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Abstract. Estimating age from a single facial image is a classic and
challenging topic in computer vision. One of its most intractable issues
is label ambiguity, i.e., face images from adjacent age of the same person
are often indistinguishable. Some existing methods adopt distribution
learning to tackle this issue by exploiting the semantic correlation be-
tween age labels. Actually, most of them set a fixed value to the variance
of Gaussian label distribution for all the images. However, the variance is
closely related to the correlation between adjacent ages and should vary
across ages and identities. To model a sample-specific variance, in this pa-
per, we propose an adaptive variance based distribution learning (AVDL)
method for facial age estimation. AVDL introduces the data-driven op-
timization framework, meta-learning, to achieve this. Specifically, AVDL
performs a meta gradient descent step on the variable (i.e. variance)
to minimize the loss on a clean unbiased validation set. By adaptively
learning proper variance for each sample, our method can approximate
the true age probability distribution more effectively. Extensive experi-
ments on FG-NET and MORPH II datasets show the superiority of our
proposed approach to the existing state-of-the-art methods.

Keywords: age estimation, distribution learning, meta-learning

1 Introduction

Age estimation is a challenging and hot research topic, which is to predict the
person’s age from his/her facial image. It has a lot of potential applications,
including demographic statistics collection, commercial user management, video
security surveillance, etc. However, there are numerous internal or external fac-
tors that affect the estimation results, including the race, illumination, image
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Fig. 1. The motivation of the proposed method. In each subfigure, the age probability
distribution in the lower part corresponds to the middle image in the upper. The images
above the dotted line belong to the same person and so do the images below the dotted
line. On the one hand, by comparing (a) with (b) or (c¢) with (d), we can see that
the facial appearance variation between adjacent ages of the same person varies at
different ages. Correspondingly, the variance of the age probability distribution should
differ across ages. On the other hand, by comparing (b) with (c), we can see that even
at the same age, the aging process between different persons differs, thus the variance
also varies across different persons

quality and so on. Besides, facial images from adjacent ages of the same person,
especially for adults, usually look similar, resulting in the label ambiguity.

Recently, several deep learning methods have been proposed to improve the
performance of facial age estimation. The most common methods model the face
age prediction as a classification or a regression problem. The classification based
methods treat each age as an independent class, which ignores the adjacent rela-
tionship between classes. Considering the continuity of age, regression methods
predict age according to the extracted features. However, as presented by pre-
vious work [31, 33], the regression methods face the overfitting problem, which
is caused by the randomness of the human aging process and the ambiguous
mapping between facial appearance and the actual age. In addition, some rank-
ing based methods are proposed to achieve more accurate age estimation. Those
approaches make use of individuals’ ordinal information and employ multiple
binary classifiers to determine the final age of the input image. Furthermore,
Geng et al. [13, 8] propose the label distribution learning (LDL) method which
assumes that the real age can be represented by a discrete distribution. As their
experiments show, it can help improve age estimation using Kullback-Leibler
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(K-L) divergence to measure the similarity between the predicted and ground
truth distribution.

For the label distribution learning methods, the mean of the distribution
is the ground truth age. However, the variance of the distribution is usually
unknown for a face image. The previous methods often treat variance as a hyper-
parameter and simply set it to a fixed value for all images. We think these
methods are suboptimal because the variance is highly related to the correlation
between adjacent ages and should vary across different ages and different persons,
as illustrated in Fig. 1. The assumption that all the images sharing the same
variance potentially degrades the model performance.

To tackle the above issues, in this paper, we propose a novel adaptive variance
based distribution learning method (AVDL) for age estimation. Specifically, we
introduce meta-learning which utilizes validation set as meta-objective and is
applicable to online hyper-parameter adaptation work [28], to model sample-
specific variance and thus better approximate true age probability distribution.
As Fig. 2 shows, we firstly select a small validation set. For each iteration, with
a disturbing variable added to variance, we use K-L loss as the training loss to
update the training model parameter. Then we share the updated parameter
with validation model and use predicted expectation age and ground truth on
validation set to get L1 loss as the meta-objective. With this meta-guider, the
disturbing variable is updated by gradient descent and adaptively find the proper
variance with which model could perform better on validation set. The main
contributions of this work can be summarized as follows:

— We propose a novel adaptive variance based distribution learning (AVDL)
method for facial age estimation. AVDL can effectively model the correlation
between adjacent ages and better approximate the age label distribution.

— Unlike the existing deep models which assume the variance across ages and
identities is the same, we introduce a data-driven method, meta-learning, to
learn the sample-specific variance. To our knowledge, we are the first deep
model using meta-learning method to adaptively learn different variances for
different samples.

— Extensive experiments on FG-NET and MORPH II datasets show the supe-
riority of our proposed approach to the existing state-of-the-art methods.

2 Related Work

2.1 Facial Age Estimation

In recent years, with rapid development of convolution neural network (CNN) in
computer vision tasks, such as facial landmark detection[23], face reconition[38,
3], pedestrian attribute[35], semantic segmentation [46,45], deep learning meth-
ods were also improved the performance of age estimation. Here we briefly review
some representative works in the facial age estimation field. Dex et al. [30] regard-
ed the facial age estimation as a classification problem and predicted ages with
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the expectation of ages weighted by classification probability. Tan et al. [33] pro-
posed an age group classification method called age group-n-encoding method.
However, these classification methods ignored the adjacent relationship between
classes or groups. To overcome this, Niu et al. [24] proposed a multiple output
CNN learning algorithm which took account of the ordinal information of ages
for estimation. Shen et al. [32] proposed Deep Regression Forests by extending
differentiable decision trees to deal with regression. Furthermore, Li et al. [22]
proposed BridgeNet, which consists of local regressors and gating networks, to
effectively explore the continuous relationship between age labels. Tan et al. [34]
proposed a complex Deep Hybrid-Aligned Architecture (DHAA) that consists
of global, local and global-local branches and jointly optimized the architecture
with complementary information. Besides, Xie et al. [39] proposed two ensemble
learning methods both utilized ordinal regression modeling for age estimation.

2.2 Distribution Learning

Distribution learning is a learning method proposed to solve the problem of label
ambiguity [10], which has been utilized in a number of recognition tasks, such
as head pose estimation [12, 8], and age estimation [41,20]. Geng et al. [13,11]
proposed two adaptive label distribution learning (ALDL) algorithms, i.e. IIS-
ALDL and BFGS-ALDL, to iteratively learn the estimation function parameters
and the label distributions variance. Though ALDL used an adaptive variance
learning, our proposed method is different in three ways. Firstly, ALDL uti-
lized traditional optimization method like BFGS while ours uses deep learning
and CNN. Secondly, ALDL chose better samples in current training iteration to
estimate new variance while our method uses meta-learning to get adaptive vari-
ance. The third point is ALDL updated variance only by estimating the training
sample, which may cause overfitting. Our adaptive variance is supervised by val-
idation set to be more general. Distribution learning of label was also used to
remedy the shortage of training data with exact ages. Hou et al. [20] proposed a
semi-supervised adaptive label distribution learning method. It used unlabeled
data to enhance the label distribution adaptation to find a proper variance for
each age. However, aging tendencies varies and variances of people at the same
age could be different. Gao et al. [9] jointly used LDL and expectation regres-
sion to alleviate the inconsistency between training and testing. Moreover, Pan
et al. [25] proposed a mean-variance loss for robust age estimation. Li et al. [21]
proposed label distribution refinery to adaptively estimate the age distributions
without assumptions about the form of label distribution, barely took into ac-
count the correlation of adjacent ages. While our method used Gaussian label
distribution with adaptively meta-learned variance, which pays more attention
to neighboring ages and ordinal information.

2.3 Meta-learning

Our proposed AVDL is an instantiation of meta-learning [36, 1], i.e., learning
to learn. According to the type of leveraged meta data, this concept can be
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classified to several types [37] including transferring knowledge from empirical-
ly similar tasks, transferring trained model parameters between tasks, building
meta-models to learn data characteristics and learn purely from model evalua-
tions. Model Agnostic Meta-Learning (MAML) [7] learned a model parameter
initialization to perform better on target tasks. With the guidance of meta in-
formation, MAML took one gradient descent step on meta-objective to update
model parameters [16]. The idea of using validation loss as meta-objective was
applied in few-shot learning [27]. With reference to few-shot learning, Ren et
al. [28] proposed a reweighting method (L2RW) guided by validation set. This
method tried to solve the problem that data imbalance and label noise are both
in the training set. The crucial criteria of L2RW is a small unbiased clean val-
idation set which was taken as the supervisor of learning sample weight. As
validation set performance measures the quality of hyper-parameters, taking it
as meta-objective could not only be applied to sample reweighting but also to
any other online hyper-parameter adaptation tasks. Inspired by this, we propose
AVDL to incorporate validation set based meta-learning and label distribution
learning to adaptively learn the label variance.

3 Methodology

In this section, we firstly give a description of the label distribution learning
(LDL) method in age estimation. Then we introduce our adaptive variance based
distribution learning(AVDL) method based on meta-learning framework.

3.1 The Label Distribution Learning Problem Revisit

Let X denote an input image with ground truth label y, y € {0,1,...,100}. The
model is trained to predict a value as close to the ground truth label as possible.
For traditional age estimation method, the ground truth is an integer. While in
LDL method, to express the ambiguity of labels, Gao et al. [8] transform the real
value y to a normal distribution p(y,o) to denote the new ground truth. Mean
value is set to the ground truth label y and o is the normal distribution variance.
Here we adopt the boldface lowercase letters like p(y, o) to denote vectors, and
use pi(y,0) (k € [0,100]) to represent the k-th element of p(y, o):

() = o exp(- L) ()

where p; is the probability that the true age is k years old. It represents the
connection between the class k and y in a normal distribution view.

In the training process, assuming G(x, 0) as the classification function of the
trained estimation model, # represents the model parameters, z(X, ) = G(X, 0)
transforms the input X to the classification vector z(X, ¢). A softmax function
is utilized to transfer z(X,6) into a probability distribution p(X,0), the k-th



6 X. Wen et al.

element of which can be denoted by:

exp(zx (X, 0))
> exp(zn (X, 0))

where 2z (X, 0) is the k-th element of z(X,0).

LDL tries to generate the predicted softmax probability distribution as sim-
ilar to the ground truth distribution as possible. So the Kullback-Leibler (K-L)
divergence is employed to measure the difference between the predicted distri-
bution and ground-truth distribution [8]:

ﬁk(Xv 9) =

(2)

Lin(X,y,0,0) = ;pk(y,o)lnm (3)

Then the K-L loss is used to update model parameters with SGD optimizer.

LDL method aims to construct a normal distribution of ground truth to
approximate the real distribution, the key of which is the variance o. For most
LDL methods, this hyper-parameter is simply set to a fixed value, 2.0 in most
cases. However, in fact, the variances for different people, or people of different
ages could not be absolutely the same. So we propose a method to search proper
variance for each image.

3.2 Adaptive Distribution Learning Based on Meta-learning

In machine learning, the loss on validation set is one of the guiders to adjust
hyper-parameters for generalization. Therefore, using a clean unbiased valida-
tion set can help train a more general model. However, traditional training mode
usually tunes the hyper-parameter manually. Inspired by the meta-learning work
[28], we propose the adaptive variance based distribution learning (AVDL) al-
gorithm guided by validation set, which offers an effective strategy to learn the
sample-specific variance.

As we mentioned in Section 3.1, the most important hyper-parameter of LDL
is the variance 0. Because our goal is to search for proper o of each image while
training, in this section we use o to represent the variance vector for a batch
of training data. The optimal ¢ in each iteration depends on the optimal model
parameter 6:

0* (o) = arg HleinLKL(Xtra Yir, 0, 0) (4)
o =arg miglo L1(Xyats Yval, 0%, 0) (5)

where L1 (Xyai, Yval, 0%, 0) denotes the validation loss. X3, is the training input
image while y, is its label. X,q; is the validation input image while its label
iS Ypai- To solve the optimization problem, we divided the training process into
several process. Fig. 2 shows the computation graph of our proposed method.
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Fig. 2. Computation graph of AVDL in one iteration. The ground truth of each input
image is transformed to a normal distribution. The model on top is for training and
the other is for validation. The train model and validation model share the network
architecture and parameters. The training loss is K-L loss while the validation loss
is L1 loss. Process 1,2,3 belongs to traditional training steps. Perturbing variable ¢ is
added to initial distribution variance to get variance o. By adding the training gradient
descent step — 7 0, the training model parameter 6 is updated to ' and is assigned
to the validation model. Process 4 uses the descent gradient of ¢ in validation loss
to get the modified ¢’ and o’. Process 5,6 shows the improved forward and backward
computation with a proper variance o’.

We choose a fixed number of images with correct labels from each class in the
training set n to make a small unbiased validation set with m images, m < n.
We utilize o; to denote variance for i-th image image while we set the initial
value of variances of all images to a fixed value ;. To search a proper variance,
we perturb each o; by &;:

o =050+ & (6)

where &; is the i-th component of perturbing vector £ which is set to 0 for
initialization. Clearly, searching a proper o is equal to searching a proper &.

Firstly, as Fig. 2 process 1, 2 and 3 show, in the ¢-th iteration, the input
training batch calculates K-L loss as described in Section 3.1 with a perturbed
o. Update the model parameter 6; with SGD to get 0y41:

Ori1 =0 — 7o Licr,(Xir, Yir, 01, 0) (7)

« is the descent step.
The training loss is related to distribution. To compensate the lack of con-
strain in the final predicted age value, we adopt L1 loss on validation to measure
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the distance between expectation age of prediction and the validation ground
truth [9]:

Ll(Xval; yvalvét+1a§) = ‘g*(Xvahét«HaE) — Yval (8)

7" (Xoat: 0r41,6) = > 9r(Xoat, Or1, )l 9)

where py, is the k-th element in the prediction vector of validation input X,
and [ denotes the age value of the k-th class, i.e. [ € ). The expectation age
computing method is also used for estimating test images in Section 4.

Algorithm 1 Adaptive Variance Based Distribution Learning
Input: Training set Sir = Xir, Yir,,; Validation set Svar = Xval, Yvaly,, M <K 1
Initial model parameter p; Initial variance o¢
Output: Final model parameter 01
1: for t = 0,1,2...T-1 do
Sample training batch St from Si.
Sample validation batch Syqi,+ from Sya;
£+ 0
o4 oo+¢&
Ly (Xtr, ytr, 0t,0) < NetForward(X¢r, yir, 0, 0)
éH.l(a) — 0 - avve, Lxr(Xir, Yir, 0t,0) % ét-&-lA is a function of o
lfl (Xvah Yuvals 9t+1 (0’), J) (—A NetForward(Xml, Yvals 0t+1 (J), 0’)
: &+ £—BVeL1(Xvats Yvar, Ot41(0),0) % the gradient of £ on L1 loss equals
to the gradient of ¢ on L1 loss
10: G+ 0o +¢& % modify o adaptively
11: LKL(Xtmythh&) + Forward(Xir, yir, O¢, 6)
12: 041 + SGD(Lkr(Xer, Yir, 0, 6),0¢) % update with SGD optimizer
13: end for

The better hyper-parameter means better validation performance. In that,
we update the perturbation £ with gradient descent step:

€ =¢— BVe L1(Xoats Yoals 0141, €) (10)

where [ is the descent step size. This step is corresponding to the process 4
in Fig. 2. Due to the non-negativity restriction of o, we normalize the £ into
the range [-1,1], using the mapping & — % Then update the
variance o according to Eq.( 6 ). In the third step of training, with the modified
variance, we calculate forward K-L loss of the training input, then update model
parameter with SGD optimizer, as the process 5,6 in Fig. 2 shows.

We listed step-by-step pseudo code in Algorithm 1. According to step 9 in
Algorithm 1, there is a two-stage deviation computation of variable £. PyTorch
autograd mechanism can achieve this operation handily.
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4 Experiments

In this section, we first introduce the datasets used in the experiments, i.e.,
MORPH II [29], FG-NET [26] and IMDB-WIKI [31]. Then we detail the exper-
iment settings. Next, we validate the superiority of our approach with compar-
isons to the state-of-the-art facial age estimation methods. Finally, we conduct
some ablation studies on our method.

4.1 Datasets

Morph IT is the most popular dataset for age estimation. The dataset contains
55,134 color facial images of 13,000 individuals whose ages range from 16 to 77.
On this dataset, we employ three typical protocols for evaluation: Setting I: 80-
20 protocol. We randomly divide this dataset into two non-overlapped parts,
i.e., 80% for training and 20% for testing. Setting II: Partial 80-20 protocol.
Following the experimental setting in [33], we extract a subset of 5,493 facial
images from Caucasian descent, these images are splitted into two parts: 80% of
facial images for training and 20% for testing. Setting III: S1-S2-S3 protocol.
Similar to [33, 22], Morph IT dataset is splitted into three non-overlapped subsets
S1, S2 and S3, and all experiments are repeated twice. Firstly, train on S1 and
test on S2+4S3. Then, train on S2 and test on S14S3. The performance of the
two experiments and their average MAE are shown respectively.

FG-NET contains 1,002 color or gray facial images of 82 individuals whose ages
are ranging from 0 to 69. We follow a widely used leave-one-person-out (LOPO)
protocol [25,4] in our experiments, and the average performance over 82 splits
is reported.

IMDB-WIKI is the largest facial image dataset with age labels, which con-
sists of 523,051 images in total. This dataset is constituted of two parts: IMDB
(460,723 images) and WIKI (62,328 images). We follow the practice in [22] and
use this dataset to pretrain our model. Specifically, We remove non-face images
and partial multi-face images. Finally, about 270,000 images are reserved.

4.2 Implementation Details

We use the detection algorithm in [44] to obtain the face detection box and five
facial landmark coordinates, which are then used to align the input facial image
of the network. We resize the input image to 224 x 224.

Following the settings in [9], we augment the face images with random hori-
zontal flipping, scaling, rotating and translating during training time. For testing,
we input both the image and its flipped version to the network, and then average
their predictions as the final results.

We adopt ResNet-18 [19] as our backbone network and pretrain the network
on IMDB-WIKI dataset for better initialization. We use the SGD optimizer with



10 X. Wen et al.

batch size 32 to optimize the network. The weight decay and the momentum are
set to 0.0005 and 0.9. The initial learning rate is set to 0.01 and decays by 0.1
for every 20 epochs. we set the initial value of variances of all images to 1, and
train the deep convolution neural network with PyTorch on 4 GTX TITAN X
GPUs.

Table 1. The comparisons between the proposed method and other state-of-the-art
methods on MORPH II under Setting I. Bold indicates the best (* indicates the model
was pre-trained on the IMDB-WIKI dataset; ! indicates the model was pre-trained on
the MS-Celeb-1M dataset [17])

Method MAE Parameters Year
ORCNN [24] 3.27 479.7K 2016
RGAN* [6] 2.61 - 2017

VGG-16 CNN + LDAE* [2] 2.35 138M 2017
SSR-Net* [40] 316 409K 2018
DRFS[SQ] 2.17 138M 2018

M-V Loss™ [25] 2.16 138M 2018
DLDL-V2' [9] 1.97 3.7M 2018
C3AE™ [43] 2.75 39.7K 2019

DHAA [34] 1.91 100M 2019

AVDL* 1.94 11M -

4.3 Evaluation Criteria

According to previous works [31, 33], we measure the performance of age estima-
tion by the Mean Absolute Error (MAE) which is calculated using the average
of the absolute errors between estimated age and chronological age.

4.4 Comparisons With State-of-the-arts

On Morph II. We first compare the proposed method with other state-of-the-
art methods on MORPH II dataset in Setting I, as illustrated in Table 1. We
achieve the second best performance, which is slightly lower than DHAA [34]
by 0.03. It is worth to note that DHAA is large and complex, their parameters
are around 10 times larger than ours, though without additional face dataset
for pre-training. Moreover, using the same pre-training dataset, we surpass the
M-V Loss by a significant margin of 0.22.

Table 2 shows the test result under Setting II. We achieve the best perfor-
mance, which is slightly higher than BridgeNet [22] by 0.01. Nevertheless, we
have fewer parameters than BridgeNet. That is to say, we achieve the perfor-
mance nearly to theirs with a significantly lower model complexity at the same
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time. As Table 3 shows, we achieve MAE of 2.53 under Setting III. Our method
performs much better than the current state-of-the-art. All of the above com-
parisons consistently demonstrate the effectiveness of the proposed method.

Table 2. The comparisons between the proposed method and other state-of-the-art
methods on MORPH II dataset (Setting II) and FG-NET dataset. Bold indicates the
best (* indicates the model was pre-trained on the IMDB-WIKI dataset)

Method MORPH II FG-NET Parameters Year

OHRANK [4] 6.07 4.48 - 2011
CA-SVR [5] 5.88 4.67 . 2013
Human [18] 6.30 4.70 - 2015
DEX" [31] 2.68 3.09 138M 2018
DRFs [32] 2.91 3.85 138M 2018
M-V Loss* [25] - 2.68 138M 2018
AGEn™ [33] 2.52 2.96 138M 2018
C3AE™ [43] - 2.95 39.7K 2019
BridgeNet™ [22] 2.38 2.56 138M 2019
DHAA" [34] - 2.59 100M 2019
AVDL* 2.37 2.32 11M -

On FG-NET. As shown in Table 2, we compare our model with state-of-the-art
models on FG-Net. Our method achieves the lowest MAE of 2.32, which improves
the state-of-the-art performance by a large margin of 0.24. Experimental results
show that our method is effective even when there are only a few training images.

4.5 Ablation Study

In this subsection, we conduct ablation study on MORPH II dataset under
Setting I to conduct ablation study.

The superiority of adaptive variance to fixed variance value. We train
a set of baseline models, which all adopt ResNet-18 and K-L divergence loss but
with different fixed variance values. Theoretically, the larger variance indicates
the smoother distribution which refers to the stronger correlation in that age
group. In comparison, the smaller variance represents the sharper distribution
and the weaker correlation. If the variance is set too high, i.e., the label distri-
bution is too smooth, the age estimation may not perform well. As Fig. 3 shows,
the MAE increases along with the growth of variance when it is higher than
3, which indicates the worse performance. When the variance reduces to 0, it
assumes there is no correlation between ages which is similar to the assumption
when regarding age estimation as classification problem. However, considering
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Table 3. The comparisons between the proposed method and other state-of-the-art
methods on MORPH II under Setting III. Bold indicates the best (* indicates the
model was pre-trained on the IMDB-WIKI dataset)

Method Train Test MAE Avg

ST 52493 42l
KPLS {14] s2  S1483 415 18

1 2 4.
BIF+KCCA [15] o) gligg oy 308

S1  S2+4S83 3.72

CPLF [42] S2  Si14S3 354 03
DRFs [32] g; gﬁgg T 208
DOEL [39)] g; gﬁgg T 27
AGEw 53 S S2488 282

S2  S14+S3  2.58

BridegNet* [22] g; gﬁgg g:g‘ll 2.63

. ST S2+53 2.64
AVDL S2  S1+S3 2.41 293

the gradual changing of face in aging, taking a proper use of age correlation can
help age estimation. As illustrated in Fig. 3, when the fixed variance is less than
3, the MAE fluctuates. It validates that setting a fixed variance is suboptimal
because the age correlation can not be the same for different people in different
ages. The best performance of baseline is achieved with a variance of 3. However,
it is still much worse than our proposed method, AVDL. In Fig. 3, we also show
the performance achieved by training the ResNet-18 with cross-entropy loss,
which is our baseline method by treating age estimation as classification task.
In summary, Fig 3 demonstrates the superiority of the adaptive variance. Actu-
ally, for each dataset and experiment setting, our approach is compared to the
baseline method with fixed variance. We observed from Fig 3 that the variation
in fixed variance value within a certain range has little impact on performance,
due to limited time, we only search the best variance for MORPH II(Setting
I) and apply it to other experiments. In addition, the baseline with the fixed
variance of MORPH II(Setting II), MORPH II(Setting III), and FGNET are
2.66, 2.79,2.64, respectively.

The influence of different sample number in validation set. As [2§]
shows, a balanced meta dataset could provide balanced class knowledge. For the
same purpose, we choose an unbiased validation set as meta dataset. As for the
composition of the clean validation set, we try different sizes of validation set.
We respectively random select 1, 2 and 3 images from each class in the training
set to form the validation set for experiment. From Table 4, we can find that
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MAE
b
o

—m— baseline, fixed variance
—— AVDL
baseline, cross entropy

Fig. 3. The MAE results on MORPH II under Setting I. The blue line denotes the
results of the baseline model trained with different fixed variance. The red line is the
result of the baseline model trained with cross-entropy loss and the green one is the
result of AVDL

Table 4. The performance comparison on selecting different number of facial images
of each age to form validation set

Number of images 1 2 3
MAE of AVDL 1.98 1.96 1.94

the larger the validation set is, the better the model performs. However, since all
validation set is used in each iteration, it needs more time and memory as the size
of validation set increases. Considering the time and space cost, for each dataset
setting, we randomly chose three image from each class to form the validation
set.

4.6 Visualization and Discussion

Considering the affordance and credibility, here we display some visual results
of AVDL in age estimation and variance adaptation.

We use the learned variance of samples to show the effectiveness of AVDL
and to justify our motivation. Under the Setting I on MORPH II, each age,
ranging from 16 to 60, possesses a group of face images belonging to different
person identities. While there is no person whose images covering the full age
range. We select images of several persons at different ages with their adapted
variances in Fig. 4(a). As [11] mentioned, the age variances of younger or older
people tend to be smaller than those of middle age. And the variances vary
between people in the same age group. Besides, the variance in Fig. 4(b) shows
the visualization of the adjusted variances in a mini-batch. The initial variance
for each sample, as indicated in Section 4.2, is set to 1. The learned variances
are shown in the horizontal band above in which each block represents a sample
and the color of the block indicates the magnitude of variance. The blocks are
arranged from left to right according to the ages of samples. The band below is
the legend which indicates the relationship between the magnitude of variance
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Fig. 4. Examples of age estimation results by AVDL. (a) shows some samples at dif-
ferent ages on Morph II with adapted variances. According to the Gaussian curves, it
can be proved that for younger and older people, the variances tend to be smaller while
for middle age, larger. (b) uses heat map to visualize the adaptively learned variances
o corresponding to different ages.

and the color of block. Same as Fig. 4(a) shows, the variance in young age and
old age is smaller. Besides, the variances in the band fluctuate slightly which
demonstrates the variance is different for people.

5 Conclusions

In this paper, we propose a novel method for age estimation, named adaptive
variance based distribution learning(AVDL). AVDL introduces meta-learning to
adaptively adjust the variance for each image in single iteration. It achieves
better performances than others on multiple age estimation datasets. Our ex-
periments also show that AVDL can guide variance to get close to real facial
aging law. The idea that using meta-learning to guide key hyper-parameters is
inspirational and we will explore more possibilities of it.
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