Spatial-Angular Interaction for Light Field
Image Super-Resolution

Yinggian Wang!, Longguang Wang!, Jungang Yang!,
Wei An', Jingyi Yu?, Yulan Guo'?

!National University of Defense Technology,
2ShanghaiTech University, >Sun Yat-sen University.

{wangyinggian16, yangjungang, yulan.guo}@nudt.edu.cn

https://github.com/YingqianWang/LF-InterNet

Abstract. Light field (LF) cameras record both intensity and directions
of light rays, and capture scenes from a number of viewpoints. Both in-
formation within each perspective (i.e., spatial information) and among
different perspectives (i.e., angular information) is beneficial to image
super-resolution (SR). In this paper, we propose a spatial-angular in-
teractive network (namely, LF-InterNet) for LF image SR. Specifically,
spatial and angular features are first separately extracted from input
LFs, and then repetitively interacted to progressively incorporate spa-
tial and angular information. Finally, the interacted features are fused
to super-resolve each sub-aperture image. Experimental results demon-
strate the superiority of LF-InterNet over the state-of-the-art methods,
i.e., our method can achieve high PSNR and SSIM scores with low com-
putational cost, and recover faithful details in the reconstructed images.

Keywords: Light Field Imaging, Super-Resolution, Feature Decoupling,
Spatial-Angular Interaction

1 Introduction

Light field (LF) cameras provide multiple views of a scene, and thus enable
many attractive applications such as post-capture refocusing [1], depth sensing
[2], saliency detection [3,4], and de-occlusion [5]. However, LF cameras face a
trade-off between spatial and angular resolution. That is, they either provide
dense angular samplings with low image resolution (e.g., Lytro and RayTrix),
or capture high-resolution (HR) sub-aperture images (SAIs) with sparse angular
samplings (e.g., camera arrays [6,7]). Consequently, many efforts have been made
to improve the angular resolution through LF reconstruction [8,9,10,11], or the
spatial resolution through LF image super-resolution (SR) [12,13,14,15,16,17].
In this paper, we focus on the LF image SR problem, namely, to reconstruct HR
SAIs from their corresponding low-resolution (LR) SAIs.

Image SR is a long-standing problem in computer vision. To achieve high
reconstruction performance, SR methods need to incorporate as much useful in-
formation as possible from LR inputs. In the area of single image SR (SISR),
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good performance can be achieved by fully exploiting the neighborhood contex-
t (i.e., spatial information) in an image. Using the spatial information, SISR
methods [18,19,20,21,22,23,24] can successfully hallucinate missing details. In
contrast, LF's record scenes from multiple views, and the complementary infor-
mation among different views (i.e., angular information) can be used to further
improve the performance of LF image SR.

However, due to the complicated 4D structures of LFs, many LF image SR
methods fail to fully exploit both the angular information and the spatial infor-
mation, resulting in inferior SR performance. Specifically, in [25,26,27], SAIs are
first super-resolved separately using SISR methods [18,20], and then fine-tuned
together to incorporate the angular information. The angular information is ig-
nored by these two-stage methods [25,26,27] during their upsampling process.
In [15,13], only part of SATs are used to super-resolve one view, and the angular
information in these discarded views is not incorporated. In contrast, Rossi et al.
[14] proposed a graph-based method to consider all angular views in an optimiza-
tion process. However, this method [14] cannot fully use the spatial information,
and is inferior to recent deep learning-based SISR methods [20,21,22].

Since spatial and angular information are highly coupled in 4D LFs and
contribute to LF image SR in different manners, it is difficult for networks to
perform well using these coupled information directly. In this paper, we propose
a spatial-angular interactive network (i.e., LF-InterNet) to efficiently use spatial
and angular information for LF image SR. Specifically, we design two convolu-
tions (i.e., spatial/angular feature extractor) to extract and decouple spatial and
angular features from input LFs. Then, we develop LF-InterNet to progressively
interact the extracted features. Thanks to the proposed spatial-angular inter-
action mechanism, information in an LF can be effectively used in an efficient
manner, and the SR performance is significantly improved. We perform exten-
sive ablation studies to demonstrate the effectiveness of our model, and compare
our method with state-of-the-art SISR and LF image SR methods from different
perspectives, which demonstrate the superiority of our LF-InterNet.

2 Related Works

Single Image SR. In the area of SISR, deep learning-based methods have been
extensively explored. Readers can refer to recent surveys [28,29,30] for more de-
tails in SISR. Here, we only review several milestone works. Dong et al. [18]
proposed the first CNN-based SR method (i.e., SRCNN) by cascading 3 convo-
lutional layers. Although SRCNN is shallow and simple, it achieves significant
improvements over traditional SR methods [31,32,33]. Afterwards, SR networks
became increasingly deep and complex, and thus more powerful in spatial in-
formation exploitation. Kim et al. [19] proposed a very deep SR network (i.e.,
VDSR) with 20 convolutional layers. Global residual learning is applied to VD-
SR to avoid slow convergence. Lim et al. [20] proposed an enhanced deep SR
network (i.e., EDSR) and achieved substantial performance improvements by
applying both local and global residual learning. Subsequently, Zhang et al. [34]
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proposed a residual dense network (i.e., RDN) by combining residual connection
and dense connection. RDN can fully extract hierarchical features for image SR,
and thus achieve further improvements over EDSR. More recently, Zhang et al.
[21] and Dai et al. [22] further improved the performance of SISR by propos-
ing residual channel attention network (i.e., RCAN) and second-order attention
network (i.e., SAN). RCAN and SAN are the most powerful SISR methods to
date and can achieve a very high reconstruction accuracy.

LF image SR. In the area of LF image SR, different paradigms have been pro-
posed. Bishop et al. [35] first estimated the scene depth and then used a deconvo-
lution approach to estimate HR SAIs. Wanner et al. [36] proposed a variational
LF image SR framework using the estimated disparity map. Farrugia et al. [37]
decomposed HR-LR patches into several subspaces, and achieved LF image SR
via PCA analysis. Alain et al. [12] extended SR-BM3D [38] to LFs, and super-
resolved SAIs using LFBM5D filtering. Rossi et al. [14] formulated LF image
SR as a graph optimization problem. These traditional methods [35,36,37,12,14]
use different approaches to exploit angular information, but perform inferior
in spatial information exploitation as compared to recent deep learning-based
methods. In the pioneering work of deep learning-based LF image SR (i.e., LFC-
NN [25]), SAIs are super-resolved separately using SRCNN and fine-tuned in
pairs to incorporate angular information. Similarly, Yuan et al. [27] proposed
LF-DCNN, in which they used EDSR [20] to super-resolve each SAT and then
fine-tuned the results. LFCNN and LF-DCNN handle the LF image SR problem
in two stages and do not use angular information in the first stage. Wang et al.
[15] proposed LENet by extending BRCN [39] to LF image SR. In their method,
SAIs from the same row or column are fed to a recurrent network to incorporate
angular information. Zhang et al. [13] stacked SATs along different angular direc-
tions to generate input volumes, and then fed them to a multi-stream residual
network named resLF. LFNet and resLF reduce 4D LF to 3D LF by using part
of SAIs to super-resolve one view. Consequently, angular information in these
discarded views cannot be incorporated. To consider all views for LF image SR,
Yeung et al. [16] proposed LFSSR to alternately shuffle LF features between SAT
pattern and MacPI pattern for convolution. Jin et al. [17] proposed an all-to-one
LF image SR framework (i.e., LF-ATQO) and performed structural consistency
regularization to preserve the parallax structure among reconstructed views.

3 Method

3.1 Spatial-Angular Feature Decoupling

An LF has a 4D structure and can be denoted as £ € RUXV*HXW where U and
V represent the angular dimensions (e.g., U = 3, V =4 for a3x4 LF), H and W
represent the height and width of each SAI. Intuitively, an LF can be considered
as a 2D angular collection of SAIs, and the SAT at each angular coordinate (u, v)
can be denoted as L (u,v,:,:) € R¥*W_ Similarly, an LF can also be organized
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Sub-Aperture Macro-Pixel
Images Image

Fig.1: SAT array (left) and MacPT (right) representations of LFs. Both the SAI
array and the MacPI representations have the same size of RVEXVW  Note
that, to convert an SAT array representation into a MacPI representation, pixels
at the same spatial coordinates of each SAI need to be extracted and organized
according to their angular coordinates to generate a macro-pixel. Then, a MacPI
can be generated by organizing these macro-pixels according to their spatial
coordinates. More details are presented in the supplemental material.

into a 2D spatial collection of macro-pixels (namely, a MacPI). The macro-pixel
at each spatial coordinate (h,w) can be denoted as L (:,:, h,w) € RV*YV, An
illustration of these two LF representations is shown in Fig. 1.

Since most methods use SAIs distributed in a square array as their input,
we follow [12,14,25,26,16,13,17] to set U = V = A in our method, where A
denotes the angular resolution. Given an LF of size RAXAXHXW "hoth a MacPI
and an SAI array can be generated by organizing pixels according to corre-
sponding patterns. Note that, when an LF is organized as an SAI array, the
angular information is implicitly contained among different SAIs and thus is
hard to extract. Therefore, we use the MacPI representation in our method and
design spatial/angular feature extractors (SFE/AFE) to extract and decouple
spatial/angular information.

Here, we use a toy example in Fig. 2 to illustrate the angular and spatial
feature extractors. Specifically, AFE is defined as a convolution with a kernel
size of A x A and a stride of A. Padding is not performed so that features
generated by AFE have a size of RT*WXC  where C represents the feature
depth. In contrast, SFE is defined as a convolution with a kernel size of 3x3,
a stride of 1, and a dilation of A. We perform zero padding to ensure that the
output features have the same spatial size AH x AW as the input MacPI. It is
worth noting that, during angular feature extraction, each macro-pixel can be
exactly convolved by AFE, while the information across different macro-pixels
is not aliased. Similarly, during spatial feature extraction, pixels in each SAT can
be convolved by SFE, while the angular information is not involved. In this way,
the spatial and angular information in an LF is decoupled.
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Angular Feature
Extractor (AFE):
Kernel =Ax A
Stride = A
Dilation = 1

Spatial Feature
Extractor (SFE):
Kernel =3 x 3
Stride = 1
Dilation = A

Fig. 2: An illustration of angular and spatial feature extractors. Here, an LF of
size R3*3%3%3 ig used as a toy example. For better visualization, pixels from
different SAIs are represented with different labels (e.g., red arrays or green
squares), while different macro-pixels are paint with different background colors.
Note that, AFE only extracts angular features and SFE only extracts spatial
features, resulting in decoupling of spatial-angular information.

Due to the 3D property of real scenes, objects at different depths have dif-
ferent disparity values. Consequently, pixels of an object among different views
cannot always locate at a single macro-pixel [40]. To address this problem, we
enlarge the receptive field of our LF-InterNet by cascading multiple SFEs and
AFEs in an interactive manner (see Fig. 4). Here, we use the Grad-CAM method
[41] to visualize the receptive field of our LF-InterNet by highlighting contribu-
tive input regions. As shown in Fig. 3, the angular information indeed contributes
to LF image SR, and the receptive field is enough to cover the disparities in LFs.

3.2 Network Design

Our LF-InterNet takes an LR MacPI of size R4 *AW a5 its input and produces
an HR SAI array of size R*AT*eAW "where a denotes the upscaling factor.
Following [13,16,17], we convert images into YCbCr color space, and only super-
resolve the Y channel of images. An overview of our network is shown in Fig. 4.

Overall Architecture Given an LR MacPI I,z € RA#*AW the angular and
spatial features are first extracted by AFE and SFE, respectively.

Fao=Ha(Zr), Fso=Hs(Irr), (1)

where Fq0 € RAXWXC and Fso € RAHXAWXC yepresent the extracted angular
and spatial features, respectively. H4 and Hg represent the angular and spatial
feature extractors (as described in Section 3.1), respectively. Once initial features
are extracted, features F4 ¢ and Fg are further processed by a set of interaction
groups (i.e., Inter-Groups) to achieve spatial-angular feature interaction:

(FansFsn) = Hign (Fan-1,Fsn-1), (n=12,--- /N), (2)

where Hq ., denotes the n'" Inter-Group and N denotes the total number of
Inter-Groups. In our LF-InterNet, we cascade all these Inter-Groups to fully use
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(a) center-view SAI (b) heat maps

(c) EPIs

Fig.3: A visualization of the receptive field of our LF-InterNet. We performed
2xSR on the 5x5 center views of scene HCInew_bicycle [42]. (a) Center-view
HR SAI. We select a target pixel (marked in red in the zoom-in region) at a
shallow depth. (b) Highlighted input SAIs generated by the Grad-CAM method
[41]. A cluster of pixels in each SAI are highlighted as contributive pixels, which
demonstrates the contribution of angular information. (c¢) Epipolar-plane images
(EPIs) of the input LF (top) and the highlighted SAIs (bottom). It can be
observed that the highlighted pixels in the bottom EPI have an enough receptive
field to cover the slopes in the top EPI, which demonstates that our LF-InterNet
can well handle the disparity problem in LF image SR.

the information interacted at different stages. Specifically, features generated by
each Inter-Group are concatenated and fed to a bottleneck block to fuse the
interacted information. The feature generated by the bottleneck block is further
added with the initial feature Fg o to achieve global residual learning. The fused
feature Fg+ can be obtained by

]:S,t = HB ([]:A,l)"' 7]:A,N]7[]:S,17"' ;]:S,N]) +]:S,O7 (3)

where Hp denotes the bottleneck block, [-] denotes the concatenation operation.
Finally, the fused feature Fg is fed to the reconstruction module, and an HR
SAI array Tgp € R¥AHXaAW can be obtained by

Tsr = Hix1 (Spiw (Ruy (Hs (Fst)))) s (4)

where Ry, Spiz, and Hixi represent LF reshape, pixel shuffling, and 1 x 1
convolution, respectively.

Spatial-Angular Feature Interaction The basic module for spatial-angular
interaction is the interaction block (i.e., Inter-Block). As shown in Fig. 4(b), the
Inter-Block takes a pair of angular and spatial features as its inputs to achieve
feature interaction. Specifically, the input angular feature is first upsampled by a
factor of A. Since pixels in a MacPI can be unevenly distributed due to edges and
occlusions in real scenes [43], we learn this discontinuity using a 1x1 convolu-
tion and a pixel shuffling layer for angular-to-spatial upsampling. The upsampled
angular feature is concatenated with the input spatial feature, and further fed
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Fig.4: An overview of our LF-InterNet. Angular and spatial features are first
extracted from the input MacPI, and then fed to a series of Inter-Groups (which
consists of several cascaded Inter-Blocks) to achieve spatial-angular interaction.
After LF reshape and pixel shuffling, HR SAIs are generated.

to an SFE to incorporate the spatial and angular information. In this way, the
complementary angular information can be used to guide spatial feature extrac-
tion. Simultaneously, the new angular feature is extracted from the input spatial
feature by an AFE, and then concatenated with the input angular feature. The
concatenated angular feature is further fed to a 1x1 convolution to integrate
and update the angular information. Note that, the fused angular and spatial
features are added with their input features to achieve local residual learning.
In this paper, we cascade K Inter-Blocks in an Inter-Group, i.e., the output of
an Inter-Block forms the input of its subsequent Inter-Block. In summary, the
spatial-angular feature interaction can be formulated as

Fi = Hs ([78,0 (FE) 1)) + 7 k=120 80 9)

FO = Hoa ([F87 12 (FED)]) + FED (=12, K) (6)

where 1 represents the upsampling operation, F, ék,)l and .7-'1(4]?21 represent the out-
put spatial and angular features of the k" Inter-Block in the n!” Inter-Group,
respectively.

Feature Fusion and Reconstruction The objective of this stage is to fuse
the interacted features to reconstruct an HR SAI array. The fusion and recon-
struction stage mainly consists of bottleneck fusion (as shown in Fig. 4(c)), LF
reshape (as shown in Fig. 4(d)), pixel shuffling, and final reconstruction.

In the bottleneck, the concatenated angular features [Faq,---,Fan] €
RAXWXNC are first fed to a 1x1 convolution and a ReLU layer to generate
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a feature map F4 € RTXWXC Then, the squeezed angular feature F, is up-
sampled and concatenated with spatial features. The final fused feature Fg,; can
be obtained as

Fse=Hs ([Fsp, -+ Fs,n, (Fa) 1)) + Fs,o- (7)

After feature fusion, we apply another SFE layer to extend the channel size of
Fsito a?C for pixel shuffling [44]. However, since Fs,¢ is organized in the MacPI
pattern, we apply LF reshape to convert Fg. into an SAI array representation
for pixel shuffling. To achieve LF reshape, we first extract pixels with the same
angular coordinates in the MacPI feature, and then re-organize these pixels
according to their spatial coordinates, which can be formulated as

ISAIS (xv y) = IMacPI (57 77) ) (8)

where
r=H(E-1)+[£/A](1— AH) +1, 9)
y=W(n-1)+[n/A] (1-AW) + L (10)

Here, x = 1,2,--- JAH and y = 1,2,--- , AW denote the pixel coordinates
in the output SAI arrays, £ and 1 denote the corresponding coordinates in the
input MacPI, || represents the round-down operation. The derivation of Egs. (9)
and (10) is presented in the supplemental material. Finally, a 1x1 convolution is
applied to squeeze the number of feature channels to 1 for HR SAI reconstruction.

4 Experiments

In this section, we first introduce the datasets and our implementation details.
Then we conduct ablation studies to investigate our network. Finally, we compare
our LF-InterNet to several state-of-the-art LF image SR and SISR methods.

4.1 Datasets and Implementation Details

As listed in Table 1, we used 6 public LF datasets [42,45,46,47,48,49] in our
experiments. All the LFs in the training and test sets have an angular resolution
of 9x9. In the training stage, we cropped each SAI into patches of size 64x64,
and then used bicubic downsampling with a factor of a (o = 2,4) to generate
LR patches. The generated LR patches were re-organized into MacPIs to form
the input of our network. The L; loss was used since it can produce good results
and is robust to outliers [50]. We augmented the training data by 8 times using
random flipping and 90-degree rotation. Note that, during each data augmen-
tation, all SAIs need to be flipped and rotated along both spatial and angular
directions to maintain their LF structures.

By default, we used the model with N = 4, K = 4, C = 64, and angular
resolution of 5x5 for both 2x and 4xSR. We also investigated the performance
of other branches of our LF-InterNet in Section 4.2. We used PSNR and SSIM
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Table 1: Datasets used in our experiments.
EPFL [45]| HCInew [42]| HCIold [46]| INRIA [47]] STFgantry [48]| STFlytro [49]
Training 70 20 10 35 9 250
Test 10 4 2 5 2 50

as quantitative metrics for performance evaluation. Note that, PSNR and SSIM
were separately calculated on the Y channel of each SAI. To obtain the overall
metric score for a dataset with M scenes (each with an angular resolution of
A x A), we first obtain the score for a scene by averaging its A2 scores, and then
obtain the overall score by averaging the scores of all M scenes.

Our LF-InterNet was implemented in PyTorch on a PC with an Nvidia RTX
2080Ti GPU. Our model was initialized using the Xavier method [51] and opti-
mized using the Adam method [52]. The batch size was set to 12 and the learning
rate was initially set to 5x10™% and decreased by a factor of 0.5 for every 10
epochs. The training was stopped after 40 epochs.

4.2 Ablation Study

In this subsection, we compare the performance of our LF-InterNet with dif-
ferent architectures and angular resolutions to investigate the potential benefits
introduced by different design choices.

Angular Information. We investigated the benefit of angular information
by removing the angular path in LF-InterNet. That is, we only use SFE for
LF image SR. Consequently, the network is identical to an SISR network, and
can only incorporate spatial information within each SAI. As shown in Table 2,
only using the spatial information, the network (i.e., LF-InterNet-SpatialOnly)
achieves a PSNR of 29.98 and an SSIM of 0.897, which are significantly inferior
to LF-InterNet. Therefore, the benefit of angular information to LF image SR
is clearly demonstrated.

Spatial Information. To investigate the benefit introduced by spatial in-
formation, we changed the kernel size of all SFEs from 3x3 to 1x1. In this case,
the spatial information cannot be exploited and integrated by convolutions. As
shown in Table 2, the performance of LF-InterNet-AngularOnly is even inferior
to bicubic interpolation. That is because, neighborhood context in an image is
highly significant in recovering details. It is clear that spatial information plays
a major role in LF image SR, while angular information can only be used as a
complementary part to spatial information but cannot be used alone.

Information Decoupling. To investigate the benefit of spatial-angular in-
formation decoupling, we stacked all SAIs along the channel dimension as input,
and used 3x3 convolutions with a stride of 1 to extract both spatial and angu-
lar information from these stacked images. Note that, global and local residual
learning was maintained in this variant to keep the overall network architec-
ture unchanged. To achieve fair comparison, we adjusted the feature depths to
keep the model size (i.e., LF-InterNet-SAcoupled_1) or computational complexi-
ty (i.e., LF-InterNet-SAcoupled_2) comparable to LF-InterNet. As shown in Ta-
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Table 2: Comparative results achieved on the STFlytro dataset [49] by sever-
al variants of our LF-InterNet for 4xSR. Note that, we carefully adjusted the
feature depths of different variants to make their model size comparable. FLOP-
s are computed with an input MacPI of size 160x160. The results of bicubic
interpolation are listed as baselines.

Model PSNR SSIM Params. FLOPs
Bicubic 27.84 0.855 — —
LF-InterNet-SpatialOnly 29.98 0.897 5.40M 134.7G

LF-InterNet-AngularOnly 26.57 0.823 5.43M 13.4G
LF-InterNet-SAcoupled-1 31.11 0.918 5.42M 5.46G
LF-InterNet-SAcoupled_2 31.17 0.919 50.8M 50.5G
LF-InterNet 31.65 0.925 5.23M 50.1G

Table 3: Comparative results achieved on the STFlytro dataset [49] by our LF-
InterNet with different number of interactions for 4xSR.

1G_1 1G_2 1G_3 1G_4 PSNR SSIM
29.84 0.894

v 31.44 0.922
v v 31.61 0.924
v v v 31.66 0.925
v v v v 31.84 0.927

ble 2, both two variants are inferior to LF-InterNet. That is, our LF-InterNet can
well handle the 4D LF structure and achieve LF image SR much more efficiently
by using the proposed spatial-angular feature decoupling mechanism.
Spatial-Angular Interaction. We investigated the benefits introduced by
our spatial-angular interaction mechanism. Specifically, we canceled feature in-
teraction in each Inter-Group by removing upsampling and AFE modules in each
Inter-Block. In this case, spatial and angular features are processed separately.
When all interactions are removed, these spatial and angular features can only
be incorporated by the bottleneck block. Table 3 presents the results achieved by
our LF-InterNet with different numbers of interactions. It can be observed that,
without any feature interaction, our network achieves a very low reconstruction
accuracy (i.e., 29.84 in PSNR and 0.894 in SSIM). As the number of interactions
increases, the performance is steadily improved. This clearly demonstrates the
effectiveness of our spatial-angular feature interaction mechanism.
Angular-to-Spatial Upsampling. To demonstrate the effectiveness of the
pixel shuffling layer used in angular-to-spatial upsampling, we introduced t-
wo variants by replacing pixel shuffling with nearest upsampling and bilinear
upsampling, respectively. It can be observed from Table 4 that LF-InterNet-
bilinear achieves much lower PSNR and SSIM scores than LF-InterNet-nearest
and LF-InterNet. That is because, bilinear interpolation introduces aliasing a-
mong macro-pixels during angular-to-spatial upsampling, resulting in ambigui-
ties in spatial-angular feature interaction. In contrast, both nearest upsampling
and pixel shuffling do not introduce aliasing and thus achieve improved per-
formance. Moreover, since pixels in a macro-pixel can be unevenly distributed
due to edges and occlusions in real scenes, pixel shuffling achieves a further im-



Table 4: Comparisons of different approaches for angular-to-spatial upsampling.

LF-InterNet

Model Scale PSNR SSIM Scale PSNR SSIM

LF-InterNet-nearest 2% 38.60 0.982 4x 31.65 0.925
LF-InterNet-bilinear 2% 37.67 0.976 4x 30.71 0.911
LF-InterNet 2% 38.81 0.983 4x 31.84 0.927

Table 5: Comparative results achieved on the STFlytro dataset [49] by our LF-
InterNet with different angular resolutions for 2x and 4xSR.

AngRes Scale PSNR SSIM Scale PSNR SSIM
3x3 2 37.95 0.980 4% 31.30 0.918
5x5 2 38.81 0.983 4% 31.84 0.927
X7 2x 39.05 0.984 4% 32.04 0.931
9x9 2X 39.08 0.985 4x 32.07 0.933

provement over nearest upsampling due to its discontinuity modeling capability
within macro-pixels.

Angular Resolution. We analyze the performance of LF-InterNet with dif-
ferent angular resolution. Specifically, we extracted the central Ax A (A = 3,5,7,9)
SAIs from the input LFs, and trained different models for both 2x and 4xSR.
As shown in Table 5, the PSNR and SSIM values for both 2x and 4x SR
are improved as the angular resolution is increased. That is because, additional
views provide rich angular information for LF image SR. It is also notable that,
the performance tends to be saturated when the angular resolution is further
increased from 7x7 to 9x9. That is because, the complementary information
provided by additional views is already sufficient. Since the angular information
has been fully exploited for an angular resolution of 7x7, a further increase of
views can only provide minor performance improvement.

4.3 Comparison to the State-of-the-arts

We compare our method to six SISR methods [19,20,21,22,23,24] and five LF
image SR methods [12,14,16,13,17]. Bicubic interpolation was used as baselines.
Quantitative Results. Quantitative results in Table 6 demonstrate the
state-of-the-art performance of our LF-InterNet on all the 6 test datasets. Thanks
to the use of angular information, our method achieves an improvement of 1.54
dB (2xSR) and 1.00 dB (4xSR) in PSNR over the powerful SISR method RCAN
[21]. Moreover, our LF-InterNet can achieve a comparable PSNR and SSIM
scores as compared to the most recent LF image SR method LF-ATO [17].
Qualitative Results. Qualitative results of 2x/4xSR are shown in Fig. 5,
with more visual comparisons being provided in our supplemental material. Our
LF-InterNet can well preserve the textures and details (e.g., the horizontal stripes
in the scene HCInew_origami) in the super-resolved images. In contrast, state-of-
the-art SISR methods RCAN [21] and SAN [22] produce oversmoothed images
with poor details. The visual superiority of our method is more obvious for
4xSR. That is because, the input LR images are severely degraded by the down-
sampling operation, and the process of 4xSR is highly ill-posed. In such cases,
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Table 6: PSNR/SSIM values achieved by different methods for 2x and 4xSR.
The best results are in red and the second best results are in blue.

Method Scale EPFL HClInew HClIold INRIA STFgantry | STFlytro

Bicubic 2x [29.50/0.935[31.69,/0.934(37.46/0.978(31.10/0.956 30.82/0.947 [33.02/0.950
VDSR [19] 2x [32.01/0.959|34.37/0.956|40.34/0.985|33.80/0.972| 35.80,/0.980 |35.91/0.970
EDSR [20] 2x |32.86/0.965(35.02/0.961|41.11/0.988|34.61/0.977| 37.08/0.985 |36.87/0.975
RCAN [21] 2x [33.46/0.967|35.56,/0.963|41.59/0.989|35.18/0.978| 38.18/0.988 |37.32/0.977
SAN [22] 2x [33.36/0.967(35.51,/0.963|41.47/0.989|35.15/0.978| 37.98/0.987 |37.26/0.976
LFBMS5D [12]| 2x [31.15/0.955|33.72/0.955|39.62/0.985|32.85/0.969| 33.55/0.972 |35.01/0.966
GB [14] 2% (31.22/0.959(35.25/0.969(40.21/0.988(32.76/0.972| 35.44/0.983 |35.04/0.956
resLF [13] 2x (33.22/0.969(35.79/0.969(42.30/0.991|34.86,/0.979| 36.28/0.985 35.80,/0.970

LFSSR [16] 2x [34.15/0.973|36.98,/0.974|43.29/0.993|35.76,/0.982| 37.67/0.989 |37.57/0.978
LF-ATO [17] | 2x [34.49/0.976|37.28/0.977|43.76/0.994|36.21/0.984| 39.06/0.992 |38.27/0.982
LF-InterNet 2x [34.76/0.976|37.20/0.976|44.65/0.995(36.64/0.984| 38.48/0.991 |38.81/0.983

Bicubic Ix [25.14/0.831(27.61,/0.851|32.42/0.934|26.82/0.886| 25.93,/0.843 [27.84/0.855
VDSR [19] 4x [26.82/0.869(29.12/0.876|34.01,/0.943|28.87/0.914( 28.31,/0.893 [29.17/0.880
EDSR [20] 4x |27.82/0.892(29.94/0.893(35.53/0.957|29.86,/0.931 29.43/0.921 |30.29/0.903
RCAN [21] | 4x |28.31/0.899|30.25/0.896(35.89/0.959|30.36,/0.936|30.25/ 0.934|30.66/0.909
SAN [22] 4x [28.30/0.899(30.25,/0.898|35.88,/0.960|30.29,/0.936| 30.30,/0.933 [30.71/0.909

SRGAN [23] 4x [26.85/0.870|28.95/0.873|34.03/0.942|28.85/0.916| 28.19/0.898 |29.28/0.883
ESRGAN [24]| 4x [25.59/0.836|26.96/0.819|33.53/0.933|27.54/0.880| 28.00/0.905 |27.09/0.826
LFBMS5D [12]| 4% |26.61/0.869(29.13/0.882(34.23/0.951|28.49/0.914| 28.30/0.900 [29.07/0.881
GB [14] 4x [26.02/0.863|28.92/0.884|33.74/0.950|27.73/0.909| 28.11/0.901 |28.37/0.873
resLF [13] 4x [27.86/0.899|30.37/0.907|36.12/0.966|29.72/0.936 | 29.64/0.927 |28.94/0.891
LFSSR [16] 4x [29.16/0.915|30.88/0.913|36.90/0.970|31.03/0.944| 30.14/0.937 |31.21/0.919
LF-ATO [17] | 4x [29.16/0.917|31.08/0.917|37.23/0.971|31.21/0.950| 30.78/0.944 |30.98/0.918
LF-InterNet 4x [29.52/0.917|31.01/0.917|37.23/0.972|31.65/0.950| 30.44/0.941 |31.84/0.927

Table 7: Comparisons of the number of parameters (#Params.) and FLOPs for
2x and 4xSR. Note that, the FLOPs is calculated on an input LF with a size
of 5x5x32x32, and the PSNR and SSIM scores are averaged over the 6 test
datasets [45,42,46,47,48,49] in Table 6.

Method Scale|#Params.|[FLOPs(G)|PSNR/SSIM|Scale|#Params.|[FLOPs(G)|PSNR/SSIM
RCAN [21] 2% 15.44M | 15.71x25 | 36.88/0.977 | 4x 15.59M | 16.34x25 | 30.95/0.922
SAN [22] 2% 15.71M | 16.05x25 | 36.79/0.977 | 4x 15.86M | 16.67x25 | 31.96/0.923
resLF [13] 2% 6.35M 37.06 36.38/0.977 | 4x 6.79M 39.70 30.08/0.916
LFSSR [16] 2% 0.81M 25.70 37.57/0.982 | 4x 1.61M 128.44 31.55/0.933
LF-ATO [17] 2% 1.51M 597.66 38.18/0.984 | 4x 1.66M 686.99 31.74/0.937
LF-InterNet_32 | 2x 1.20M 11.87 37.88/0.983 | 4x 1.31M 12.53 31.57/0.933
LF-InterNet_64 | 2x 4.80M 47.46 38.42/0.984 | 4x 5.23M 50.10 31.95/0.937

some perceptual-oriented methods (e.g., SRGAN [23] and ESRGAN [24]) use
spatial information only to hallucinate missing details, resulting in ambiguous
and even fake textures (e.g., wheel in scene STFlytro_buildings). In contrast, our
method can use complementary angular information among different views to
produce more faithful results.

Efficiency. We compare our LF-InterNet to several competitive methods
[21,22,13,16,17] in terms of the number of parameters and FLOPs. As shown
in Table 7, our LF-InterNet achieves superior SR performance with reasonable
number of parameters and FLOPs. Note that, although LF-ATO has very small
model sizes (i.e., 1.51M for 2xSR and 1.66M for 4xSR), its FLOPs are very
high since it uses the All-to-One strategy to separately super-resolve individ-
ual views in a sequence. In contrast, our method (i.e., LF-InterNet_64) super-
resolves all views within a single inference, and achieves comparable or even
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Fig. 5: Visual results of 2x /4xSR.

RCAN resLF LFSSR LF-ATO LF-InterNet
Avg=42.82, 5td=0.0702 Avg=43.25, 5td=0.2573 Avg=43.83, 5td=0.1354 Avg=44.42, 5td=0.1107 Avg=44.71, 5td=0.1603

Fig.6: Comparative results (i.e., PSNR values) achieved on each perspective of
scene HClold_MonasRoom. Here, 7x7 input views are used to perform 2xSR.
We use standard deviation (Std) to represent their uniformity. Our LF-InterNet
achieves high reconstruction quality with a relatively balanced distribution.

better performance than LF-ATO with significantly lower FLOPs. It is worth
noting that, even the feature depth of our model is halved to 32, our method
(i.e., LF-InterNet_32) can still achieve promising PSNR/SSIM scores, which are
comparable to LFSSR and higher than RCAN, SAN, and resLF. The above
comparisons clearly demonstrate the high efficiency of our network architecture.

Performance w.r.t. Perspectives. Since our LF-InterNet can super-resolve
all SAIs in an LF, we further investigate the reconstruction quality with respect
to different perspectives. We followed [13] to use the central 7x7 views of scene
HClIold_MonasRoom to perform 2xSR, and used PSNR for performance evalua-
tion. Note that, due to the changing perspectives, the contents of different SATs
are not identical, resulting in inherent PSNR variations. Therefore, we evaluate
this variation by using RCAN to perform SISR on each SAI. Results are reported
and visualized in Fig. 6. Since resLF uses part of views to super-resolve differ-
ent perspectives, the reconstruction qualities of resLF for non-central views are
relatively low. In contrast, LFSSR, LF-ATO and our LF-InterNet can use the
angular information from all input views to super-resolve each view, and thus
achieve a relatively balanced distribution (i.e., lower Std scores) among different
perspectives. The reconstruction quality (i.e., PSNR scores) of LF-InterNet is
higher than those of LFSSR and LF-ATO on this scene.



14 Yingqgian Wang et al.

Table 8: Comparative results achieved on the UCSD dataset for 2x and 4xSR.

Method Scale PSNR/SSIM Scale PSNR/SSIM
RCAN [21] 2% 11.63/0.983 Ix 36.49/0.955
SAN [22] 2% 41.56/0.983 4x 36.57/0.956
resLF [13] 2% 41.29/0.982 4x 35.89/0.953
LFSSR [16] 2 41.55/0.984 4x 36.77/0.957
LF-ATO [17] 2 41.80,/0.985 4x 36.95/0.959
LF-InterNet 2% 42.36/0.985 4x 37.12/0.960

Input

resLF LFSSR LF-ATO LF-InterNet

S 3 ¥
STFlytro_general_11 resLF LFSSR LF-ATO  LF-InterNet STFlytro_buildings_9

Fig. 7: Visual results achieved by different methods under real-world degradation.

Generalization to Unseen Scenarios. We evaluate the generalization ca-
pability of different methods by testing them on a novel and unseen real-world
dataset (i.e., the UCSD dataset [53]). Note that, all methods have not been
trained or fine-tuned on the UCSD dataset. Results in Table 8 show that our
LF-InterNet outperforms the state-of-the-art methods [21,22,13,16,17], which
demonstrates the generalization capability of our method to unseen scenarios.

Performance Under Real-World Degradation. We compare the perfor-
mance of different methods under real-world degradation by directly applying
them to LFs in the STFlytro dataset [49]. As shown in Fig. 7, our method pro-
duces images with faithful details and less artifacts. Since the LF structure keeps
unchanged under both bicubic and real-world degradation, our method can learn
to incorporate spatial and angular information from training LF's using the pro-
posed spatial-angular interaction mechanism. It is also demonstrated that our
method can be easily applied to LF cameras to generate high-quality images.

5 Conclusion and Future Work

In this paper, we proposed a deep convolutional network LF-InterNet for LF
image SR. We first introduce an approach to extract and decouple spatial and
angular features, and then design a feature interaction mechanism to incorporate
spatial and angular information. Experimental results have demonstrated the
superiority of our LF-InterNet over state-of-the-art methods. Since the spatial-
angular interaction mechanism is a generic framework and can process LFs in
an elegant and efficient manner, we will apply LF-InterNet to LF angular SR
[8,9,10,11] and joint spatial-angular SR [54,55] as our future work.
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