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Abstract. We build a new model of landscape videos that can be trained
on a mixture of static landscape images as well as landscape anima-
tions. Our architecture extends StyleGAN model by augmenting it with
parts that allow to model dynamic changes in a scene. Once trained, our
model can be used to generate realistic time-lapse landscape videos with
moving objects and time-of-the-day changes. Furthermore, by fitting the
learned models to a static landscape image, the latter can be reenacted
in a realistic way. We propose simple but necessary modifications to
StyleGAN inversion procedure, which lead to in-domain latent codes
and allow to manipulate real images. Quantitative comparisons and user
studies suggest that our model produces more compelling animations of
given photographs than previously proposed methods. The results of our
approach including comparisons with prior art can be seen in supplemen-
tary materials and on the project page https://saic-mdal.github.io/deep-
landscape/.

1 Introduction

This work is motivated by the “bringing landscape images to life” application.
We thus aim to build a system that for a given landscape photograph, generates
its plausible animation with realistic movements and global lighting changes.
To achieve our goal, we first build a generative model (Figure 1) of timelapse
landscape videos, which can successfully capture complex aspects of this domain.
These complexities include both static aspects such as abundance of spatial
details, high variability of texture and geometry, as well as dynamic complexity
including motions of clouds, waves, foliage, and global lighting changes. We build
our approach upon the recent progress in the generative modeling of images,
and specifically the StyleGAN model [1]. We show how to change the StyleGAN
model to learn and to decompose different dynamic effects: global changes are
controlled by the non-convolutional variables, strong local motions are controlled
by “noise branch” inputs.

Similarly to the original StyleGAN model, ours requires a large amount of
training data. While it is very hard to obtain a very large dataset of high-quality
scenery timelapse videos, obtaining a large-scale dataset of scenery static images
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is much easier. We thus suggest how our generative model can be learned from
two sources, namely (i) a large-scale dataset of static images, (ii) a smaller
dataset of videos. Previous video GANs learn motion from sequences of consec-
utive video frames. We show that learning on randomly taken frames without
an explicit motion model is possible. It allows to disentangle static appearance
from the dynamic, as well as manifold of possible changes from a trajectory in
it.

Fig. 1. Videos generated by the DeepLandscape model. Each row shows a separate
video, obtained by sampling the static and dynamic components randomly, and then
animating the dynamic components using homography warping. These videos are gen-
erated at 512× 512 resolution (zoom-in recommended).

Once trained, our model can animate a given photograph. We first fit the
latent variables of the model to the provided image, and then obtain the anima-
tion by changing the subset of variables corresponding to dynamic aspects ap-
propriately. As our model has more latent parameters than a given static image,
fitting them to a photograph is an ill-posed problem, and we develop a particular
method for such fitting that results in plausible animations. While our model
is trained to generate images at medium resolution (256×256 or 512×512 ), we
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show that we can postprocess the results with an appropriately trained super-
resolution network to obtain videos at higher resolution (up to one megapixel).

In the experiments, we assess the realism of synthetic videos sampled from our
generative model and its ablations. Furthermore, we evaluate our approach at our
main task (“bringing landscape images to life”). For this task, both quantitative
comparisons and, more importantly, user studies reveal a significant advantage
of our system over the three recently proposed approaches [2–4].

2 Related work

Learning video representation and predicting future frames using deep neural
networks is a very active area of research [5–8]. Most early works are focused on
using deep neural networks (DNNs) with recurrent units (GRU or LSTM) and
train them in supervised manner to obtain next frame using pixel-level prediction
[8, 5]. At the same time, Generative Adversarial Nets (GANs) [9] have achieved
very impressive results for image generation, and recently several methods ex-
tending them to video have been suggested. Some GAN-based models consider
single image as an input (image2video) [10, 11], while others input sequences of
frames (video2video, [7, 12–15]). In this work we focus only on the image2video
setting. Training GANs for video-generation often performed with two discrim-
inator networks: single image and temporal discriminators [12, 16, 14]. In this
work we propose to use a simplified temporal discriminator, which only looks at
unordered pairs of frames.

Video generation/prediction works generally consider either videos with ar-
ticulated objects/multiple moving objects [17, 18] or videos with weakly struc-
tured moving objects or dynamic textures such as clouds, grass, fire [14, 4]. Our
work is more related to the latter case, namely: landscape photos and videos.
Because of the domain specifics, we can model spatial motions in the video in
the latent space using simple homography transformations, and let the generator
to synthesize plausible deviations from this simplistic model. Our approach is
thus opposed to methods that animate landscapes and textures by generating
warping fields applied to the raw pixels of the input static image [2, 19, 11, 20,
21]. Animation in the latent space as well as the separation of latent space into
static and dynamic components has been proposed and investigated in [22, 6, 23,
2, 24]. Our work modifies and extends these ideas to the StyleGAN [1] model.

As we need to find latent space embedding of static images in order to animate
them, we follow a number of works on GAN inversion (inference). Here, we
borrow ideas of using an encoder into the latent space followed by gradient
descent [25], the latent space expansion for StyleGAN [26], and generator fine-
tuning [27, 28]. On top of that, we have to make several important adjustments
to the inference procedure specific to our architecture, and we show that without
such adjustments the animation works poorly.
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3 Method

3.1 Generative model of timelapse videos
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Fig. 2. Left – the generator used by our model (augmented StyleGAN generator). The
main difference from StyleGAN is the second set of spatial input tensors (darkgray).
Right – sampling procedure for our model. Two frames of the same video can be
sampled by using same static latent variables (lightgray), and two different sets of
dynamic latent variables (darkgray and yellow).

Model architecture. The architecture of our model is based on StyleGAN [1].
Our model outputs images of resolution 256 × 256 (or 512 × 512) and has four
sets of latent variables:

– a vector zst ∈ RDst

, which encodes colors and the general scene layout;

– a vector zdyn ∈ RDdyn

, which encodes global lighting (e.g. time of day);

– a set Sst of square matrices Sst
1 ∈ R4×4, ..., Sst

N ∈ R2N+1×2N+1

, which encode
shapes and details of static objects at N = 7 different resolutions between
4× 4 and 256× 256 (N = 8 for 512× 512);

– a set Sdyn of square matrices Sdyn
1 ∈ R4×4, ..., Sdyn

N ∈ R2N+1×2N+1

, which
encode shapes and details of dynamic objects at the corresponding resolu-
tions.

Our generator has two components: the multilayer perceptron M and the
convolutional generator G. As in [1], the perceptron M takes the concatenated
vector z =

[
zst, zdyn

]
∈ R512 and transforms it to the style vector w ∈ R512. The

convolutional generator G also follows [1] and has N = 7 (or 8) blocks. Within
each block, a convolution is followed by two elementwise additions of two ten-
sors obtained from Sst

n and Sdyn
n by a learnable per-channel scaling (whereas

[1] has only one addition). Finally, the AdaIN [29] transform is applied using
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per-channel scales and biases obtained from w using learnable linear transform.
Within each block, this sequence of steps is repeated twice followed by upsam-
pling and convolution layers.

Below, we will refer to the set of input latent variables{
zst, zdyn, Sst

1 , ..., Sst
N , Sdyn

1 , ..., Sdyn
N

}
as original inputs (or original latents). As in StyleGAN, the convolutional gen-
erator may use separate w vectors at each of the resolution (style mixing).
We will then refer to the set of all style vectors as W = {w1, ...,wN}. Fi-
nally, we will denote the set of all spatial random inputs of the generator as

S = {Sst, Sdyn} =
{
Sst
1 , ..., Sst

N , Sdyn
1 , ..., Sdyn

N

}
.

Learning the model. The model is trained from two sources of data, the
dataset of static scenery images I and the dataset of timelapse scenery videos
V. It is relatively easy to collect a large static dataset, while with our best
efforts we were able to collect a few hundreds of videos, that do not cover all
the diversity of landscapes. Thus, both sources of data have to be utilized in
order to build a good model. To do that, we train our generative model in an
adversarial way with two different discriminators.

The static discriminator Dst has the same architecture and design choises
as in StyleGAN. It observes images from I as real, while the fake samples are
generated by our model. The pairwise discriminator Ddyn looks at pairs of im-
ages. It duplicates the architecture of Dst except first convolutional block that
is applied separately to each frame. A real pair of images is obtained by sam-
pling a video from V, and then sampling two random frames (arbitrary far for
each other) from it. A fake pair is obtained by sampling common static la-
tents zst and Sst, and then individual dynamic latents zdyn,1, zdyn,2 and Sdyn,1,
Sdyn,2. The two images are then obtained as G(M(zst, zdyn,1), Sst,Sdyn,1) and
G(M(zst, zdyn,1), Sst,Sdyn,2). All samples are drawn from unit normal distribu-
tions.

The model is trained within standard GAN approach with non-saturating
loss [9] with R1 regularization [30] as in the original StyleGAN paper. During
each update of the generator, we either sample a batch of fake images to which
the static discriminator is applied or a batch of image pairs to which the pairwise
discriminator is applied. The proportions of the static discriminator and the
pairwise discriminator are annealed from 0.5/0.5 to 0.9/0.1 respectively over each
resolution transition phase and then kept fixed at 0.1. This helps the generator
to learn disentangle static and dynamic latents early for each resolution and
prevents the pairwise generator from overfitting to our relatively small video
dataset.

During learning, we want the pairwise discriminator to focus on the incon-
sistencies within each pair, and leave visual quality to the static discriminator.
Furthermore, since the pairwise discriminator only sees real frames sampled from
a limited number of videos, it may prone overfit to this limited set and effectively
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stop contributing to the learning process (while the static discriminator, which
observes more diverse set of scenes, keeps improving the diversity of the model).
It turns out, both problems (focus on image quality rather than pairwise con-
sistency, overfitting to limited diversity of videos) can be solved with a simple
trick. We augment the fake set of frames with pairs of crops taken from same
video frame, but from different locations. Since these crops have the same visual
quality as the images in real frames, and since they come from the same videos
as images within real pairs, the pairwise discriminator effectively stops paying
attention to image quality, cannot simply overfit to the statistics of scenes in the
video dataset, and has to focus on finding pairwise inconsistencies within fake
pairs. We observed this crop sampling trick to improve the quality of our model
significantly.

Config I2S [26] MO E EO EOI EOIF EOIFS

Init W Mean Mean E E E E E
Init S Random Zero Random Zero Zero Zero Zero

Optimize S + + + + +
Optimize W + + + + + +

LO
init + + +

Fine-Tune G + +
Segmentation +

Reconstruction - + - + ± + +
Animation - - + - + + +

Fig. 3. The effect of different inference algorithms on the reconstruction quality and the
ability to animate. Left column: original image. First row: reconstructions obtained
with different inference algorithms. Second row: a frame from animation (Sdyn are
shifted 50% left). Note that I2S [26] does not work well in our case, since our generator
relies on S more than the original StyleGAN method. LO

init is a regularization term
applied to W during inference, which makes latents to stay in-domain and allows to
manipulate real images. We quantify these effects in supplementary materials.

Sampling videos from the model. Our model does not attempt to learn
full temporal dynamics of videos, and instead focuses on pairwise consistency of
frames that are generated when the dynamic latent variables are resampled. In
particular, the pairwise discriminator in our model does not sample real frames
sequentially. The sampling procedure for fake pairs does not try to generate ad-
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jacent frames either. One of the reasons why we do not attempt to learn conti-
nuity, is because the training dataset contains videos of widely-varying temporal
rates, making the notion of temporal adjacency for a pair of frames effectively
meaningless.

Because of this our generation process is agnostic to a model of motion.
The generator is forced to produce plausible frames regardless of Sdyn and zdyn

changes. In our experiments we found that a simple model of motion described
below is enough to produce compelling videos. Specifically, to sample a video,
we sample a single static vector zst from the unit normal distribution and then
interpolate the dynamic latent vector between two unit normally-distributed
samples zdyn,1 and zdyn,2. For the spatial maps, we again sample Sst and Sdyn,1
from a unit normal distribution and then warp the Sdyn tensor continuously
using a homography transform parameterized by displacements of two upper
corners and two points at the horizon. The direction of the homogrpahy is sam-
pled randomly, speed was chosen to match the average speed of clouds in our
dataset. The homography is flipped vertically for positions below the horizon to
mimic the reflection process. To obtain Sdyn,i, we make a composition of i − 1
identical transforms and then apply it to Sdyn,1. As we interpolate/warp the
latent variables, we pass them through the trained model to obtain the smooth
videos (Figure 1 and Supplementary video). Note that our models requires
no image-specific user input.

3.2 Animating Real Scenery Images with Our Model

Inference. To animate a given scenery image I, we find (infer) a set of latent
variables that produce such image within the generator. Following [26], we look
for extended latents W and S, so that G(W,S) ≈ I, but our procedure is
different from theirs. After that, we apply the same procedure as described above
to animate the given image.

The latent space of our generator is highly redundant, and to obtain good
animation, we have to ensure that the latent variables come roughly from the
same distribution as during the training of the model (most important,W should
belong to the output manifold of M). Without such prior, the latent variables
that generate good reconstruction might still result in implausible animation
(or lack of it). We therefore perform inference using the following three-step
procedure:

1. Step 1: predicting a set of style vectors W ′ using a feedforward encoder
network E [25]. The encoder has ResNet-152 [31] architecture and is trained
on 200000 synthetic images with mean absolute error loss. W is predicted
by two-layer perceptron with ReLU from the concatenation of features from
several levels of ResNet, aggregated by global average pooling.

2. Step 2: starting from W ′ and zero S, we optimize all latents to improve
reconstruction error. In addition, we penalize the deviation of W from the
predicted W ′ (with coefficient 0.01) and the deviation of S from zero (by
reducing learning rate). We optimize for up to 500 steps with Adam [32] and
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large initial learning rate (0.1), which is halved each time the loss does not
improve for 20 iterations. A variant of our method that we evaluate sepa-
rately, uses a binary segmentation mask obtained by ADE20k-pretrained [33]
segmentation network3. The mask identifies dynamic (sky+water) and re-
maining (static) parts of the scene. In this variant, Sst (respectively Sdyn)
are kept at zero for dynamic (respectively, static) parts of the image.

3. Step 3: freezing latents and fine-tuning the weights of G to further drive
down the reconstruction error [27, 28]. The step is needed since even after op-
timization, the gap between the reconstruction and the input image remains.
During this fine-tuning, we minimize the combination of the per-pixel mean
absolute error and the perceptual loss [34], with much larger (10×) weight
for the latter. We do 500 steps with ADAM and lr = 0.001.

Input

E
O

IF
E

O
IF

E
O

IF
E

O
IF

S
E

O
IF

S

Fig. 4. Examples of real images animated with our model. Each row shows a sequence
of frames from a single video. Each frame is 256 × 256 (please zoom in for details).
Clouds, reflections and waves move and change their shape naturally; time of day also
changes. More examples are available in the Supplementary video.

Please refer to Figure 3 and Supplementary Materials for examples of qualita-
tive effects of fine tuning. We also evaluate our inference pipeline quantitatively
(see Section 4).

3 CSAIL-Vision: https://github.com/CSAILVision/semantic-segmentation-pytorch
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Lighting manipulation. During training of the model, M is used to map
z to w. We resample zdyn in order to take into account variations of lighting,
weather changes, etc. and to have zst describe only static attributes (land, build-
ings, horizon shape, etc.). To change lighting in a real image, one has to change
zdyn and then use MLP to obtain new styles W. Our inference procedure, how-
ever, outputs W and we have found it very difficult to invert M and obtain
z = M−1(w).

To tackle this problem, we train a separate neural network, A, to approxi-
mate local dynamics of M. Let wa = M(zsta , z

dyn
a ) and wb = M(zstb , z

dyn
b ), we

optimize A as follows: A(wa, z
dyn
b , c) ≈ M(zsta , z

dyn
a

√
1− c + zdynb

√
c), where

c ∼ Uniform(0, 1) is coefficient of interpolation between wa and wb. Thus,

c = 0 corresponds to zdyna , so A(wa, z
dyn
b , 0) ≈ wa; c = 1 corresponds to zdynb ,

so A(wa, z
dyn
b , 1) ≈ wb.

We implement this by the combination of L1-loss LA
Abs = |wb −A(·)| and rel-

ative direction loss LA
Rel = 1− cos (wb −wa,A(·)−wa). The total optimization

criterion is LA = LA
Abs+0.1LA

Rel. We train A with ADAM [32] until convergence.

At test time, the network A allows us to sample a random target zdynb and up-
date W towards it by increasing the interpolation coefficient c as the animation
progresses. Please refer to Figure 4 and Supplementary Video for examples
of animations with our full pipeline.

Super Resolution (SR). As our models are trained at medium resolution
(e.g. 256×256), we aim to bring fine details from the given image that we need
to animate through a separate super-resolution procedure. The main idea of our
super resolution approach is to borrow as much as possible from the original
high-res image (which is downsampled for animation via G). To achieve that,
we super-resolve the animation and blend it with the original image using a
standard image superresolution approach. We use ESRGANx4 [35] trained on a
dedicated dataset that is created as follows. To obtain the (hi-res, low-res) pair,
we take a frame I from our video dataset as a hi-res image, we downsample it
and run the first two steps of inference and obtain an (imperfect) low-res image.
Thus, the network is trained on a more complex task than superresolution.

After obtaining the super-resolved video, we transfer dynamic parts (sky
and water) from it to the final result. The static parts are obtained by running
the guided filter [36] on the super-resolved frames while using the input high-
res image as a guide. Such procedure effectively transfers high-res details from
the input, while retaining the lighting change induced by lighting manipulation
(Figure 5).

4 Experiments

We evaluate our method both quantitatively and qualitatively (via user study)
on synthetic and real images separately. Evaluation on synthetic images (gener-
ation) aims on quantifying impact of major design choices of G itself (without
encoding and super-resolution). Evaluation on real images (animation) aims on
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comparison with previous single-image animation methods, including Animat-
ing Landscape (AL) [2], SinGAN (SG) [3] and Two-Stream Networks (TS ) [4].
The Animating Landscape system is based on learnable warping and is trained
on more than a thousand time-lapse videos from [37, 14]. The SinGAN method
creates a hierarchical model of image content based on the input model alone.
It therefore has an advantage of not needing an external dataset, though, as
a downside, it requires considerable time to fit a new image. Two-Stream Net-
works [4] create animated textures given a static texture image and a short clip
(an example of motion) via optimization of video tensor. We also tried a to in-
clude two more baselines, i.e. linear dynamic systems [38] and Seg2Vid [10], but
with former we got very poor quality and the latter failed to converge on our
data, so we did not proceed with full comparison. We also tried to train and
finetune AL on our video dataset (which is significantly smaller than that from
AL paper), with little success (see supp.mat.).

We estimate quality through three different aspects: individual image quality ;
static consistency ; animation plausibility. Individual image quality is estimated
via Fréchet Inception Distance [39], masked SSIM [40] and LPIPS [41]. Static
consistency evaluation aims on quantifying how good objects that must not
move (e.g. buildings, mountains etc.) are preserved over time. For that purpose
we calculate SSIM and LPIPS between first frame and each generated video
frame (only for static parts). Perfect image quality and static consistency can
be achieved by not animating anything at all. Thus, we evaluate animation
plausibility via user study and Fréchet Video Distance [42].

To generate videos using our method, we use a manually constructed set
of homographies. Data-driven estimation of homographies is out scope of this
work, so we have prepared 12 homographies, one for each clock position (e.g.
the “12h” move clouds up and towards the observer, the “3h” moves straight
to the right, etc.). Normally, these homographies resemble the average speed of
clouds in our training dataset. We increase this speed for synthetic experiments
to make differences between variants of our method more obvious; we slow down
animation for experiments with real images in order to approximately align our
speed with that of the competitors (AL, SG and TS).

Datasets. Our model was trained using both videos and single images avail-
able in the Internet under Creative Commons License. For evaluation we use
69 landscape FullHD time-lapse videos published on YouTube between Dec. 28
2019 and Jan. 29 2020. For FID computation, we have collected 2400 pictures
from Flickr4.

Generation. In order to perform thorough ablation study in reasonable time,
we perform all evaluations in this section at 128 × 128 resolution. To estimate
static consistency, we sample 1200 pairs of images from G, mask out sky and
water according to segmentation mask and calculate LPIPS and SSIM between
two images in a pair. In each pair the images are generated from the same
zst,Sst and different zdyn,Sdyn. For the user study we sample 100 videos 200
frames long at 30 FPS. In order to compare different ablations, the assessors

4 https://flickr.com
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Input G1 G2 SR1 SR2

Fig. 5. Examples of super-resolution (SR) applied to the output of our generator (G)
given input image (Input). The inputs and SR are at 1024× 1024 resolution, while the
low-res images are at 256× 256 resolution. Zoom-in recommended.

Setup FID↓ SSIM↑ LPIPS↓ ∆R

Original StyleGAN 48.40 0.809 0.049

+ frame discriminator 55.92 0.846 0.064 0.13

+ separate Sst and Sdyn 55.15 0.854 0.073 0.01

+ separate zst and zdyn 54.38 0.879 0.065 0.03
+ crop sampling 56.13 0.884 0.062 0.06

Fig. 6. Results of the ablation study of our model for the task of new video generation.
The column ∆R in the table are obtained from the side-by-side user study. ∆R shows
the increase in frequency when assessors prefer this variant to that in previous row
(+0.23 against original StyleGAN).
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were asked to select the most realistic video from a pair shown side-by-side.
Each assessor is limited to evaluate no more than three pages with four tasks on
each and has five minutes to complete each page. In our user study we showed
each pair to five assessors. The ablation study results (Figure 6) reveal that the
original StyleGAN generates the most high-fidelity images, but fails to preserve
details of static objects. LPIPS is more tolerant to motion until the “texture
type” changes dramatically. Thus, despite LPIPS and FID achieving the best
values for the original StyleGAN, it actually does not preserve static objects (see
Supplementary Video). Our modifications allow to keep a similar level of the
FID value, but gradually improve static consistency and animation plausibility.

Real image animation. Experiments in this section are performed at
256× 256 resolution. To calculate quantitative and qualitative metrics, we took
the first frames I0 of the test videos, encoded and animated them with our
method. Denote the n-th frames of real and generated videos as In and În re-
spectively. With our method, for each input image we generate five variants with
homographies randomly sampled from the predefined set. For AL we generate
five videos for each input image with randomly sampled motion, as described
in the original paper. For all quantitative evaluations we do not apply style
transfer in AL and W manipulation in our method. We evaluate two variants of
AL: with (AL) and without first-to-last interpolation (ALnoint), which stabilizes
image quality, but makes long movements impossible. We use the official imple-
mentation5 of Animating Landscape [2] provided by authors. We use pretrained
AL model; we also evaluate finetuned AL model and found that most metrics
degraded, while the training loss continued to improve. This can be attributed to
the fact that the video dataset used in AL is bigger than ours; both include the
public part of data from [14]. Both datasets are just youtube landscape videos
and seem to be equally close to the validation (we are not aware of any biases).
Also, our dataset contains videos with very different motion speed, and neither
text of AL nor its code contains details regarding video speed equalization. All
images are animated in original resolution cropped to 1:1 aspect ratio via center
crop, then bilinearly downsampled to 256× 256 resolution.

For SG [3] we used the official implementation6 and default parameters. We
have not noticed significant difference between multiple SG runs both in terms
of quantitative metrics and visual diversity. Hence we decided not to generate
similar videos many times and sampled only one video for each input image.

For TS [4] we used the official implementation7. TS can animate only the
whole image, so (1) we used semantic segmentation to extract sky; (2) transferred
motion to the extracted image fragment from a random video from the validation
set; (3) blended static part of the original image with the generated clip. TS is
only capable of producing 12 frames due to GPU memory limitations, so we
interpolated frames in order to obtain the necessary video length.

5 https://github.com/endo-yuki-t/Animating-Landscape
6 https://github.com/tamarott/SinGAN
7 https://github.com/ryersonvisionlab/two-stream-dyntex-synth
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Name FVD LPIPS SSIM FID

SG 210 0.063 0.93 66.7

AL 275 0.077 0.91 61.9
ALnoint 162 0.063 0.92 52.4

TS 420 0.039 0.96 46.6

Ourseoifs 161 0.044 0.94 45.8
Ourseoif 149 0.039 0.95 41.2

Fig. 7. Quantitative comparison of image quality, static consistency and motion plausi-
bility. Left and middle: LPIPS↓ and FID↓ between I0 and În, which mostly measure
image quality and static consistency. The legend contains metrics averaged over time.
As can be seen, pixel-level transformations (e.g. using predicted flows in AL) lead to
faster deterioration of generated images over time, compared to our approach, espe-
cially for later frames (n & 50). Right: FVD↓, LPIPS↓, SSIM↑ and FID↓ between In
and În averaged over time, which measure not only image quality, but also animation
plausibility.

We evaluate image quality by measuring FID between the set of all first
frames of real videos I0 and the set of n-th frames of generated videos În. Thus,
we can see how fast these two distributions diverge. Too fast divergence in terms
of FID may indicate image quality degradation in time. We evaluate static con-
sistency by measuring LPIPS between I0 and În with moving parts masked out
according to semantic segmentation. We always predict semantic segmentation
only for I0. Higher LPIPS may indicate that static areas are tampered during
animation (i.e. they are erroneously moving). We also follow the adopted prac-
tice to quantitatively measure motion similarity using Fréchet Video Distance
(FVD) [42] between real and generated videos, which is averaged over motion
directions. Different motion directions are obtained via sampling different ho-
mography (Ours), motion code (AL) and horizontal flipping, choosing random
reference video (TS). As revealed in Figure 7, our method preserves static details
better and the speed of image quality degradation with time is slower than that
of ALnoint.

The user study is carried out using the same real and generated videos as
the ones used in quantitative evaluation. We decided to conduct two sets of user
studies involving real image animation: side-by-side comparisons and real/fake
questions. In the side-by-side setting, assessors are asked to select the more
realistic variant of animation (from two) given the real image shown in the
middle. Both videos in a pair are obtained from the same real image using
different methods. In real/fake setting, assessors see only a single video and
guess whether it is real or not. Each assessor was shown at most 12 questions, 5
different assessors per one question. During the study we noticed that the video
speed affects user preference (slower ones are more favorable). Since we cannot
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Method short long

EOIF EOIFS EOIF EOIFS

SG 0.40 0.44 0.26 0.29

AL (no int) 0.46 0.47 0.37 0.38

AL (+ style) 0.18 0.18 0.11 0.10

TS 0.11 0.12 0.12 0.14

Real 0.41 0.44 0.44 0.45

Ours (EOIF) – 0.52 – 0.52

Ours (EOIFS) 0.48 – 0.48 –

FR

AL (+ style) 0.25

SG 0.38

Ours (Synth.) 0.42

AL (no int) 0.54

TS 0.20

Real 0.59

Ours (EOIFS) 0.62

Ours (EOIF) 0.63

Fig. 8. Left: Ratio of wins row-over-column for side-by-side settings for short (100
frames) and long (200 frames) videos. Right: fooling ratio for the real/fake protocol.
Note that advantage of our method becomes more evident in long videos.

control animation speed in our baselines fairly, we decided to conduct two sets
of user studies: (A) with motion speed aligned to that of competitors and (B)
aligned to that of real videos. Here we present only results of A setting (see
supp.mat. for B setting). To sum up, the user study reveals the advantage of our
method over three baselines (AL, SG, TS), especially in longer videos.

Please refer to Supplementary Materials for more details on methods and
experiments, including quantitative ablation study of inference procedure.

5 Discussion

We have presented a new generative model for landscape animations derived
from StyleGAN, and have shown that it can be trained from the mixture of
static images and timelapse videos, benefiting from both sources. We have in-
vestigated how the resulting model can be used to bring to life (reenact) static
landscape images, and have shown that this can be done more successfully than
with previously proposed methods. Extensive results of our method are shown
in the supplementary video.

The supplementary video also shows failure modes. Being heavily reliant on
machine learning, our approach fails when reenacting static images atypical for
its training dataset. Furthermore, as our video dataset is relatively small and
focuses on slower motions (clouds), we have found that method often fails to
animate waves and grass sufficiently strongly or realistically. Enlarging the image
dataset and, in particular, the video dataset seems to be the most straightforward
way to address these shortcomings.

References

1. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. (2019) 4401–4410



DeepLandscape 15

2. Endo, Y., Kanamori, Y., Kuriyama, S.: Animating landscape: Self-supervised
learning of decoupled motion and appearance for single-image video synthesis.
ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia 2019)
38(6) (2019) 175:1–175:19

3. Shaham, T.R., Dekel, T., Michaeli, T.: Singan: Learning a generative model from
a single natural image. In: Proceedings of the IEEE International Conference on
Computer Vision. (2019) 4570–4580

4. Tesfaldet, M., Brubaker, M.A., Derpanis, K.G.: Two-stream convolutional net-
works for dynamic texture synthesis. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2017) 6703–6712

5. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video
representations using lstms. In: International conference on machine learning.
(2015) 843–852

6. Villegas, R., Yang, J., Hong, S., Lin, X., Lee, H.: Decomposing motion and content
for natural video sequence prediction. arXiv preprint arXiv:1706.08033 (2017)

7. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond
mean square error. CoRR abs/1511.05440 (2015)

8. Finn, C., Goodfellow, I., Levine, S.: Unsupervised learning for physical interaction
through video prediction. In: Advances in neural information processing systems.
(2016) 64–72

9. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural
information processing systems. (2014) 2672–2680

10. Pan, J., Wang, C., Jia, X., Shao, J., Sheng, L., Yan, J., Wang, X.: Video genera-
tion from single semantic label map. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. (2019) 3733–3742

11. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Flow-grounded spatial-
temporal video prediction from still images. In: ECCV. (2018)

12. Wang, T.C., Liu, M.Y., Zhu, J.Y., Liu, G., Tao, A., Kautz, J., Catanzaro, B.:
Video-to-video synthesis. In: Advances in Neural Information Processing Systems
(NeurIPS). (2018)

13. Aigner, S., Körner, M.: Futuregan: Anticipating the future frames of video se-
quences using spatio-temporal 3d convolutions in progressively growing autoen-
coder gans. arXiv preprint arXiv:1810.01325 (2018)

14. Xiong, W., Luo, W., Ma, L., Liu, W., Luo, J.: Learning to generate time-lapse
videos using multi-stage dynamic generative adversarial networks. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). (June 2018)

15. Li, Y., Roblek, D., Tagliasacchi, M.: From here to there: Video inbetweening using
direct 3d convolutions. ArXiv abs/1905.10240 (2019)

16. Clark, A., Donahue, J., Simonyan, K.: Efficient video generation on complex
datasets. ArXiv abs/1907.06571 (2019)

17. Soomro, K., Zamir, A.R., Shah, M.: Ucf101: A dataset of 101 human actions classes
from videos in the wild. (2012)

18. Carreira, J., Noland, E., Banki-Horvath, A., Hillier, C., Zisserman, A.: A short
note about kinetics-600. ArXiv abs/1808.01340 (2018)

19. Chen, B., Wang, W., Wang, J.: Video imagination from a single image with trans-
formation generation. In: ACM Multimedia. (2017)

20. Van Amersfoort, J., Kannan, A., Ranzato, M., Szlam, A., Tran, D., Chintala, S.:
Transformation-based models of video sequences. arXiv preprint arXiv:1701.08435
(2017)



16 E. Logacheva et al.

21. Chuang, Y.Y., Goldman, D.B., Zheng, K.C., Curless, B., Salesin, D.H., Szeliski, R.:
Animating pictures with stochastic motion textures. In: ACM SIGGRAPH 2005
Papers. SIGGRAPH ’05, Association for Computing Machinery (2005) 853–860

22. Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: Mocogan: Decomposing motion and
content for video generation. 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2017) 1526–1535

23. Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics.
In: Advances in neural information processing systems. (2016) 613–621

24. Denton, E.L., et al.: Unsupervised learning of disentangled representations from
video. In: Advances in neural information processing systems. (2017) 4414–4423
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