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In this supplementary material, we present the trajectory parameterization
and sampling procedure in more details. Additionally, we give an overview of
all the planning cost-functions. Further details about training our models are
included as well as more qualitative results.

1 Trajectory Parametrization and Sampling

The output of the planner is a trajectory that consists of a sequence of bicycle
model states τ = pt, pt = (x, y, θ, v, κ, a), where (x, y) is the position of the
center of the rear axle of the vehicle, θ is the heading, v and a are the forward
velocity and acceleration, and κ is the curvature of the vehicle path which can
be converted to steering angle. Candidate trajectories can be generated by sam-
pling various curvature and acceleration values and using the kinematic bicycle
model to obtain the other states (position, heading, velocity) [1]. However, this
approach will be very inefficient as most of the sampled trajectories will not
exhibit proper lane-based driving. Therefore we adopt an alternative approach
which uses the lanes structures to generate higher quality trajectories. Specifi-
cally, we sample trajectories in Frenet Frame of the driving-path of the desired
lane [2], i.e. instead of kinematic bicycle-model state, we use longitudinal position
and lateral offset (and their higher order derivatives) relative to a driving-path
to represent a trajectory. Figure 1 demonstrates such parametrization, where r is
the driving path parametrized by arc-length s, s(t) is the longitudinal position of
the vehicle parametrized by time t, and d(s) is the lateral offset from the driving-
path parametrized by arc-length s. Each pair of s(t) and d(s) can describe a
bicycle model trajectory. Specifically, the Frenet state defined as [s, ṡ, s̈, d, d′, d′′]

can be transformed to bicycle model state (x, y, θ, v, κ, a) [2]. Note that ˙(.) := ∂
∂t ,

and (.)′ := ∂
∂s denote the derivatives with respect to time and arc-length.

Our trajectory sampling procedure is as follows: we first sample a set of
longitudinal trajectories that convert various velocity profiles such as stopping,
accelerating to a specific-velocity, maintaining the current velocity. Then, for
each longitudinal trajectory, we sample lateral trajectories that include maneu-
vers such as nudging, changing-lane, and following the driving-path. Combining
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Fig. 1: Frenet Frame

the two sets results in bicycle model trajectories that are proper lane-based tra-
jectories including lateral maneuver variations to handle challenging scenarios.

We use quintic and quartic polynomials to represent longitudinal and lat-
eral trajectories. Specifically, the set of longitudinal trajectories S = {s(t)} are
sampled by using a large set of mid-conditions [ṡ(t1), t1] and end-conditions
[ṡ(T ), T ] and solving for two quartic polynomials that are stitched together. The
acceleration (s̈) at t1 and T are fixed at 0. We parameterize lateral trajectories
[d(s), d′(s), d′′(s)] in terms of the longitudinal distance s. We generate a set of
mid-conditions [d(s1), s1] and fix d′(s1) and d′′(s1) to be 0. We require the lateral
trajectories to approach the driving path and hence the end-conditions [0, 0, 0].
The initial, mid- and end-conditions are used to obtain two quintic polynomi-
als that specify the lateral offsets for each longitudinal trajectory. Each pair of
sampled longitudinal and lateral trajectories [s(t), d(s)] are transformed back to
a bicycle model trajectory.

2 Motion Planner Cost Functions

In this section we present the details of the cost functions that are used to eval-
uate trajectories in the motion planner. Figure 2 shows a subset of the subcosts.

Collision, Safety-margin, and Headway: The trajectory of the SDV should
be collision-free and at a safe distance from surrounding objects. We use collision
and safety-distance costs (Fig. 2(a)) to penalize trajectories that have spatio-
temporal overlap with the predicted trajectories of other actors or violate a
safety margin. This is achieved by computing the distance between SDV polygon
and the predicted polygon of all the other actors at each timestep. Furthermore,
the SDV should maintain a safe headway to the leading vehicle, such that if
the lead vehicle applies a hard break, the SDV can slow-down smoothly to avoid
collision and uncomfortable breaking (Fig. 2(b)). This cost is computed using the
relative longitudinal distance of the SDV and the lead vehicle as well as their
velocities. Note that the above costs are defined when the prediction module
generates bounding-boxes and trajectories for the actors. The collision and safety
subcosts using occupancy representations are described in the paper. Also, if the
prediction module forecasts multiple modes of trajectories for each actor, the
above subcosts are computed for each predicted trajectory and are weighted by
the probability of that trajectory mode.
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(a) Collision (b) Headway (c) Path (d) Lane

(e) Traffic lights (f) Comfort (g) Route (h) Progress

Fig. 2: Examples of the motion planner cost functions

Driving-path, Lane and Road Boundaries: The SDV should adhere to the
structure of the lanes and roads. For example, it is expected that vehicles stay
close to the center of the lane and not move over the boundaries of the lane
and roads. For this purpose, we introduce subcosts that penalize the violation
of lane and road boundaries as well as the distance to the driving-path of the
lane. These subcosts are demonstrated in Fig. 2(c) and 2(d).

Speed-limit, Traffic Lights, and Stop Signs: We penalize the violation of
speed-limit at each trajectory step to promote driving at the regulated speed-
limit. Furthermore, for each red traffic-light or stop sign, the SDV needs to come
to a stop at the intersection stop-line, represented by a longitudinal position
along the lane. Therefore, we introduce cost functions where the violation of
each stop-line by a trajectory is penalized.
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Route, Progress, and Cost-to-go: The SDV is given a high-level route rep-
resented as a sequence of lanes. Although the SDV can use other lanes that
are adjacent to the route lanes, we penalize the number of lane-changes that
is required to return back to the route lanes. Furthermore, if the SDV is using
a dead-end lane (i.e., lanes that diverge from the route), we penalize violation
of a distance-threshold to the end of that lane such that the SDV is forced to
change the lane (Fig. 2(g)). Trajectories are also rewarded (negative cost) by the
distance they move along the lane to promote progress in the route (Fig. 2(h)).

We also introduce a cost that captures what comes beyond the planning
horizon. Specifically, for each trajectory we penalize the deceleration that is
needed to reduce the SDV speed, from the value specified by the last trajectory
point to an acceptable lower value, due to upcoming speed-limits, stop-signs, or
red traffic light.

Dynamics and Comfort: We prune trajectories that violate vehicle con-
straints such as maximum acceleration or curvature to only allow executable
trajectories for the SDV. Furthermore, since rapid changes in acceleration or
steering lead to uncomfortable rides, we penalize such aggressive motions. Specif-
ically, we penalize jerk and violation thereof, acceleration and violation thereof,
lateral acceleration and violation thereof, curvature and its first and second
derivatives. All the violations above are computed based on a predefined thresh-
old.

3 Training details

Optimizer: We use Adam optimizer to update the weights in the perception
backbone and occupancy forecasting networks, with a base learning rate of 1e−5.
We use exponentiated gradient descent to optimize the planning parameters such
that the subcosts’ weights remain greater than zero after each iteration i, with
a planning base learning rate α = 1e− 3:

w(i+1) = w(i) exp(−αg)

Here α is the learning rate and g denotes the gradient of w. We employ linear
scaling to both learning rates with respect to the batch size.

Hyperparameters: In our multi-task learning setting, we use a weight of λS =
1 for the semantic occupancy cross entropy loss and λM = 1e− 3 for the motion
planning max-margin loss. In the semantic occupancy cross entropy we employ
hard negative mining with a ratio of 10 negative examples for each positive one.
Note that originally the classification problem is much more imbalanced, with the
vast majority of the grid cells being not occupied. More precisely, we first define a
subset of negative pixels Negt,c over time t and classes c, which include a random
10% of the non-occupied grid cells. Then we pick all the positive examples Post,c

and the hardest 10 · |Post,c| from Negt,c (the ones with the highest loss). Finally
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we combine the positives and the subset of negatives to from the final subset of
pixels St,c.

4 Architecture details

In this section we give more details about the architecture of the recurrent oc-
cupancy updates. The backbone network was already explained in details in the
paper.

Recurrent Occupancy Update: We employ a multi-scale context fusion by
performing two parallel fully convolutional networks with different dilation rates.
One stream performs regular 2d convolutions over F2x with a 2-layer CNN with
dilation of 1, using 128 feature channels. The other stream takes the coarser
features F and processes it with another 2-layer CNN with dilation of 2 at
both layers, using 128 feature channels. We then apply bilinear interpolation to
the feature tensor at 2x downsampling to bring it to the lower resolution (4x
downsampling), and concatenate these two tensors along the channel dimension
to obtain the context Focc. Our approach then predicts the occupancy over
time in a recurrent fashion, from the context. Note that the context Focc is
downsampled 4 times from the input (0.8 m/pixel), but this is too coarse for
motion planning (e.g., when trying to turn into tight spaces, it could look like the
space is occupied by a parked car when it is not, just due to discretization). Thus,
we seek to produce the occupancies at 0.4 m/pixel. Our proposed recurrence
looks as follows:

lt,c = lt−1,c + Uθ(Focc ⊗ I(l0:t−1,c))

lt,c are the logits for root class c at timestep t into the future. I is a 2x bi-
linear interpolation to bring the previous occupancy logits into a resolution of
0.8 m/pixel. ⊗ represents feature-wise concatenation. Uθ is 2-layer CNN with a
hidden dimension of 256, where the first convolution is transposed to upsample
the resolution by 2, and the second layer is a regular convolution. The initial
occupancy at t=0 l0,c is predicted by a small 2-layer CNN from Focc and upsam-
pled using Uθ. All the aforementioned convolutions have a filter size of 3, stride
of 1 and no max pooling. Because all the tensors in this recurrence are spatial,
this design choice of using interpolation and transposed convolutions to perform
the hidden computations at a lower spatial resolution is important to keep the
GPU memory requirements low.

5 Additional Qualitative Results

Figures 4-8 show additional qualitative results. Each figure include the occu-
pancy at the current time as well as the forecasts for future time-steps.
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(a) t=0s (b) t=1.5s

(c) t=3.0s (d) t=4.5s

Fig. 3: Qualitative results: The legend on the top-right shows the color rep-
resenting each subcategories of actors. On top-left, we show the image captured
at the time by a front-view camera on the SDV. In this scenario, we can see
regions on the lane (top-middle) that is occluded due to the obstruction by the
oncoming truck.
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(a) t=0s (b) t=1.5s

(c) t=3.0s (d) t=4.5s

Fig. 4: Qualitative results: This figure demonstrates a scenario with a n on-
coming truck as well as many stationary vehicles. The SDV is able to nudge
around the parked vehicle adn continue in the route.
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(a) t=0s (b) t=1.5s

(c) t=3.0s (d) t=4.5s

Fig. 5: Qualitative results: This example shows a garbage truck. As the truck
is entering the right lane, and the SDV is able to nudge around it and continue
in the route. Note that the occupancy representation of the truck is covering the
person that on the side of the truck too.
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(a) t=0s (b) t=1.5s

(c) t=3.0s (d) t=4.5s

Fig. 6: Qualitative results: This figure show a vehicle on the left of the SDV
at t=0s. As the vehicle approaches the intersection, it is categorized as others
(i.e. not relevant to the planner) as it is located on a left-turn lane.
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(a) t=0s (b) t=1.5s

(c) t=3.0s (d) t=4.5s

Fig. 7: Qualitative results: This example show cautious behavior od the SDV
as some pedestrians are crossing the street.
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(a) t=0s (b) t=1.5s

(c) t=3.0s (d) t=4.5s

Fig. 8: Qualitative results: In this scenario large vehicles are occupying the
oncoming lane, and a truck is encroaching the SDV lane a little bit. The planner
chooses to lane-change to the right, contrary to the human driver that continued
driving on the same lane.
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