequence order and model the relationship between each two timestamps in
parallel. Multiple heads are considered to model the relationship comprehensively.
A limit number of previous work has conducted self-attention to model hyper-
spectral image. For instance, λ-Net [29] assumes the spatial correlation for
each channel is shared among all channels and then only considers the spatial
correlation in a hidden feature space. However, they flatten all features from
2D plane into one single dimension to model the spatial correlation, causing
huge memory usage in the attention map calculation. Furthermore, the only
real data used in λ-Net [29] is of spatial size 256 × 256, which is a small scale
data. Even though [39] designed an efficient self-attention form to help model
spatial correlation, a strong constrain on the intermediate variables is enforced;
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[27] proposed to use a bi-directional Recurrent Neural Network to model the
spectral channel correlation but not for CASSI applications. The CDSA in [25]
generalized the self-attention where the theoretical analysis shows the order-
independent property when applying the dimension-specific attention maps to
modulate the extracted feature map in sequence. Inspired by this, we propose
the Spatial-Spectral Self-Attention (TSA for ‘Triple-S Attention’) and model the
spatial-spectral correlation in a joint and order-independent manner. We calculate
the spatial and spectral attention maps separately and use them to modulate the
feature map in sequence, which also maintains reasonable computation complexity.
We apply the proposed TSA module in an encoder-decoder network, dubbed as
TSA-Net, for CASSI image reconstruction. In addition, we study the effects of
noise on the reconstruction results and propose to add shot-noise, rather than
Gaussian noise, on the clean measurement during training to minimize the gap
of performance between simulated noise-free data and real data.

In this paper, we investigate a novel method that can provide high quality
reconstruction for the original and low cost SD-CASSI system, which is reproduced
by us and now capable of capturing large-scale data. Our contributions are
summarized as follows:

– We reproduce a stable SD-CASSI system using low-cost components, especially
the low-cost single disperser, and gather large-scale real CASSI data as
benchmark for future research.

– We propose Spatial-Spectral Self-Attention (TSA) module to model the spatial
and spectral correlation in a joint yet order-independent manner with reasonable
computation cost.

– We employ TSA module in an encoder-decoder network, which can provide
660×660×28 spectral cube from a single measurement within 100ms using one
GPU in evaluation. In this manner, we are able to provide a 660×660×28×35
4D live volume per second with an example shown in Fig. 2.

– We analyse the effect of noises on the reconstruction results and the undesired
high frequency details, i.e., artifacts, in the deep learning based reconstruction.
We then propose to add shot noise into the training data to simulate the system
environment and to mitigate the artifacts in the real hyperspectral image.
Experiment comparison shows the performance improvement and network’s
robustness, which demonstrates our strategy’s effectiveness.

The rest of this paper is organized as follows: Sec. 2 describes the models of
SD-CASSI.Sec. 3 presents the details of our proposed deep learning based TSA-
Net to solve the reconstruction problem of SD-CASSI. Sec. 4 presents extensive
results on both simulation and real data to demonstrate the superiority of our
proposed TSA-Net as well as the hardware setup. Sec. 5 concludes the paper.

Related Work. Following CASSI, which used a coded aperture and a prism
to implement the wavelength modulation, other modulations such as occlusion
mask [6], spatial light modulator [70] and digital-micromirror-device [58] have also
been used for compressive spectral imaging. Meanwhile, advances of CASSI have
also been developed by using multiple-shots [18], dual-channel [51, 53–55] and
high-order information [2]. For the reconstruction, various iterative algorithms,
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such as TwIST [3], GPSR [11] and GAP-TV [65] have been utilized. Other
algorithms, such as Gaussian mixture models and sparse coding [37,51, 60] have
also been developed. As mentioned before, most recently, DeSCI proposed in [21]
to reconstruct videos or hyperspectral images in snapshot compressive imaging
has led to state-of-the-art results. Inspired by the recent advances of deep learning
on image restoration [24, 59, 71], researchers have started using deep learning
to reconstruct hyperspectral images from RGB images [1, 19, 20, 31, 40]. Deep
learning models [28,29,52,56] have been developed for CASSI. In addition to the
novel attention-based TSA module in the design, our work differs from previous
works by considering the impact of hardware constraints in CASSI such as real
masks and shot noise.

2 Mathematically Model of SD-CASSI

Model Following the Optical Path. Let F ∈ RNx×Ny×Nλ denote the 3D
spectral cube shown in the left of Fig. 1(c) and M∗ ∈ RNx×Ny denote the
physical mask used for signal modulation. We use F ′ ∈ RNx×Ny×Nλ to represent
the modulated signals where images at different wavelengths are modulated
separately, i.e., for nλ = 1, . . . , Nλ, we have

F ′(:, :, nλ) = F (:, :, nλ)�M∗, (1)

where � represents the element-wise multiplication. After passing the disperser,
the cube F ′ is tilted and is considered to be sheared along the y-axis. We then
use F ′′ ∈ RNx×(Ny+Nλ−1)×Nλ to denote the tilted cube and assume λc to be the
reference wavelength, i.e., image F ′(:, :, nλc) is not sheared along the y-axis, we
can have

F ′′(u, v, nλ) = F ′(x, y + d(λn − λc), nλ), (2)

where (u, v) indicates the coordinate system on the detector plane, λn is the
wavelength at nλ-th channel and λc denotes the center-wavelength. Then, d(λn−
λc) signifies the spatial shifting for nthλ channel. The compressed measurement at
the detector y(u, v) can thus be modelled as

y(u, v) =
∫ λmax

λmin
f ′′(u, v, nλ)dλ, (3)

since the sensor integrates all the light in the wavelength [λmin, λmax], where f ′′

is the analog (continuous) representation of F ′′. In discretized form, the captured
2D measurement Y ∈ RNx×(Ny+Nλ−1) is modelled as

Y =
∑Nλ
nλ=1 F

′′(:, :, nλ) +G, (4)

which is a compressed frame contains the information and G ∈ RNx×(Ny+Nλ−1)
represents the measurement noise.
For the convenience of model description, we further setM ∈ RNx×(Ny+Nλ−1)×Nλ
to be the shifted version of the mask corresponding to different wavelengths, i.e.,

M(u, v, nλ) = M∗(x, y + d(λn − λc)). (5)
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Similarly, for each signal frame at different wavelength, the shifted version is
F̃ ∈ RNx×(Ny+Nλ−1)×Nλ ,

F̃ (u, v, nλ) = F (x, y + d(λn − λc), nλ). (6)

Following this, the measurement Y can be represented as

Y =
∑Nλ
nλ=1 F̃ (:, :, nλ)�M(:, :, nλ) +G. (7)

Vectorized Formulation. We use vec(·) to denote the matrix vactorization,
i.e., concatenating columns into one vector. Then, we have y = vec(Y ), g =
vec(G) ∈ Rn and

f =

 f̃ (1)

...

f̃ (Nλ)

 ∈ RNx(Ny+Nλ−1)Nλ (8)

where n = Nx(Ny +Nλ − 1) and f̃ (nλ) = vec(F̃ (:, :, nλ)),

In addition, we define the sensing matrix as

Φ = [D1, . . . ,DNλ ] ∈ Rn×nNλ , (9)

where Dnλ = Diag(vec(M(:, :, nλ))) is a diagonal matrix with vec(M(:, :, nλ))
as the diagonal elements. As such, we then can rewrite the matrix formulation of
Eq. (7) as

y = Φf + g. (10)

This is similar to compressive sensing (CS) [9, 10] as Φ is a fat matrix, i.e., more
columns than rows. However, since Φ has the very special structure as in Eq. (9),
most theory developed for CS can not fit in our applications. Note that Φ is
a very sparse matrix, i.e., at most nNλ nonzero elements. It has recently been
proved that the signal can still be recovered even when Nλ > 1 [15,16].

After capturing the measurement, the following task is given y (captured by
the camera) and Φ (calibrated based on pre-design), solving f . For the sake of
speed and quality, we use deep learning to solve this inverse problem.

3 TSA-Net for SD-CASSI Reconstruction

In this section, we first briefly review the conventional self-attention mechanism.
Then, we propose Spatial-Spectral Self-Attention module followed by the TSA-Net
structure. In Sec. 3.3, we analysis the effect of noise and discuss the strategy of
injecting shot noise into simulated measurement during model training, to suppress
the artifacts in the recovered hyperspectral images from real measurements
captured by our SD-CASSI system. The hardware details can be found in SM.
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3.1 Conventional Self-Attention

For self-attention mechanism in [47], given an input sentence of length N , each
token xi is mapped into a Query vector qi of f -dim, a Key vector ki of f -dim,
and a Value vector vi of v-dim. The attention from token xj to token xi is
effectively the scaled dot-product of qi and kj after Softmax, which is defined as

A(i, j) = exp(S(i,j))∑N
k=1 exp(S(i,k))

where S(i, j) = qik
>
j /
√
f . Then, vi is updated to v′i as

a weighted sum of all the Value vectors, defined as v′i =
∑N
j=1A(i, j)vj , after

which each v′i is mapped to the layer output x′i of the same size as xi. Meanwhile,
a causal constraint is set on the attention maps to force self-attention to learn to
predict the next token only from the predicted tokens in translation tasks.

In order to adopt self-attention to jointly model spatial and spectral correlation,
the intuitive way is to flatten all pixels into one single dimension and calculate
the attention between each two pixels directly. However, as noted in [29], such
operation will lead to huge memory usage and limit the effectiveness of correlation
modelling. Instead, our proposed TSA module, described below, can jointly model
spatial and spectral correlation while keep the size of attention map reasonable.

3.2 Spatial-Spectral Self-Attention (TSA)

Spatial Attention: Correlation modelling involves the attention map building
for both x-axis and y-axis. We assume the spatial correlation should model the
non-local region information instead of pixel-wise correlation. As a result, a 3× 3
convolution kernel is applied to fuse the input feature to indicate the region-based
correlation. Then, the convolution net is applied to map the fused feature into Q &
K for each dimension individually. The number of kernels effectively denotes the
number of heads and the kernel size denotes the modulation direction/dimension.
Similarly, the dimension-specified Q & K features are used to build the related
attention maps. TSA uses the dimension-specified attention maps to modulate
the corresponding dimension in sequence while theoretical analysis in [25] has
shown the order-independent property for such operation. The modulated feature
are then fed into a deconvolution layer to finish the spatial correlation modelling.
Spectral Attention: The samples in the same spectral channel (2D plane) are
first convolved with one kernel and then flattened into one single dimension,
which is set as the feature vector for that channel. Similarly, input feature is
then mapped to Q & K to build the attention map for the spectral axis. Since
the image patterns on the same position but in two neighboring channels are
expected be highly correlated, we learn to indicate such correlation by setting
spectral smoothness on the attention maps. In our proposed model, we normalize
all spectral channel pairwise distances to the range [0, π] and use the cosine
of the normalized distance as spectral embedding to indicate channel similarity.
Each similarity score is scaled by 0.1 and then added to the coefficients in
spectral attention maps, which are then used to modulate Value in self-attention
modulation. In this way, we induce spectral smoothness constraint since the
weights of two adjacent channels in modulation are imposed to be higher than
those for distant channels (spectral channels with larger wavelength difference).
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Fig. 3: (a) Spatial-Spectral Self-Attention (TSA) for one V feature (head). The spatial
correlation involves the modelling for x-axis and y-axis separately and aggregation in an
order-independent manner: the input is mapped to Q and K for each dimension: the size
of kernel and feature are specified individually. The spectral correlation modelling will
flatten samples in one spectral channel (2D plane) as a feature vector. The operation
in dashed box denotes the network structure is shared while trained in parallel. (b)
TSA-Net Architecture. Each convolution layer adopts a 3 × 3 operator with stride 1
and outputs O-channel cube. The size of pooling and upsampling is P and T.

As shown in Fig. 3(a), TSA builds one Value feature V passing into the
spatial and spectral modulation part in sequence. If we reverse the order and
do spectral modulation on V first, TSA will keep using the input to build the
spatial attention maps and feed the spectral output for spatial modulation.

Network Structure: Recently, variation auto encoder [17] and U-net, have been
repurposed as image generator in diverse problems [32,41,71]. In this task, we
build an encoder-decoder structure using U-net [38] as the backbone. As shown
in Fig. 3(b), we set 5 convolution blocks in the encoder and decoder individually,
and replace the deepest 3 blocks with Res2Net [12] structure to enhance the
effectiveness of feature extraction. We add our TSA module at the end of 3
decoder blocks to model the Spatial-Spectral correlation. The spectral correlation
constraint is set in the last TSA module. To overcome the trade-off between
the network size and the reconstruction performance, we choose to directly feed
the output back to the recurrent bottleneck and the parameters are shared in
each recurrent stage. In this way, the hierarchical feature representations can be
refined progressively and the knowledge can be accumulated in multiple stages.
Different from [42], the skip connection between the two blocks is not a global
connection. Instead, it is an inner connection between two sub-layers such that
the gradient vanish problem is avoided. Meanwhile, since the image size in our
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Ground Truth (a) Clean (b) w/ Gaussian noise (c) w/ Shot noise

Fig. 4: Noise analysis by using a network trained on clean data to recover from one
measurement under three conditions: a) no noise, b) with Gaussian noise, c) with Shot
noise. (c) only has artifacts on bright area but (b) has artifacts even in dark area.

experiment will be huge (each sample is of size 660× 660× 28), our model will
be much larger than previous proposed network and such filter sharing strategy
can significantly reduce the storage requirements for a large deep learning model.

3.3 Shot Noise Injection

In this subsection, we first provides a mathematical model of shot noise and then
explain the strategy of shot noise injection during model training.

Shot noise is the fluctuation in photon counts sensed at a given camera
exposure level [5]. It is considered to be the dominant noise in the brighter parts
of an image. For a camera sensor, shot noise is determined by the detector’s
dynamic range and quantum efficiency (QE). In the SD-CASSI system, the
measurement with shot noise Ysn can be modeled as

Ysn = B(Y /QE,QE), (11)

where Y is the measurement without noise; the elements of Y being integers
between 0 to 2k − 1, with k being the sensor bit depth; B(n, p) is the binomial
distribution function, and QE is the quantum efficiency of sensor. Meanwhile, we
have ysn = vec(Ysn) = B(y/QE,QE).

Overall, the target of TSA-Net is to reconstruct the 3D hyperspectral image
cube from a 2D measurement captured by our SD-CASSI system. Since it is
expensive to gather real-world hyperspectral images as ground truth for model
training, same with other works [29,52], we train the model on the simulation
data and then feed the real data to the pre-trained model for evaluation. To
train the model, we first need to capture the mask inside our real optical system,
and use the mask to generate measurements (following our hardware design)
from available hyperspectral images. In this way, when we feed the mask and
a measurement as input and then train the network to recover a 3D cube, the
hyperspectral image cube actually serves as the ground truth. However, several
challenges still exist in this process. 1) As there are various and random noise
patterns during measurement generation in the optical detector system, it is
inapplicable to enumerate all possible noise patterns for the simulation data
during training. 2) The inconsistency between testing data captured by our
system and training data exists as the training data is from datasets built by
another system.
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Fig. 5: 10 testing scenes used in simulation.

As such, there is severe performance degradation of reconstruction and the
artifacts caused by system noise are obvious during testing. 3) Factors such as
response imbalance caused by single disperser will lead to poor system calibration.

To overcome these challenges and enhance the model’s robustness, previous
works have adopted various techniques during model training, e.g., adding
Gaussian noise [4, 48] in the network bottleneck and image augmentation [33].
However, a large amount of samples are required during training to learn noise
drawn from Gaussian distributions of all possible hyper-parameters. In contrast,
each shot noise value depends on the signal level at each pixel. Besides, shot noise
is usually dominant in an imaging system like our system with bright illumination
and high exposure [26]. To analyse the link between noise in hardware system
and reconstruction artifacts, we compare the reconstruction results in simulation
and real data. As shown in Fig. 4, for a network trained by clean data, the
reconstruction of measurement with shot noise (right-most column) has artifacts
in the object area, which is similar to real data (top in Fig. 12), while the artifacts
distribute in the whole region in the result of measurement with Gaussian noise.

As a result, we propose to add shot noise to the clean measurement during
model training (i.e., using Φ>ysn as the input of the TSA-Net) and we find
reconstruction performance degradation between the simulation and real data
captured by hardware system is narrowed. We have also observed this in other
snapshot compressive imaging systems [7, 22, 23, 28, 34–36, 43–46, 63, 64, 66–69]
and our proposed TSA-Net can be extended to those systems.

4 Experiments

In Sec. 4.1, we evaluate the reconstruction performance on the synthetic data
in simulation. In Sec. 4.2, we demonstrate experimental results captured by
our SD-CASSI system. The performance comparison is provided to show the
effectiveness of network and our training strategy.

4.1 Simulation

System Hyperparameter To quantitatively evaluate the effectiveness of our
TSA-Net reconstruction on SD-CASSI system, the hyperparameters, e.g., mask
and wavelengths, used in simulation are consistent with those in the real system.
The region of 256× 256 at the center of the real captured mask is selected for
simulation. We determine 28 spectral channels distributed from 450nm to 650nm
according to our system, and then adopt spectral interpolation on the simulation
data to acquire image of the 28 channels as ground truth.
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Table 1: PSNR in dB (left entry in each cell) and SSIM (right entry in each cell) by
different algorithms on 10 scenes in simulation.

Algorithm TwIST GAP-TV DeSCI U-net HSSP λ-net TSA-Net (ours)

Scene1 24.81, 0.730 25.13, 0.724 27.15, 0.794 28.28, 0.822 31.07, 0.852 30.82, 0.880 31.26, 0.887

Scene2 19.99, 0.632 20.67, 0.630 22.26, 0.694 24.06, 0.777 26.30, 0.798 26.30, 0.846 26.88, 0.855

Scene3 21.14, 0.764 23.19, 0.757 26.56, 0.877 26.02, 0.857 29.00, 0.875 29.42, 0.916 30.03, 0.921

Scene4 30.30, 0.874 35.13, 0.870 39.00, 0.965 36.33, 0.877 38.24, 0.926 37.37, 0.962 39.90, 0.964

Scene5 21.68, 0.688 22.31, 0.674 24.80, 0.778 25.51, 0.795 27.98, 0.827 27.84, 0.866 28.89, 0.878

Scene6 22.16, 0.660 22.90, 0.635 23.55, 0.753 27.97, 0.794 29.16, 0.823 30.69, 0.886 31.30, 0.895

Scene7 17.71, 0.694 17.98, 0.670 20.03, 0.772 21.15, 0.799 24.11, 0.851 24.20, 0.875 25.16, 0.887

Scene8 22.39, 0.682 23.00, 0.624 20.29, 0.740 26.83, 0.796 27.94, 0.831 28.86, 0.880 29.69, 0.887

Scene9 21.43, 0.729 23.36, 0.717 23.98, 0.818 26.13, 0.804 29.14, 0.822 29.32, 0.902 30.03, 0.903

Scene10 22.87, 0.595 23.70, 0.551 25.94, 0.666 25.07, 0.710 26.44, 0.740 27.66, 0.843 28.32, 0.848

Average 22.44, 0.703 23.73, 0.683 25.86, 0.785 26.80, 0.803 28.93, 0.834 29.25, 0.886 30.15, 0.893

Dataset, Implementation Details and Baselines We conduct simulation
on hyperspectral image datasets CAVE [62] and KAIST [8]. We randomly select
a spatial area of size 256× 256 and crop the 3D cubes with 28 channels as one
training sample with data augmentation. After mask modulation, the image cube
is sheared with an accumulative two-pixel step (based on the hardware) and
integrated across spectral dimension, so that a measurement of size 256× 310 is
generated as one model input. As shown in Fig. 5, we set 10 scenes from KAIST
for model testing. For valid evaluation, the scenes in KAIST are not seen in
training. The network is implemented by Tensorflow, and trained on one NVIDIA
P40 GPU for about 30 hours. The objective is to minimize the Root Mean Square
Error (RMSE) and Spectrum Constancy Loss [72] of the reconstruction. We
use peak-signal-to-noise-ratio (PSNR) and structured similarity index metrics
(SSIM) [57] for evaluation. More details (system hyper-parameters, learning rate,
etc.) can be found in SM as well as more results.

We compare our method with both iterative algorithms: TwIST [3], GAP-
TV [65] and DeSCI [21], as well as deep neural networks: U-net [38], HSSP [52]
and λ-net [29]. We use the same configurations for all these methods. We first
perform experiments on noise-free measurements to verify the performance of
different algorithms. Then, we compare the results of different algorithms under
shot noise and Gaussian noise respectively to demonstrate the advantages of our
model and the shot noise injection strategy.

Reconstruction on Noise-Free Data We first evaluate the reconstruction
performance of TSA-Net on noise-free KAIST simulation data. Notably, we
didn’t add shot noise during model training and testing for this set of comparison.
As shown in Table 1, our proposed TSA-Net outperforms other algorithms in
most scenes. The only exception is SSIM on Scene 4, which is a simple scene
without high frequency components and thus fits the assumption of low-rank in
DeSCI. On average, TSA-Net outperforms the SOTA iterative algorithm DeSCI
by 4.29dB. Meanwhile, TSA-Net performs 3.35dB higher in PSNR over U-net,
1.22dB higher over HSSP and 0.90dB higher over λ-net. Note that the gain of our
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Fig. 6: Two reconstructed images with 4 (out of 28) spectral channels using six methods.
We compare the recovered spectra of the selected region (shown with a, b on the RGB
images) and spatial details.

TSA-Net compared with λ-net is mainly from our proposed TSA module and the
comparison with U-net and λ-net also serves the ablation study of our TSA-Net.

The visualization of 2 scenes with 4 (out of 28) channels are shown in Fig. 6.
It is obvious that the spatial resolution in reconstruction by deep neural networks
is higher than that of iterative algorithms, which suffer from the spatial blur
resulted from the large mask-shift range. In addition, the large code features
on the mask limits the resolution of the reconstructed images. In contrast, deep
learning methods can provide both small-scale fine details and large-scale sharp
edges. Compared with HSSP and λ-net, the reconstruction of TSA-Net have less
artifacts and clearer details. Moreover, we show the spectral curves of the selected
regions and calculate the spectral correlation values. The iterative algorithms
have a high spectral accuracy at the expense of spatial accuracy, while TSA-Net
ensures a high-quality spectral recovery, meanwhile improves the spatial fidelity
significantly. We have also tried to add GAN [14] training in our loss function [29]
and saw limited improvement (in average 0.1dB). Since the key contribution of
this paper is self-attention, we omit the GAN loss part.

Reconstruction on Data with Shot Noise We generate shot noise by setting
QE to 0.4 in Eq. (11). We set bit depth as 11 in model training by considering
the 12-bit camera in our system and assuming 1-bit submergence by other noise.
Also, we varies the number of bit during testing for comprehensive comparison
and a lower bit depth leads to higher the shot noise. During testing, we change
the number of bit from 10 to 12 and the average PSNR & SSIM reported in
Table 2 demonstrates the robustness of the neural network.
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Table 2: Results of different algorithms on
data with different level shot noise

Noise Level Metric HSSP λ-net
TSA-Net
w/o SN

TSA-Net
w/ SN

Without PSNR 28.93 29.25 30.15 28.69
noise SSIM 0.834 0.886 0.893 0.859

12-bit PSNR 25.87 27.91 28.36 28.55
shot noise SSIM 0.744 0.822 0.850 0.856

11-bit PSNR 24.66 27.36 27.40 28.35
shot noise SSIM 0.705 0.802 0.823 0.849

10-bit PSNR 23.60 26.48 25.74 28.08
shot noise SSIM 0.663 0.771 0.779 0.841

Table 3: Results of TSA-Net w/ and w/o
shot noise on data with different level
Gaussian noise (PSNR,SSIM)

Noise Level σ TSA-Net w/o SN TSA-Net w/ SN

0 30.15, 0.893 28.69, 0.859
0.005 28.33, 0.830 28.46, 0.836
0.01 25.39, 0.778 28.03, 0.819
0.02 22.65, 0.658 26.93, 0.781
0.05 19.47, 0.541 23.50, 0.660
0.1 18.74, 0.485 19.67, 0.528
0.2 18.20, 0.443 19.15, 0.468

In detail, we test the models on KAIST at each noise level in five trials. It can
be seen that the result of the TSA-Net trained on measurements with shot noise
(TSA-Net w/ SN) only degrade 0.61dB in PSNR when tested on data with 10-bit
shot noise, while the results degrade severely on HSSP (5.33dB), λ-net (2.77dB)
and the TSA-Net trained without shot noise (TSA-Net w/o SN, 4.41dB). We
also observe that when there is no noise in the testing data, TSA-Net w/o SN
provides better results than TSA-Net w/ SN, as the consistence of data between
training and testing is kept. Hereby and in the following real data experiments,
we focus on the measurements with SN as in real cases, noise is unavoidable.

Robustness to Gaussian Noise. We further investigate the effect of Gaussian
noise to our TSA-Net with and without shot noise. Before adding noise, the
measurements are normalized to [0, 1]. Then we add zero-mean Gaussian noise
to the measurements with standard deviation σ ranging from 0 to 0.2. As shown
in Table 3, the performance of the TSA-Net w/ SN degrades slower than that of
the TSA-Net w/o SN, which indicates adding shot noise on training data can
also mitigate the effect of Gaussian noise.

4.2 Real Data Reconstruction

We have built a SD-CASSI system shown in Fig. 1 consisting of an objective lens,
a random mask, two relay lens with 45mm and 50mm focal length, a dispersion
prism, and a detector. The prism with 30◦ apex angle produces the 54-pixel
dispersion corresponding to 28 spectral channels ranging from 450 to 650nm. The
whole system can capture a large-scale scene of size 1024 × 1024. As such, we
trained another model from scratch based on CAVE and KAIST datasets and
added 11-bit shot noise on the simulated measurements during training.

As shown in Fig. 7 (left), we show the reconstruction by TSA-Net and iterative
algorithm of two scenes with three channels, and our method outperforms the
baselines by recovering the most details of each scene. Since too much training
time is required for other deep learning methods on large-scale data, we compare
the reconstruction for a smaller real data in SM. In Fig. 2 and Fig. 7 (right), we
show two dynamic scenes, moving in 1 second and rotating in 3 seconds, captured
by our system respectively. It can be seen that our SD-CASSI with TSA-Net is
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Fig. 7: Real data: (Left) the reconstructed images for three out of 28 spectral channels.
The RGB images and spectral curves are shown at the lower part of the figure; (Right)
the reconstructed hyperspectral video with 105 frames (3 seconds), four frames with
four spectral channels are shown here with full videos in SM.
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Fig. 8: Real data: The reconstructed images (256×256) using TSA-Net trained without
and with shot noise.

providing an end-to-end capture and reconstruction of spectral images with high
quality spatial, spectral and motion details. Furthermore, we demonstrate the
effectiveness of the training strategy by adding shot noise to real data. As shown
in Fig. 8, by injecting shot noise during model training, not only the spatial
details in reconstruction from real-data is kept, the artifacts is suppressed when
compared with the reconstruction by TSA-Net trained on noise-free data.

5 Conclusions

We have developed an end-to-end low-cost compressive spectral imaging system
by single-disperser CASSI and TSA-net. We have proposed a Spatial-Spectral
Self-Attention module to jointly model the spatial and spectral correlation in
an order-independent manner, which is incorporated in an encoder-decoder
network to achieve high quality reconstruction. By analyzing the noise impact
and examining the artifacts in real data reconstruction, we observed that adding
shot noise in the training data can improve the reconstruction quality significantly.
Our end-to-end solution for video-rate capture and reconstruction of hyperspectral
images paves the way of real applications of compressive spectral imaging.
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