
Supplementary Material

Ren Wang1, Gaoyuan Zhang2, Sijia Liu2, Pin-Yu Chen2, Jinjun Xiong2, and
Meng Wang1

1 Rensselaer Polytechnic Institute
2 IBM Research

wangr8@rpi.edu, Gaoyuan.Zhang@ibm.com, Sijia.Liu@ibm.com,

Pin-Yu.Chen@ibm.com, jinjun@us.ibm.com, wangm7@rpi.edu

1 Data-Limited TrojanNet Detector (DL-TND)

Visualization of neuron activation. DL-TND tests all the labels (classes)
by calculating one universal perturbation and multiple per-image perturbations
for each label. Each data sample can obtain a neuron activation vector with
the universal perturbation and a neuron activation vector with its per-image
perturbation. In Fig. S1, we show the neuron activation of five data samples with
universal perturbations and per-image perturbations under a target label, a non-
target label, and a label in a clean network (cleanNet). The output magnitude
for each coordinate is represented using gray scale. One can see that the strong
similarities only appear under the target label, which supports our motivation
for the DL-TND.

N
e
u
ro

n
a
c
ti
v
a
ti
o
n

(U
n
iv
e
rs
a
l)

N
e
u
ro

n
a
c
ti
v
a
ti
o
n

(P
e
r-
im

a
g
e
)

Target label Non-target label Label in cleanNet

Fig. S1. Output values of neuron activation with universal perturbation and per-image
perturbation from five data samples. The first column shows the outputs corresponding
to the target label. The second column shows the outputs corresponding to a non-
target label in a Trojan network (TrojanNet). The third column shows the outputs
corresponding to a label in a cleanNet. One can see that the strong similarities only
appear under the target label, which supports the motivation for the data-limited
Trojan detector.

2 R. Wang et al.

Detection rule using median absolute deviation. Instead of using the
detection rule in the main paper, we can also employ the median absolute
deviation (MAD) method. By MAD, if a single value in the k-th position of

|(I)1/2−I|
1.4826·|(I)1/2−I|1/2

is larger than 2 (provide 95% confidence rate), the network is

poisoned and label k is a target label, where I = [I(1), I(2), · · · , I(K)]. | · | repre-
sents the absolute value. (·)1/2 is the median of values in a vector. We compare
DL-TND to Neural Cleanse (NC) [3] in Table S3 using MAD as the detection
rule.

2 Data-Free TrojanNet Detector (DF-TND)

Visualization of logits output increase. Fig. S2 and S3 visualize the change
of the logits output (defined in (8) in the main paper) of 10 data samples under
a cleanNet and a TrojanNet when label 4 (lab4) is the target label. One can
see that the minimum increase belonging to the target label is 600 while the
maximum increase for labels in the cleanNet is 10. This large gap suggests that
TrojanNets can be detected by properly selecting T2 and there exists a wide
selection range, implying the stability of our method.

Fig. S2. Visualization of logits output in-
crease of 10 data samples using DF-TND
on a TrojanNet when label 4 is the target
label. The minimum increase belonging to
the target label is 600

Fig. S3. Visualization of logits output in-
crease of 10 data samples using DF-TND
on a cleanNet. The maximum logits out-
put increase is 10

3 A Unified Optimization Framework in TrojanNet
Detection

In order to build TrojanNet detectors in both data-limited and data-free settings,
we need to solve a sparsity-promoting optimization problem, in the specific forms
of main paper’s (2), (5), and (7), subject to a set of box and equality constraints.

Supplementary Material 3

In what follows, we propose a general optimization method by leveraging the idea
of proximal gradient [1, 2].

Consider a problem with the generic form of problems (2), (5), and (7) in
the main paper,

min
m,δ,w

F (δ,m,w) + λ‖m‖1 + I(δ) + I(m) + I ′(w), (1)

where F (δ,m,w) denotes the smooth loss term, and I(x), I ′(w) denote the
indicator functions to encode the hard constraints

I(x) =

{
0 x ∈ [0, α]n

∞ otherwise,
I ′(w) =

{
0 w ∈ [0, 1]n,1Tw = 1
∞ otherwise.

(2)

In I(x), α = 1 for m and α = 255 for δ. We remark that the binary constraint
m ∈ {0, 1}n is relaxed to a continuous probabilistic box m ∈ [0, 1]n.

To solve problem (1), we adopt the alternative proximal gradient algorithm
[1], which splits the smooth-nonsmooth composite structure into a sequence of
easier problems that can be solved more efficiently or even analytically. To be
more specific, we alternatively perform

m(t+1) = Proxµt(I+λ‖·‖1)(m
(t) − µt∇mF (δ(t),m(t))) (3)

δ(t+1) = ProxµtI(δ(t) − µt∇δF (δ(t),m(t+1))) (4)

w(t+1) = ProxµtI′(w
(t) + µt∇wF (δ(t+1),m(t+1),w(t))), (5)

where µt denotes the learning rate at iteration t, and Proxµg(a) denotes the
proximal operator of function g with respect to the parameter µ at an input a.

We next elaborate on the proximal operators used in (3)-(5). The proximal
operator Proxµt(I+λ‖·‖1)(a) is given by the solution to the problem

min
m
I(m) + λ‖m‖1 +

1

2µt
‖m− a‖22, (6)

where a := m(t) − µt∇mF (δ(t),m(t)). The solution to problem (6), namely,
m(t+1) is given by [1]

m
(t+1)
i = Clip[0,1](sign(ai) max {|ai| − λµt, 0}),∀i, (7)

where m
(t+1)
i dentoes the ith entry of m(t+1), and Clip[0,1] is a clip function

that clip the variable to 1 if it is larger than 1 and to 0 if it is smaller than 0.
Similarly, δ(t+1) in (4) is obtained by

δ
(t+1)
i = Clip[0,255](bi), (8)

where b := δ(t) − µt∇δF (δ(t),m(t+1)).
The proximal operator ProxµtI′(c) in (5) is given by the solution to the

problem

min
w
I ′(w) +

1

2µt
‖w − c‖22, (9)

4 R. Wang et al.

which is equivalent to

min
w
‖w − c‖22, s.t. 0 ≤ w ≤ 1, 1Tw = 1. (10)

Here c := w(t) + µt∇wF (δ(t+1),m(t+1),w(t)). The solution to problem (10) is
given by [2]

w(t+1) = [c− µ1]+ , (11)

where [a]+ denotes the operation of max{0, a}, and µ is the root of the equation
1T [c− µ1]+ =

∑
i max{0, ci − µ} = 1.

Substituting (7), (8) and (11) into (3)-(5), we then obtain the complete al-
gorithm, in which each step has a closed-form.

4 DL-TND: Additional Experiments

Models for testing. Table S1 shows the numbers of different models used for
testing. Models have three different architectures and are applied to CIFAR-10,
GTSRB, and R-ImgNet. We trained 85 TrojanNets and 85 cleanNets, respec-
tively. In addition to the diversity of model architecture and dataset types, we
also train TrojanNets with different triggers. Table S2 shows the smallest test
accuracy and attack success rate for TrojanNets and cleanNets. TrojanNets can
reach a similar test accuracy as cleanNets while still keeping the high attack
success rate. This suggests that they are valid TrojanNets as defined in Sec. 2.1
in the main paper.

Table S1. Numbers of different models for detection: Model structures include
ResNet50, VGG16, AlexNet. Datasets include CIFAR-10, GTSRB, and R-ImgNet.

CIFAR-10 GTSRB R-ImgNet

ResNet50 (TrojanNet) 20 12 5

ResNet50 (cleanNet) 20 12 5

VGG16 (TrojanNet) 10 9 5

VGG16 (clean) 10 9 5

AlexNet (TrojanNet) 10 9 5

AlexNet (cleanNet) 10 9 5

Total 80 60 30

Applying median absolute deviation method as the detection rule.
Table S3 provides the comparisons between DL-TND and NC method [3] on
Trojan and cleanNets using Median Absolute Deviation (MAD) as the detection
rule. Even using the MAD method as the detection rule, we find that DL-TND
greatly outperforms NC in detection tasks of both TrojanNets and cleanNets.

Supplementary Material 5

Table S2. The smallest test accuracy and attack success rate for TrojanNets and
cleanNets. TrojanNets can reach a similar test accuracy as cleanNets while still keeping
the high attack success rate. This suggests that they are valid TrojanNets as defined
in Sec. 2.1 in the main paper.

CIFAR-10 GTSRB R-ImgNet

Test accuracy (Trojan) 90.51% 92.99% 86.7%
Attack success rate 99.65% 99.65% 98.6%
Test accuracy (clean) 92.64% 92.5% 87.8%

Table S3. Comparisons between DL-TND and NC [3] on TrojanNets and cleanNets
using Median Absolute Deviation as the detection rule (measured by number of correct
detection/model number).

DL-TND (clean) DL-TND TND (poisoned) NC (clean) NC (poisoned)

CIFAR-10 ResNet-50 16/20 17/20 11/20 13/20
VGG16 8/10 8/10 5/10 6/10
AlexNet 8/10 8/10 6/10 7/10

GTSRB ResNet-50 9/12 12/12 10/12 6/12
VGG16 7/9 9/9 6/9 7/9
AlexNet 7/9 9/9 5/9 5/9

ImageNet ResNet-50 4/5 4/5 4/5 1/5
VGG16 4/5 3/5 3/5 2/5
AlexNet 4/5 4/5 4/5 1/5

Total 67/85 74/85 54/85 48/85

Varying number of data samples in each class. We also vary the number
of validation data points for CIFAR-10 models and see the detection perfor-
mance when we choose the quantile to be 0.5 (median). The number of data
points in each class is chosen as 1, 2, and 5 and the corresponding AUC values
are 0.96, 0.98 and 1, respectively. We can see that the data-limited TrojanNet
detector is effective even when only one data point is available for each class.

ROC curve for target label detection. Let the true positive rate be the
detection success rate of target labels and the false negative rate be the detection
error rate of cleanNets. Table 2 in the main paper also shows the AUC values
for target label detection, and Fig. S4 shows the ROC curves for target label
detection using DL-TND. We set I(k) to quantile-0.25, median, quantile-0.75 of
the similarity values and vary T1. Under the three different quantile selections,
AUC values are all above 0.98.

Visualization of the universal perturbations. In Fig. S5, we show the uni-
versal perturbation obtained through (2) of the main paper. Due to the presence
of backdoor in TrojanNets, universal perturbations can reveal common patterns
with the real triggers, and this property is reflected in Fig. S5. Since DL-TND
tries to find the smallest universal perturbation, the recovered perturbation pat-
tern could be much more sparse than the Trojan trigger when the Trojan trigger

6 R. Wang et al.

Fig. S4. ROC curve for target label detection using data-limited TrojanNet detector
over 85 TrojanNets and 85 cleanNets

is very complicated. This can be viewed in the perturbation pattern in the last
two columns of Fig. S5.

5 DF-TND: Additional Experiments

The sensitivity to trigger locations and sizes. Fig. S6 and Fig. S7 provide
the experimental results for the sensitivity to trigger locations and sizes. Fig. S6
shows that locations of perturbations vary when the locations of Trojan triggers
vary. However, the recovered perturbations do not always have the same locations
as the Trojan triggers. Patterns shifted and enlarged due to the convolution
operations. Fig. S7 shows that DF-TND can recover the trigger pattern when
the size of the Trojan trigger increases, and the area of the recovered perturbation
increases when the size of the Trojan trigger increases.
Improvements using the refine method - maximizing the neuron acti-
vation corresponding to the Trojan-related coordinate. Note that once
the recovered data is obtained from the optimization problem (7) in the main
paper, one can find the coordinate related to Trojan feature by checking the
largest neuron activation value (or the largest weight) among all the coordi-
nates. Then maximizing the output of the Trojan-related coordinate separately
could provide a better result. Fig. S8 shows the improvements using DF-TND
together with our refine method - maximizing the neuron activation correspond-
ing to the Trojan-related coordinate. The refine method can increase the logits
output belonging to the target label, while decrease the logits outputs belonging
to the non-target labels simultaneously.
ROC curves for TrojanNet detection with clean validation inputs and
random noise inputs. Fig. S9 (a) and (b) show the ROC curves for TrojanNet
detection with clean validation inputs and random noise inputs, respectively.
The true positive rate is the detection success rate for TrojanNets and the false

Supplementary Material 7

negative rate is the detection error rate for cleanNets. In both cases, DF-TND
can reach nearly perfect AUC values 0.99. T2 = 55−400 could provide a detection
success rate of more than 85% for TrojanNets and a detection success rate of
over 90% for cleanNets.
Recovered perturbations under different λ.

In Fig. S10 and Fig. S11, we vary the sparsity penalty parameter λ and ob-
tain perturbations under a TrojanNet and a cleanNet. One can find that the
trigger pattern appears in the perturbations under the TrojanNet. The pertur-
bations under cleanNet behave like random noises. Another discovery is that the
perturbations become more and more sparse when λ increases.

This method also works for random noise inputs. Fig. S11 shows the original
noise images, trigger, perturbations under poisoned model, and perturbations
under cleanNet. The same behaviors as the clean inputs are observed.

8 R. Wang et al.

CIFAR-10 input GTSRB input ImageNet input

S
e
e
d

Im
a
g
e
s

R
e
c
o
v
e
re

d
im

a
g
e
s

(c
le

a
n

N
e
t)

P
e
rt

u
rb

a
ti

o
n

p
a
tt

e
rn

(c
le

a
n

N
e
t)

T
ro

ja
n

tr
ig

g
e
rs

R
e
c
o
v
e
re

d
im

a
g
e
s

(T
ro

ja
n

N
e
t)

P
e
rt

u
rb

a
ti

o
n

p
a
tt

e
rn

(T
ro

ja
n

N
e
t)

Fig. S5. Visualization of the universal perturbations obtained by our proposed DL-
TND. Here the TrojanNets are trained by 10% poisoned data and clean data, respec-
tively. First row: Seed input images (from left to right: 2 randomly selected CIFAR-10
images, 2 randomly selected GTSRB images, 2 randomly selected ImageNet images).
Second row: Recovered images under cleanNets. Third row: Perturbation patterns given
by the difference between the recovered images in the second row and the original seed
image. Fourth row: Trojan triggers used for TrojanNets. Fifth row: Recovered images
under TrojanNets. Sixth row: Perturbation patterns given by the difference between
the recovered images in the fifth row and the original seed images. Perturbation has
common patterns with the real Trojan triggers. Since DL-TND tries to find the small-
est universal perturbation, the recovered perturbation pattern could be much more
sparse than the Trojan trigger when the Trojan trigger is very complicated. This can
be viewed in the perturbation pattern in the last two columns.

Supplementary Material 9

T
ro

ja
n

tr
ig
g
e
rs

C
le
a
n

In
p
u
t
1

P
e
rt
u
rb

a
ti
o
n
s
1

C
le
a
n

In
p
u
t
2

P
e
rt
u
rb

a
ti
o
n
s
2

N
o
is
e
In

p
u
t
3

P
e
rt
u
rb

a
ti
o
n
s
3

N
o
is
e
In

p
u
t
4

P
e
rt
u
rb

a
ti
o
n
s
4

center: [5,5] center: [5,15] center: [5,25] center: [15,5] center: [15,15] center: [15,25] center: [25,5] center: [25,15] center: [25,25]

Fig. S6. Visualization of perturbations when locations of Trojan triggers change. Here
the TrojanNets are trained by 10% poisoned data and clean data, respectively. First
row: Trojan triggers in different locations (the centers of the triggers are listed above).
Second row: Clean seed image 1 (ship). Third row: Recovered perturbations 1 with
input from the second row. Fourth row: Clean seed image 2 (deer). Fifth row: Recovered
perturbations 2 with input from the fourth row. Sixth row: random noise seed image
3. Seventh row: Recovered perturbations 3 with input from the sixth row. Eighth row:
random noise seed image 4. Ninth row: Recovered perturbations 4 with input from the
eighth row. Locations of perturbations vary when the locations of Trojan triggers vary.
However, the recovered perturbations do not always have the same locations as the
Trojan triggers. Patterns shifted and enlarged due to the convolution operations.

10 R. Wang et al.

trigger size 3× 3 trigger size 5× 5 trigger size 7× 7 trigger size 9× 9

T
ro

ja
n

tr
ig

g
e
rs

S
e
e
d

im
a
g
e
s

R
e
c
o
v
e
re

d
im

a
g
e
s

P
e
rt

u
rb

a
ti

o
n

p
a
tt

e
rn

Fig. S7. Visualization of perturbations when sizes of Trojan triggers change. Here the
Trojan ResNet-50 models are trained by 10% poisoned data and clean data, respec-
tively. We vary the trigger size from 3 × 3 to 9 × 9 and show the recovery in different
columns. First row: Trojan triggers with different sizes (the sizes of the triggers are
listed above). Second row: Seed images (clean CIFAR-10 images and random noise
images). Third row: Recovered images with inputs from the second row. Fourth row:
Perturbation patterns given by the difference between the recovered images in the
third row and the seed images. One can see that the area of the recovered perturbation
increases when the size of the Trojan trigger increases.

(a) (b)

Fig. S8. Improvements using DF-TND together with our refine method - maximizing
the neuron activation corresponding to the Trojan-related coordinate: (a) Visualization
of logits output increase of 10 random noise inputs before using the refine method when
label 4 is the target label. The maximum increase belonging to the target label is 600,
the maximum decreasing belonging to the non-target label is 600. (b) Visualization of
logits output increase of the same 10 random noise inputs after using the refine method
when label 4 is the target label. The maximum increase belonging to the target label
is 2500, the maximum decreasing belonging to the non-target label is 1500. The refine
method increases the logits output belonging to the target label, while decreases the
logits outputs belonging to the non-target labels

Supplementary Material 11

(a) (b)

Fig. S9. ROC curves for TrojanNet detection with clean validation inputs and ran-
dom noise inputs: (a) Clean validation inputs (AUC=0.99) (b) Random noise inputs
(AUC=0.99)

T
ro

ja
n
N
e
t

c
le
a
n
N
e
t

clean inputs Trojan vs. clean λ = 0.000001 λ = 0.00001 λ = 0.0001 λ = 0.001

Fig. S10. Visualization of perturbations with CIFAR-10 image inputs when the spar-
sity penalty parameter λ varies. First row: Images under a TrojanNet. Second row:
Images under a cleanNet.

T
ro

ja
n
N
e
t

c
le
a
n
N
e
t

random noise inputs Trojan vs. clean λ = 0.000001 λ = 0.00001 λ = 0.0001 λ = 0.001

Fig. S11. Visualization of perturbations with random noise inputs when the sparsity
penalty parameter λ varies. First row: Images under a TrojanNet. Second row: Images
under a cleanNet.

12 R. Wang et al.

References

1. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for
nonconvex and nonsmooth problems. Mathematical Programming 146(1-2), 459–
494 (2014)

2. Parikh, N., Boyd, S., et al.: Proximal algorithms. Foundations and Trends R© in
Optimization 1(3), 127–239 (2014)

3. Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng, H., Zhao, B.Y.: Neu-
ral cleanse: Identifying and mitigating backdoor attacks in neural networks. Neu-
ral Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks p. 0
(2019)

