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A Additional comparison with state-of-the-art on
CIFAR10

To further showcase the improvements offered by our approach, herein we com-
pare its performance against an additional set of state-of-the-art methods on
the CIFAR-10 dataset. As the results from Table 1 show, our method signifi-
cantly outperforms all previous ones across different architectures(VGG, ResNet,
WRN) and quantization levels.

Method Acc.(%) Architecture # bits (W/A)

BC [3] 90.1 VGG-small 1/32
TTQ [12] 91.1 ResNet-20 2/32
HWGQ [1] 92.5 VGG-small 1/2
LQ-Net [11] 93.4 VGG-small 1/2

CBCN [5] 91.6 ResNet-18 (1/1)×4
CBCN [5] 93.4 WRN40 (1/1)×4
BNN [4] 89.9 VGG-small 1/1
XNOR-Net [7] 89.8 VGG-small 1/1
CCNN [10] 92.3 VGG-small 1/1
CI-Net [9] 92.5 VGG-small 1/1

BATS (Ours) 96.1 BATS 1/1

Table 1: Comparison with state-of-the-art binarization/quantization methods on
CIFAR-10 across various architecture. Notice that the discovered architecture by
our approach significantly outperforms all previous reported results.

B Going back to real

Herein we briefly evaluate the effectiveness of our novel search space and method-
ology for the case of real-valued networks. To do so, given the proposed search
space and temperature regularization mechanism, we performed a network search
on CIFAR-10 largely following the procedure described in Section 4, with the
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following changes: the learning rate for both search and evaluation is set to 0.1
and the optimizer to SGD with momentum 0.9. As Table 2 shows, our method
generalizes well to the real-valued case, offering competitive results. This sug-
gests that the operations tailored to binary networks can work well for their
real-valued counterparts, too.

Table 2: Comparison on the CIFAR-10 dataset for the case of real-valued net-
works.

Architecture Test Err. (%) Params (M)

NASNet-A [13] 2.65 3.3
AmoebaNet-A [8] 3.34 3.2

DARTS (first order) [6] 3.00 3.3
DARTS (second order) [6] 2.76 3.3
P-DARTS [2] 2.50 3.4

BATS (Ours) 2.70 2.5
BATS (Ours) 2.40 3.5

C Discovered real-valued topologies

While the proposed search space and method is mainly geared towards binary
networks, we also tested its generalizability on the real-valued domain. Fig. 1c
and 1d depict an example of cells found by our approach when using real valued
networks. Notice that as opposed to the binary ones (Fig. 1a and 1b), the real
valued ones tend to be deeper and use operations with smaller convolutional
kernels.
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(a) Normal binary cell
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(b) Reduction binary cell
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(c) Normal real-valued cell
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(d) Reduction real-valued cell

Fig. 1: Normal and reduction cells discovered by our proposed method using
the introduced search space for the binary case (first row) and real-valued case
(second row). Notice that the binary cells tend to be shallower and to contain
convolutional operations with larger kernels (i.e. 5×5) when compared with the
real-valued ones.
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(a) DARTS depth-wise separable cell
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(b) DARTS dilated convolution cell
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(c) Proposed grouped convolution bi-
nary cell
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(d) Proposed dilated grouped convolu-
tion binary cell

Fig. 2: Comparison between the convolutional operations used in the DARTS
search space (2a and 2b) and the proposed ones (2c and 2d). k × k denotes the

kernel size, + is the element-wise summation operation while each rectangle
represents a given operation defined by the inner text.
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