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Abstract. Recent advances of network architecture for point cloud pro-
cessing are mainly driven by new designs of local aggregation opera-
tors. However, the impact of these operators to network performance is
not carefully investigated due to different overall network architecture
and implementation details in each solution. Meanwhile, most of opera-
tors are only applied in shallow architectures. In this paper, we revisit
the representative local aggregation operators and study their perfor-
mance using the same deep residual architecture. Our investigation re-
veals that despite the different designs of these operators, all of these
operators make surprisingly similar contributions to the network perfor-
mance under the same network input and feature numbers and result
in the state-of-the-art accuracy on standard benchmarks. This finding
stimulate us to rethink the necessity of sophisticated design of local ag-
gregation operator for point cloud processing. To this end, we propose
a simple local aggregation operator without learnable weights, named
Position Pooling (PosPool), which performs similarly or slightly better
than existing sophisticated operators. In particular, a simple deep resid-
ual network with PosPool layers achieves outstanding performance on
all benchmarks, which outperforms the previous state-of-the methods on
the challenging PartNet datasets by a large margin (7.4 mIoU). The code
is publicly available at https://github.com/zeliu98/CloserLook3D.
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1 Introduction

With the rise of 3D scanning devices and technologies, 3D point cloud becomes
a popular input for many machine vision tasks, such as autonomous driving,
robot navigation, shape matching and recognition, etc. Different from images
and videos that are defined on regular grids, the point cloud locates at a set of
irregular positions in 3D space, which makes the powerful convolutional neural
networks (CNN) and other deep neural networks designed for regular data hard
to be applied. Early studies transform the irregular point set into a regular
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grid by either voxelization or multi-view 2D projections such that the regular
CNN can be adopted. However, the conversion process always results in extra
computational and memory costs and the risk of information loss.

Recent methods in point cloud processing develop networks that can directly
model the unordered and non-grid 3D point data. These architectures designed
for point cloud are composed by two kinds of layers: the point-wise transfor-
mation layers and local aggregation layers. While the point-wise transformation
layer is applied on features at each point, the local aggregation layer plays a
similar role for points as the convolution layer does for image pixels. Specifically,
it takes features and relative positions of neighborhood points to a center point
as input, and outputs the transformed feature for the center point. To achieve
better performance in different point cloud processing tasks, a key task of point
cloud network design is to develop effective local aggregation operators.

Existing local aggregation operators can be roughly categorized into three
groups according to the way that they combine the relative positions and point
features: point-wise multi-layer perceptions (MLP) based [22, 35, 13, 11], pseudo
grid feature based [9, 17, 38, 12, 27, 30] and adaptive weight based [34, 5, 16, 36, 32,
14]. The point-wise MLP based methods treat a point feature and its correspond-
ing relative position equally by concatenation. All the concatenated features at
neighborhood are then abstracted by a small PointNet [20] (multiple point-wise
transformation layers followed by a MAX pooling layer) to produce the output
feature for the center point. The pseudo grid feature based methods first generate
pseudo features on pre-defined grid locations, and then learn the parametrized
weights on these grid locations like regular convolution layer does. The adaptive
weight based methods aggregate neighbor features by weighted average with the
weights adaptively determined by relative position of each neighbor.

Despite the large efforts for aggregation layer design and performance im-
provements of the resulting network in various point cloud processing tasks, the
contributions of the aggreation operator to the network performance have never
been carefully investigated and fairly compared. This is mainly due to the differ-
ent network architectures used in each work, such as the network depth, width,
basic building blocks, whether to use skip connection, as well as different im-
plementation of each approach, such as point sampling method, neighborhood
computation, and so on. Meanwhile, most of existing aggregation layers are ap-
plied in shallow networks, it is unclear whether these designs are still effective
as the network depth increases.

In this paper, we present common experimental settings for studying these
operators, selecting a deep residual architecture as the base networks, as well
as same implementation details regarding point sampling, local neighborhood
selection and etc. We also adopt three widely used datasets, ModelNet40 [37],
S3DIS [1] and PartNet [19] for evaluation, which account for different tasks,
scenarios and data scales. Using these common experimental settings, we revisit
the performance of each representative operator and make fair comparison be-
tween them. We find appropriate settings for some operators under this deep
residual architecture are different from that of using shallower and non-residual
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networks. We also surprisingly find that different representative methods per-
form similarly well under the same representation capacity on these datasets, if
appropriate settings are adopted for each method, although these methods may
be invented by different motivations and formulations, in different years.

These findings also encourage us to rethink the role of local aggregation layers
in point cloud modeling: do we really need sophisticated/heavy local aggregation
computation? We answer this question by proposing an extremely simple lo-
cal aggregation operator with no learnable weights: combining a neighbor point
feature and its 3-d relative coordinates by element-wise multiplication, followed
with an AVG pool layer to abstract information from neighborhood. We name
this new operator as position pooling (PosPool), which shows no less or even
better accuracy than other highly tuned sophisticated operators on all the three
datasets. These results indicate that we may not need sophisticated/heavy op-
erators for local aggregation computation. We also harness a strong baseline for
point cloud analysis by a simple deep residual architecture and the proposed
position pooling layers, which achieves 53.8 part category mIoU accuracy on
the challenging PartNet datasets, significantly outperforming the previous best
method by 7.4 mIoU.

The contributions of this paper are summarized as

– A common testbed to fairly evaluate different local aggregation operators.
– New findings of aggregation operators. Specifically, different operators

perform similarly well and all of them can achieve the state-of-the-art accu-
racy, if appropriate settings are adopted for each operator. Also, appropriate
settings in deep residual networks are different from those in shallower net-
works. We hope these findings could shed new light on network design.

– A new local aggregation operator (PosPool) with no learnable
weights that performs as effective as existing operators. Combined with
a deep residual network, this simple operator achieve state-of-the-art perfor-
mance on 3 representative benchmarks and outperforms the previous best
method by a large margin of 7.4 mIoU on the challenging PartNet datasets.

2 Related Works

Projection based Methods project the irregular point cloud onto a regular
sampling grid and then apply 2D or 3D CNN over regularly-sampled data for
various vision tasks. View-based methods project a 3D point cloud to a set of
2D views from various angles. Then these view images could be processed by
2D CNNs [3, 6, 21, 25]. Voxel-based methods project the 3D points to regular 3D
grid, and then standard 3D CNN could be applied [4, 18, 37]. Recently, adaptive
voxel-based representations such as K-d trees [10] or octrees [23, 26, 33] have been
proposed for reducing the memory and computational cost of 3D CNN. The view-
based and voxel-based representations are also combined [21] for point cloud
analysis. All these methods require preprocessing to convert the input point
cloud and may lose the geometry information.
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Global Aggregation Methods process the 3D point cloud via point-wise
1× 1 transformation (fully connected) layers followed by a global pooling layer
to aggregate information globally from all points [20]. These methods are the first
to directly process the irregular point data. They have no restriction on point
number, order and regularity of neighborhoods, and obtain fairly well accuracy
on several point cloud analysis tasks. However, the lack of local relationship
modeling components hinders the better performance on these tasks.

Local Aggregation Methods Recent point cloud architectures are usually
composed by 1 × 1 point-wise transformation layers and local aggregation op-
erators. Different methods are mainly differentiated by their local aggregation
layers, which usually adopt the neighboring point features and their relative co-
ordinates as input, and output a transformed center point feature. According
to the way they combine point features and relative coordinates, these methods
can be roughly categorized into three groups: point-wise MLP based [22, 13, 11],
pseudo grid feature based [9, 17, 38, 12, 27, 30], and adaptive weight based [34, 5,
16, 36, 14], as will be detailed in Section 3. There are also some works use addi-
tional edge features (relative relationship between point features) as input [13,
32, 35], also commonly referred to as graph based methods.

While we have witnessed significant accuracy improvements on benchmarks
by new local aggregation operators year-by-year, the actual progress is a bit
vague to the community as the comparisons are made on different grounds that
the other architecture components and implementations may vary significantly.
The effectiveness of designing components in some operators using deeper resid-
ual architectures is also unknown.

3 Overview of Local Aggregation Operators

In this section, we present a general formulation for local aggregation operators
as well as a categorization of them.
General Formulation In general, for each point i, a local aggregation layer
first transforms a neighbor point j’s feature fj ∈ Rd×1 and its relative location
∆pij = pj − pi ∈ R3×1 into a new feature by a function G(·, ·), and then
aggregate all transformed neighborhood features to form point i’s output feature
by a reduction function R (typically using MAX, AVG or SUM), as

gi = R ({G(∆pij , fj)|j ∈ N (i)}) , (1)

where N (i) represents the neighborhood of point i. Alternatively, edge features
{fi, ∆fij} (∆fij = fj − fi) can be used as input instead of ∆pij [35].

According to the family to which the transformation function G(·, ·) belongs,
existing local aggregation operators can be roughly categorized into three types:
point-wise MLP based, pseudo grid feature based, and adaptive weight based.
Point-wise MLP based Methods The pioneer work of point-wise MLP based
method, PointNet++ [22], applies several point-wise transformation (fully con-
nected) layers on a concatenation of relative position and point feature to achieve



A Closer Look at 3D Local Aggregation Operators 5

transformation:
G(∆pij , fj) = MLP (concat(∆pij , fj)) . (2)

There are also variants by using an alternative edge feature {fi, ∆fij} as in-
put [35, 13], or by using a special neighborhood strategy [11]. The reduction
function R(·) is usually set as MAX [22, 35, 13].

The multiple point-wise layers after concatenation operation can approximate
any continuous function about the relative coordinates and point feature [20, 22].
However, a drawback lies in its large computation complexity, considering the
fact that the multiple fully connected (FC) layers are applied to all neighboring
points when computing each point’s output. Specifically, the FLOPs is O(time)
= ((2d+3)+(h−2)d/2) ·d/2 ·nK, for a point cloud with n points, neighborhood
size of K, FC layer number of h, and inter-mediate dimension of d/2, when h ≥ 2.
The space complexity is O(space) = ((2d + 3) + (h − 2)d/2) · d/2. For h = 1,
there exists efficient implementation by computation sharing (see Section 4.2).
Pseudo Grid Feature based Methods The pseudo grid feature based meth-
ods generate pseudo features on several sampled regular grid points, such that
regular convolution methods can be applied. A representative method is KP-
Conv [30], where equally distributed spherical grid points are sampled and the
pseudo features on the kth grid point is computed as

fi,k =
∑

j∈N (i)

max(0, 1− ‖∆pjk‖2
σ

) · fj . (3)

The index of each grid point k will have strict mapping with the relative po-
sition to center point ∆pik. Hence, a (depth-wise) convolution operator with
parametrized weights wk ∈ Rd×1 defined on each grid point can be used to
achieve feature transformation:

G(∆pik, fi,k) = wk � fi,k. (4)

Different pseudo grid feature based methods mainly differ each other by the
definition of grid points [9, 17, 38, 12, 27] or index order [14]. When depth-wise
convolution is used, the space and time complexity are O(space) = dM and
O(time) = ndKM , respectively, where M is the number of grid points.
Adaptive Weight based Methods The adaptive weight based methods de-
fine convolution filters over arbitrary relative positions, and hence can compute
aggregation weights on all neighbor points:

G(∆pij , fj) = H (∆pij)� fj , (5)

where H is typically implemented by several point-wise transformation (fully
connected) layers [34, 5]; � is an element-wise multiplication operator; R is typ-
ically set as SUM.

Some methods adopt more position related variables [16], point density [36],
or edge features [32] as the input to compute adaptive weights. More sophisti-
cated function other than fully connected (FC) layers are also used, for example,
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Fig. 1. A common deep residual architecture used to evaluate different local aggrega-
tion operators. In evaluation, we adjust the model complexity by changing architecture
depth (or block repeating factor Nr), base width C and bottleneck ratio γ. Note the
point numbers drawn in this figure is an approximation to indicate the rough complex-
ity but not an accurate number. Actually, the points on each stage are generated by
a subsampling method [29] using a fixed grid size and the point number on different
point cloud instances can vary

Taylor approximation [14] and an additional SoftMax function to normalize ag-
gregation weights over neighborhood [32].

The space and time complexity of this method are O(space) = ((h− 2)d/2 +
d+ 3) · d/2 and O(time) = ((h− 2)d/2 + d+ 5) · d/2 · nK, respectively, when an
inter-mediate dimesion of d/2 is used and the number of FC layers h ≥ 2. When
h = 1, the space and computation complexity is much smaller, as O(space) = 3d
and O(time) = 5dnK, respectively.

Please see Appendix A6 for detailed analysis of the space and time complexity
for the above 3 operators.

4 Benchmarking Local Aggregation Operators in
Common Deep Architecture

While most local aggregation operators described in Section 3 are reported using
specific shallow architectures, it is unknown whether their designing components
perform also sweet using a deep residual architecture. In addition, these oper-
ators usually use different backbone architectures and different implementation
details, making a fair comparison between them difficult.

In this section, we first present a deep residual architecture, as well as imple-
mentation details regarding point sampling and neighborhood selection. Then
we evaluate the designing components of representative operators using common
architectures, implementation details and benchmarks. The appropriate settings
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within each method type using the common deep residual architectures are sug-
gested and discussed.

4.1 Common Experimental Settings

Architecture To investigate different local aggregation operators on a same,
deep and modern ground, we select a 5-stage deep residual network, similar to
the standard ResNet model [7] in image analysis. Residual architectures have
been widely adopted in different fields to facilitate the training of deep net-
works [7, 31]. However, in the point cloud field, until recently, there are some
works [30, 13] starting to use deep residual architectures, probably because the
unnecessary use of deep networks on several small scale benchmarks. Neverthe-
less, our investigation shows that on larger scale and more challenging datasets
such as PartNet [19], deep residual architectures can bring significantly better
performance, for example, with either local aggregation operator type described
in Section 3, the deep residual architectures can surpass previous best meth-
ods by more than 3 mIoU. On smaller scale datasets such as ModelNet40, they
also seldom hurt the performance. The deep residual architecture would be a
reasonable choice for practitioners working on point cloud analysis.

Fig. 1 shows the residual architecture used in this paper. It consists 5 stages of
different point resolution, with each stage stacked by several bottleneck residual
blocks. Each bottleneck residual block is composed successively by a 1×1 point-
wise transformation layer, a local aggregation layer, and another 1 × 1 point-
wise transformation layer. At the block connecting two stages, a stridded local
aggregation layer is applied where the local neighborhood is selected at a higher
resolution and the output adopts a lower resolution. Batch normalization and
ReLU layers are applied after each 1 × 1 layer to facilitate training. For head
networks, we use a 4-layer classifier and a U-Net style encoder-decoder [24] for
classification and semantic segmentation, respectively.

In evaluation of a local aggregation operator, we use this operator to instan-
tiate all local aggregation layers in the architecture. We also consider different
model capacity by varying network depth (block repeating factor Nr), width (C)
and bottleneck ratio (γ).

Point Sampling and Neighborhoods. To generate point sets for different
resolution levels, we follow [29, 30] to use a subsampling method with different
grid sizes to generate point sets in different resolution stages. Specifically, the
whole 3D space is divided by grids and one point is randomly sampled to repre-
sent a grid if multiple points appear in the grid. This method can alleviate the
varying density problem [29, 30]. Given a base grid size at the highest resolution
of Res1, the grid size for different resolutions are multiplied by 2× stage-by-stage.
The base grid size for different datasets are detailed in Section 6.

To generate a point neighborhood, we follow the ball radius method [22, 8,
16], which in general result in more balanced density than the location or feature
kNN methods [34, 2, 35]. The ball radius is set as 2.5× of the base grid size.
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Table 1. The performance of baseline operators, sweet spots of point-wise MLP
based, pseudo grid feature based and adaptive weight based operators, and the pro-
posed PosPool operators on three benchmark datasets. Baseline∗ denotes Eq. (6)
and baseline† (AVG/MAX) denotes Eq. (7) AVG/MAX, respectively. PosPool and
PosPool* denote the operators in Eq. (8) and (10), respectively. (S) after each method
denotes a smaller configuration of this method (Nr = 1, γ = 2 and C = 36), which
is about 16× more efficient than the regular configuration (the other row) of Nr = 1,
γ = 2 and C = 144. Previous best performing methods on three benchmarks in litera-
ture are shown in the first block of this table

method
ModelNet40 S3DIS PartNet

acc param FLOP mIoU param FLOP val test param FLOP

DensePoint [15] 93.2 0.7M 0.7G - - - - - - -
KPConv [30] 92.9 15.2M 1.7G 65.7 15.0M 6.5G - - - -
PointCNN [14] 92.5 0.6M 25.3G 65.4 4.4M 36.7G - 46.4 4.4M 23.1G

baseline∗ 91.4 19.4M 1.8G 51.5 18.4M 7.2G 42.5 44.6 18.5M 6.7G

baseline† (AVG, S) 90.7 1.2M 0.1G 50.3 1.1M 0.5G 39.5 40.6 1.1M 0.4G

baseline† (AVG) 91.4 19.4M 1.8G 51.0 18.4M 7.2G 44.2 45.8 18.5M 6.7G

baseline† (MAX, S) 91.5 1.2M 0.1G 57.4 1.1M 0.5G 39.8 41.2 1.1M 0.4G

baseline† (MAX) 91.8 19.4M 1.8G 58.4 18.4M 7.2G 45.4 47.4 18.5M 6.7G

point-wise MLP (S) 92.6 1.7M 0.2G 56.7 1.6M 0.8G 45.3 47.0 1.6M 0.7G
point-wise MLP 92.8 26.5M 2.7G 66.2 25.5M 9.8G 48.1 51.5 25.6M 9.1G

pseudo grid (S) 92.3 1.2M 0.3G 64.3 1.2M 1.0G 44.2 45.2 1.2M 0.9G
pseudo grid 93.0 19.5M 2.0G 65.9 18.5M 9.3G 50.8 53.0 18.5M 8.5G

adapt weights (S) 92.1 1.2M 0.2G 61.9 1.2M 0.6G 44.1 46.1 1.2M 0.5G
adapt weights 93.0 19.4M 2.3G 66.5 18.4M 7.8G 50.1 53.5 18.5M 7.2G

PosPool (PPNet-S) 92.5 1.2M 0.1G 64.2 1.1M 0.5G 44.6 47.2 1.1M 0.5G
PosPool (PPNet) 92.9 19.4M 1.8G 66.5 18.4M 7.3G 50.0 53.4 18.5M 6.8G

PosPool∗ (PPNet-S∗) 92.6 1.2M 0.1G 61.3 1.1M 0.5G 46.1 47.2 1.1M 0.5G
PosPool∗ (PPNet∗) 93.2 19.4M 1.8G 66.7 18.4M 7.3G 50.6 53.8 18.5M 6.8G

Datasets We consider three datasets with varying scales of training data, task
outputs (classification and semantic segmentation) and scenarios (CAD models
and real scenes): ModelNet40 [37], S3DIS [1] and PartNet [19]. More details
about datasets are described in Section 6.

Performance of Two Baseline Operators For point cloud modeling, the
architectures without local aggregation operators also perform well to some ex-
tent, e.g. PointNet [20]. To investigate what local aggregation operators perform
beyond, we present two baseline functions to replace the local aggregation oper-
ators described in Section 3:

gi = fi, (6)

gi = R ({fj |j ∈ N (i)}) . (7)

The former is an identity function, without encoding neighborhood points. The
latter is an AVG/MAX pool layer without regarding their relative positions.
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Table 2. Evaluating different settings of the point-wise MLP method. The option
∇, 4, 2 and 3 denote input features using {∆pij , fj}, {fi,∆fij}, {∆pij , fi,∆fij}, and
{∆pij , fi, fj ,∆fij}, respectively. “Sweet spot” denotes balanced settings regarding both
efficacy and efficiency. The accuracy on PartNet test set is not tested in ablations to
avoid the tuning of test set

method γ
input

#FC R(·) ModelNet40 S3DIS
PartNet

(val/test)∇ 4 2 3

PointNet++ [22] - 3 3 MAX 90.7 - -/42.5
PointNet++* - 3 3 MAX 91.6 55.3 43.1/45.3

sweet spot
8 3 1 MAX 92.8 62.9 48.2/50.8
2 3 1 MAX 92.8 66.2 48.1/51.2

FC num
8 3 2 MAX 92.5 59.5 47.9/-
8 3 3 MAX 92.0 59.9 48.7/-

input
8 3 1 MAX 92.6 59.8 47.1/-
8 3 1 MAX 92.5 61.4 47.6/-
8 3 1 MAX 92.7 51.0 47.9/-

reduction R(·) 8 3 1 AVG 92.3 55.1 46.8/-
8 3 1 SUM 92.2 44.7 46.7/-

Table 1 shows the accuracy of these two baseline operators using the common
architecture in Fig. 1 on three benchmarks. It can be seen that these baseline
operators mostly perform marginally worse than the previous best performing
methods on the three datasets. The baseline† operator using a MAX pooling layer
even slightly outperforms the previous state-of-the-art with smaller computation
FLOPs (47.4 mIoU, 6.7G FLOPs vs. 46.4 mIoU, 23.1G FLOPs).

In the following, we will revisit different designing components in the point-
wise MLP based methods and the adaptive weight based methods using the com-
mon deep residual architecture in Fig. 1. For the pseudo grid feature methods,
we choose a representative operator, KPConv [30], with depth-wise convolution
kernel and its default grid settings (M = 15) for comparison. There are not
much hyper-settings for it and we will omit the detailed tuning.

4.2 Performance Study on Point-wise MLP based Method

We start the investigation of this type of methods from a representative method,
PointNet++ [22]. We first reproduce this method using its own specific overall
architecture and with other implementation details the same as ours. Table 2
(denoted as PointNet++∗) shows our reproduction is fairly well, which achieves
slightly better accuracy than that reported by the authors [22, 19] on ModelNet40
and PartNet.

We re-investigate several design components for this type of methods using
the deep architecture in Fig. 1, including the number of fully connected (FC)
layers in an MLP, the choice of input features and the reduction function. Table 2
shows the ablation study on these aspects, with architecture hyper-parameters
as: block repeat factor Nr = 1, base width C = 144 and bottleneck ratio γ = 8.

We can draw the following conclusions:
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– Number of FC layers. In literature of this method type, 3 layers are usually
used by default to approximate complex functions. Surprisingly, in our ex-
periments, using 1 FC layer without non-linearity significantly outperforms
that using 2 or 3 FC layers on S3DIS, and it is also competitive on Model-
Net40 and PartNet. We hypothesize that the fitting ability by multiple FC
layers applied on the concatenation of point feature and relative position
may be partly realized by the point-wise transformation layers (the first and
the last layers in a residual block) applied on point feature alone. Less FC
layers also ease optimization. Using 1 FC layer is also favorable considering
the efficiency issue: the computation can be significantly reduced when 1 FC
layer is adopted, through computing sharing as explained below.

– Input Features. The relative position and edge feature perform similarly on
ModelNet40 and PartNet, and combining them has no additional gains. How-
ever, on S3DIS datasets, combining both significantly outperforms the vari-
ants using each alone.

– Reduction function. MAX pooling performs the best, which is in accord with
that in literature.

An efficient implementation when 1 FC layer is used. Denote the weight
matrix of this only FC layer as W = [W 1,W 2] ∈ Rd×(d+3) where W 1 ∈ Rd×3

and W 2 ∈ Rd×d. We have G = W · concat(∆pij , fj) = W 1∆pij +W 2fj . Noting
the computation of the second term W 2fj can be shared when point j appears
in different neighborhoods, the computation complexity of this operator is sig-
nificantly reduced from (d+ 3)ndK to nd2 + 3ndK.

Sweet spots for point-wise MLP methods. Regarding both the efficacy and
efficiency, the sweet spot settings are applying 1 FC layer to an input combination
of relative position and edge features. Table 2 also shows that using γ = 2 for
this method can approach or surpass the state-of-the-art on all three datasets.

4.3 Performance Study on Adaptive Weight based Method

Table 3 shows the ablations over several designing components within this method
type, including the number of fully connected (FC) layers, choice of input fea-
tures, the reduction function and whether to do weight normalization. We adopt
architecture hyper-parameters as: block repeat factor Nr = 1, base width C =
144, and bottleneck ratio γ = 8.

We can draw the following conclusions:

– Number of FC layers. Using 1 FC layer performs noticeably better than that
using 2 or 3 layers on S3DIS, and is comparable on ModelNet40 and PartNet.

– Input features. Using relative positions alone performs best on all datasets.
The accuracy slightly drops with additional position features [16]. The edge
features harm the performance, probably because it hinders the effective
learning of adaptive weights from relative positions.
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Table 3. Evaluating different settings of the adaptive weight based methods. dp∗
denotes the 9-dimensional position vector as in [16]. “Sweet spot” denotes balanced
settings regarding both efficacy and efficiency. The accuracy on PartNet test set is not
tested for ablations to avoid tuning the test set.

method γ
input

#FC R(·) S.M. ModelNet S3DIS
PartNet

(val){dp} {df} {dp, df} {dp∗}
PConv[34] - 3 2 SUM - 58.3 -

FlexConv[5] - 3 1 SUM 90.2 56.6 -

sweet spot 8 3 1 AVG 92.7 62.6 50.0
sweet spot* 2 3 1 AVG 93.0 66.5 50.1

FC num
8 3 2 AVG 92.6 61.3 49.9
8 3 3 AVG 92.5 58.5 49.6

input
8 3 1 AVG 85.3 46.6 46.9
8 3 1 AVG 82.2 55.7 46.4
8 3 1 AVG 92.1 57.0 49.1

reduction
8 3 1 SUM 92.6 61.7 49.1
8 3 1 MAX 92.4 62.3 49.7

SoftMax 8 3 1 AVG 3 91.7 55.9 45.8

– Reduction function. MAX and AVG functions perform slightly better than
SUM function, probably because the MAX and AVG functions are more
insensitive to varying neighbor size. We use AVG function by default.

– SoftMax normalization. The accuracy significantly drops by SoftMax nor-
malization, probably because the positive weights after normalization let ker-
nels act as low-pass filters and may cause the over-smoothing problem [13].

Sweet spots for adaptive weight based methods. The best performance
is achieved by applying 1 FC layer without SoftMax normalization on relative
positions alone to compute the adaptive weights. This method also approaches or
surpasses the state-of-the-art on all three datasets using a deep residual network.

Discussions Table 1 indicates that the three local aggregation operator types
with appropriate settings all achieve the state-of-the-art performance on three
representative datasets using the same deep residual architectures. With 16×
less parameters and computations (marked by “S”), they also perform compet-
itive compared with the previous state-of-the-art. The sweet spots of different
operators also favor a simplicity principle, that the relative position alone and 1
FC layer perform well in most scenarios.

While recent study in point cloud analysis mainly lies in inventing new local
aggregation operators, the above results indicate that some of them may worth
re-investigation under deeper and residual architectures. These results also stim-
ulate a question: could a much simpler local aggregation operator achieve similar
accuracy as the sophisticated ones? In the following section, we will try to answer
this question by presenting an extremely simple local aggregation operator.
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Fig. 2. Illustration of the proposed position pooling (PosPool) operator.

5 PosPool: An Extremely Simple Local Aggregation
Operator

In this section, we present a new local aggregation operator, which is extremely
simple with no learnable weights.

The new operator is illustrated in Fig. 2. For each neighboring point j, it
combines the relative position ∆pij and point feature fj by element-wise mul-
tiplication. Considering the dimensional difference between the 3-dimensional
∆pij and d-dimensional fj , the multiplication is applied group-wise that ∆pij ’s
scalars [∆xij , ∆yij , ∆zij ] are multiplied to 1/3 channels of fj , respectively, as

G(∆pij , fj) = Concat
[
∆xijf

0
j ;∆yijf

1
j ;∆zijf

2
j

]
, (8)

where f0,1,2j are the 3 sub-vectors equally split from fj , as fj =
[
f0j ; f1j ; f2j

]
.

The operator is named position pooling (PosPool), featured by its property
of no learnable weight. It also reserves the permutation/translation invariance
property which is favorable for point cloud analysis.
A Variant. We also consider a variant of position pooling operator which is
slightly more complex, but maintains the no learnable weight property. Instead
of using 3-d relative coordinates, we embed the coordinates into a vector with
the same dimension as point feature fij using cosine/sine functions, similar as in
[31]. The embedding is concatenated from d/6 group of 6-dimensional vectors,
with the mth 6-d vector representing the cosine/sine functions with a wave length
of 10006m/d on relative locations x, y, z:

Em(x, y, z) =[sin(100x/10006m/d, cos(100x/10006m/d),

sin(100y/10006m/d, cos(100y/10006m/d),

sin(100z/10006m/d, cos(100z/10006m/d)]. (9)

Then an element-wise multiplication operation is applied on the embedding
E and the point feature fij :

G(∆pij , fj) = E � fij . (10)

The resulting operator also does not have any learnable weights, and is set as
a variant of position pooling layer. We find this variant performs slightly better
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than the direct multiplication in Eq. (8) in some scenarios. We will show more
variants in Appendix A3.

Complexity Analysis The space complexity O(space) = 0, as there are no
learnable weights. The time complexity is also small O(time) = ndK. Due to
the no learnable weight nature, it may also potentially ease the hardware imple-
mentation, which does not require an adaption to different learnt weights.

6 Experiments

6.1 Benchmark Settings

In this section, we detailed the three benchmark datasets with varying scales
of training data, task outputs (classification and semantic segmentation) and
scenarios (CAD models and real scenes).

– ModelNet40 [37] is a 3D classification benchmark. This dataset consists of
12,311 meshed CAD models from 40 classes. We follow the official data
splitting scheme in [37] for training/testing. We adopt an input resolution of
5,000 and a base grid size of 2cm.

– S3DIS [1] is a real indoor scene segmentation dataset with 6 large scale
indoor areas captured from 3 different buildings. 273 million points are an-
notated and classified into 13 classes. We follow [28] and use Area-5 as the
test scene and all others for training. In both training and test, we segment
small sub-clouds in spheres with radius of 2m. In training, the spheres are
randomly selected in scenes. In test, we select spheres regularly in the point
clouds. We adopt a base grid size of 4cm.

– PartNet [19] is a more recent challenging benchmark for large-scale fine-
grained part segmentation. This dataset consists of pre-sampled point clouds
of 26, 671 3D object models in 24 object categories, with each object contain-
ing 18 parts on average. This dataset is officially split into three parts: 70%
training, 10% validation, and 20% test sets. We train our model with official
training dataset and then conduct the comparison study on the validation
set on 17 categories with fine-grained annotation. We also report the best
accuracies of different methods on the test set. We use the 10,000 points
provided with the datasets as input, and the base grid size is set as 2cm.

The training/inference settings are detailed in Appendix A1. Note for Part-
Net datasets, while in [19] independent networks are trained for 17 different
shapes, we adopt a shared backbone and independent 3 fully connected layers
for part segmentation of different categories and train all the categories together,
which significantly facilitate the evaluation on this dataset. We note using the
shared backbone network achieves similar accuracy than the methods training
different shapes independently.
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(a) Evaluation on ModelNet40 datasets with different width, depth and bottleneck ratio

(b) Evaluation on S3DIS datasets with different width, depth and bottleneck ratio

(c) Evaluation on PartNet datasets with different width, depth and bottleneck ratio
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Fig. 3. Accuracy of different methods with varying width (C), depth (Nr + 1) and
bottleneck ratio (γ) on three benchmark datasets.

6.2 Comparing Operators with Varying Architecture Capacity

Fig. 3 shows comparison of different local aggregation operators using architec-
tures with different model capacity on three benchmarks, by varying the network
width, depth and bottleneck ratio. Detailed experimental settings are presented
in Appendix A2. It can be seen: the PosPool operators achieve top or close-to-top
performances using varying network hyper-parameters on all datasets, showing
its strong stability and adaptability. While the other more sophisticated opera-
tors may achieve similar accuracy with the PosPool layers on some datasets or
settings, their performance are less stable across scenarios and model capacity.
For example, the accuracy of the “AdaptWeight” method will drop significantly
on S3DIS when the model capacity is reduced by either the width, depth or
bottleneck ratio.

7 Conclusion

This paper studies existing local aggregation operators in depth via a care-
fully designed common testbed that consists of a deep residual architecture and
three representative benchmarks. Our investigation illustrates that with appro-
priate settings, all operators can achieve the state-of-the-art performance on
three tasks. Motivated by this finding, we present a new extremely simple op-
erator without learned weights, which performs as good as existing operators
with sophisticated design. We hope our study and new design can encourage
further rethinking and understanding on the role of local aggregation operators
and shed new light to future network design.
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