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Abstract. In this paper we propose a novel end-to-end learnable net-
work that performs joint perception, prediction and motion planning
for self-driving vehicles and produces interpretable intermediate repre-
sentations. Unlike existing neural motion planners, our motion planning
costs are consistent with our perception and prediction estimates. This is
achieved by a novel differentiable semantic occupancy representation that
is explicitly used as cost by the motion planning process. Our network
is learned end-to-end from human demonstrations. The experiments in a
large-scale manual-driving dataset and closed-loop simulation show that
the proposed model significantly outperforms state-of-the-art planners in
imitating the human behaviors while producing much safer trajectories.

1 Introduction

The goal of an autonomy system is to take the output of the sensors, a map, and
a high-level route, and produce a safe and comfortable ride. Meanwhile, produc-
ing interpretable intermediate representations that can explain why the vehicle
performed a certain maneuver is very important in safety critical applications
such as self-driving, particularly if a bad event was to happen. Traditional au-
tonomy stacks produce interpretable representations through the perception and
prediction modules in the form of bounding boxes as well as distributions over
their future motion [1–6]. However, the perception module involves thresholding
detection confidence scores and running Non-Maximum Supression (NMS) to
trade off the precision and recall of the object detector, which cause informa-
tion loss that could result in unsafe situations, e.g., if a solid object is below
the threshold. To handle this, software stacks in industry rely on a secondary
fail safe system that tries to catch all mistakes from perception. This system is
however trained separately and it is not easy to decide which system to trust.

First attempts to perform end-to-end neural motion planning did not pro-
duce interpretable representations [7], and instead focused on producing accurate
control outputs that mimic how humans drive [8]. Recent approaches [9–11],
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have tried to incorporate interpretability. The neural motion planner of [10]
shared feature representations between perception, prediction and motion plan-
ning. However it can produce inconsistent estimates between the modules, as it
is framed as a multi-task learning problem with separate headers between the
tasks. As a consequence, the motion planner might ignore detections or motion
forecasts, resulting in unsafe behaviors.

In this paper we take a different approach, and exploit a novel semantic layer
as our intermediate interpretable representation. Our approach is designed with
safety in mind, and thus does not rely on detection and/or thresholded activa-
tions. Instead, we propose a flexible yet efficient representation that can capture
different shapes (not just rectangular objects) and can handle low-confidence
objects. In particular, we generate a set of probabilistic semantic occupancy lay-
ers over space and time, capturing locations of objects of different classes (i.e.,
vehicles, bicyclists, and pedestrians) as well as potentially occluded ones. Our
motion planner can then use this intermediate representation to penalize ma-
neuvers that intersect regions with higher occupancy probability. Importantly,
our interpretable representation is differentiable, enabling end-to-end learning
of the full autonomy system (i.e., from raw sensor data to planned trajectory).
Additionally, as opposed to other neural motion planners [10], our approach can
utilize the intended high-level route not only to plan a trajectory that achieves
the goal, but also to further differentiate semantically between on-coming or
conflicting traffic. This allows the motion planner to potentially learn the risk
with respect to a particular semantic class (e.g., moving close to an oncoming
vehicle compared to a parked vehicle).

We demonstrate the effectiveness of our approach on a large-scale dataset
that consists of smooth manual-driving in challenging urban scenarios. Further-
more, we use a state-of-the-art sensor simulation to perform closed-loop evalu-
ations of driving behavior produced by our proposed model. We show that our
method is capable of imitating human trajectories more closely than existing
approaches while yielding much lower collision rate.

2 Related Work

End-to-end self-driving: There is a vast literature on end-to-end approaches
to tackle self-driving. [7] pioneered this field using a single neural network to
directly output driving control command. More recently, with the success of
deep learning, direct control based methods have advanced with deeper network
architectures, more complex sensor inputs, and scalable learning methods [12–
15]. Although directly outputting driving command is a general solution, it may
have stability and robustness issues [16]. Another line of work first outputs the
cost map of future trajectories, and then a trajectory is recovered by looking for
local minima on the cost map. The cost map may be parameterized as a simple
linear combination of hand crafted costs [17, 18], or can be defined in a general
non-parametric form [10]. More recently, cost map based approaches have been
shown to adapt better to more challenging environments. [19] proposes to output
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a navigation cost map without localization under a weakly supervised learning
environment. [20] has exploited CNNs to facilitate better sampling in complex
driving environments. [21–23] explore ways to perceive and map the environment
in an end-to-end framework with planning, but do not predict how the world
might unroll in the future. In contrast, our planner relies on interpretable cost
terms that use the predicted semantic occupancy maps and hence maintains
interpretability and differentiability.

Imitation learning and inverse reinforcement learning: Our proposed
learning algorithm is an instantiation of max-margin planning [24], which is
closely related to imitation learning and inverse reinforcement learning. Imita-
tion learning attempts to directly regress the control commands from human
demonstrations [7, 8, 11, 12, 14, 25–27]. As this can be a very difficult regression
problem needsing large amounts of training data, [15] investigates the possibility
of transferring knowledge from a simulated environment.

Instead of regressing driving control commands, max-margin planning rea-
sons about the cost associated with each output trajectory [10,17,18,24]. It tries
to make the human driving trajectories the least costly among all possible tra-
jectories, and penalizes for any violations. It also considers the task loss as in
any behavioral differences in the trajectory representation. Inverse reinforcement
learning (IRL) is similar to max-margin planning, where the best trajectory is
replaced by a distribution over trajectories that is characterized by their energy
[28,29]. Generative adversarial models have also been explored in the field of IRL
and imitation learning [30], so that the model learns to generate trajectories that
look similar to human demonstrations judged by a classifier network.

Multi-task learning: Our end-to-end framework adopts multi-task learning,
where we train the model on a joint objective of object detection, occupancy
forecasting, and motion planning. Multi-task learning has been shown to help
extract more useful information from training data by exploiting task related-
ness. [31,32] showed that detection and tracking can be trained together, and [2]
applies a joint detector and trajectory predictor into a single model in the con-
text of self-driving. This was further extended by [3] to also predict the high-level
intention of actors. More recently, [10] further included a cost map based motion
planner in the joint model. These works show that joint learning on a multi-
task objective helps individual tasks due to better data utilization and shared
features, while saving computation.

Perception and Motion Prediction: The majority of previous works have
adopted bounding-box detection and trajectory prediction to reason about the
future state of a driving scene [2–6,33–38]. As there are multiple possible futures,
these methods either generate a fixed number of modes with probabilities and/or
draw samples to characterize the trajectory distribution. In robotics, occupancy
grids have been a popular representation of free space. In [39], a framework is
proposed to estimate occupancy probability of each grid-cell independently using
range sensor data. This approach is later extended in [40] to model dependen-
cies among neighboring cells. [41] performs dynamic occupancy grid prediction
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Fig. 1: Overview of our proposed end-to-end learnable autonomy system that
takes raw sensor data, an HD map and a high level route as input and produces
safe maneuvers for the self-driving vehicle via our novel semantic interpretable
intermediate representations.

at the scene-level, but it does not predict how the scene might evolve in the
future. [42] proposes a discrete residual flow to predict the distribution over a
pedestrian’s future position in the form of occupancy maps. Similarly, in [43]
agent-centric occupancy grids are predicted from past trajectories using ConvL-
STMs, and multiple trajectories are then sampled to form possible futures. [44]
further improves this output parameterization by predicting a continuous offset
to mitigate discretization errors, and proposes a procedure to extract trajectory
samples. Different from these methods, our proposed semantic perception and
future prediction is instance-free and directly produces occupancy layers for the
entire scene, rather than for each actor instance, which makes it efficient. More-
over, since no thresholding is employed on the detection scores, our model allows
passing low probability objects to the motion planner and hence improving safety
of self-driving.

3 End-to-End Interpretable Neural Motion Planner

In this paper we propose an end-to-end approach to self-driving. Importantly,
our model produces intermediate representations that are designed for safe plan-
ning and decision-making, together with interpretability. Towards this goal, we
exploit the map, the intended route (high level plan to go from point A to point
B), and the raw LiDAR point-cloud to generate an intermediate semantic occu-
pancy representation over space and time (i.e., present and future time steps).
These interpretable occupancy layers inform the motion planner about potential
objects, including those with low probability, allowing perception of objects of
arbitrary shape, rather than just bounding boxes. This is in contrast to existing
approaches [3,10,25] that rely on object detectors that threshold activations and
produce objects with only bounding box shapes. Note that thresholding activa-
tions is very problematic for safety, as if an object is below the threshold it will
not be detected, potentially resulting in a collision.

Our semantic activations are very interpretable. In particular, we generate
occupancy layers for each class of vehicles, bicyclists, and pedestrians, as well as
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Fig. 2: Semantic classes in our occupancy forecasting. Colors match between
drawing and hierarchy. Shadowed area corresponds to the SDV route. Black
vehicle, pedestrian and bike icons represent the agents’ true current location.

occlusion layers which predict occluded objects. Furthermore, using the planned
route of the self-driving vehicle (SDV), we can semantically differentiate vehicles
by their interaction with our intended route (e.g., oncoming traffic vs. crossing).
This not only adds to the interpretability of the perception outputs, but can
potentially help the planner learn different subcosts for each category (e.g., dif-
ferent safety buffers for parked vehicles vs oncoming traffic). We refer the reader
to Fig. 2 for an exhaustive list of the classes that we predict in the different
layers of our occupancy maps.

Our sample-based learnable motion planner then takes these occupancy pre-
dictions and evaluates the associated risk of different maneuvers to find a safe
and comfortable trajectory for the SDV. This is accomplished through an inter-
pretable cost function used to cost motion-plan samples, which can efficiently
exploit the occupancy information. Importantly, our proposed autonomy model
is trained end-to-end to imitate human driving while avoiding collisions and
traffic infractions. Fig. 1 shows an overview of our proposed approach.

3.1 Perceiving and Forecasting Semantic Occupancies

Our model exploits LiDAR point clouds and HD maps to predict marginal
distributions of semantic occupancy over time, as shown in Fig. 3. These are
spatio-temporal, probabilistic, and instance-free representations of the present
and future that capture whether a spatial region is occupied by any dynamic
agent belonging to a semantic group at discrete time steps. Note that this repre-
sentation naturally captures multi-modality in the future behavior of actors by
placing probability mass on different spatial regions at future time steps, which is
important as the future might unroll in very different ways (e.g., vehicle in front
of the SDV brakes/accelerates, a pedestrian jaywalks/stays in the sidewalk).

Input Representation: We use several consecutive LiDAR sweeps as well as
HD maps (including lane graphs) as input to our model as they bring com-
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plementary information. Following [10], we voxelize Tp=10 past LiDAR point
clouds in bird’s eye view (BEV) with a resolution of a=0.2 meters/voxel. Our
region of interest is W=140m long (70m front and behind of the SDV), H=80m
wide (40 to each side of the SDV), and Z=5m tall; obtaining a 3D tensor of
size (Ha ,

W
a ,

Z
a , ·Tp). As proposed in [3], we concatenate height and time along

the channel dimension to avoid using 3D convolutions or a recurrent model, thus
saving memory and computation. Leveraging map information is very important
to have a safe motion planner as we need to drive according to traffic rules such
as stop signs, traffic lights and lane markers. Maps are also very relevant for
perception and motion forecasting since they provide a strong prior on the pres-
ence as well as the future motion of traffic participants (e.g., vehicles and bikes
normally follow lanes, pedestrians usually use sidewalks/crosswalks). To exploit
HD maps, we adopt the representation proposed in [3] and rasterize different se-
mantic elements (e.g., roads, lanes, intersections, crossings) into different binary
channels to enable separate reasoning about the distinct elements. For instance,
the state of a traffic light (green, yellow, red) is rasterized in 3 different chan-
nels, facilitating traffic flow reasoning at intersections. All in all, we obtain a 3D
tensor of size (Ha ,

W
a , C), with C=17 binary channels for the map.

Backbone Network: We combine ideas in [45] and [3] to build a multi-resolution,
two-stream backbone network that extracts features from the LiDAR voxeliza-
tion and map raster. One stream processes LiDAR while the other one processes
the map. Each stream is composed of 4 residual blocks with number of layers
(2, 2, 3, 6) and stride (1, 2, 2, 2) respectively. Thus, the features after each
residual block are F1x,F2x,F4x,F8x, where the subscript indicates the down-
sampling factor from the input in BEV. The features from the different blocks
are then concatenated at 4x downsampling by max pooling higher resolution
ones F1x,F2x and interpolating F8x, as proposed by [45]. The only difference
between the two streams is that the LiDAR one uses more features (32, 64, 128,
256) versus (16, 32, 64, 128) on the map stream. We give more capacity to the
LiDAR branch as the input is much higher dimensional than the raster map, and
the backbone is responsible for aggregating geometric information from different
past LiDAR sweeps to extract good appearance and motion cues. Finally, the
LiDAR and map features are fused by concatenation along the feature dimension
followed by a final residual block of 4 convolutional layers with no downsampling,
which outputs a tensor F with 256 features.

Semantic Occupancy Forecasting: Predicting the future motion of traffic
participants is very challenging as actors can perform complex motions and there
is a lot of uncertainty due to both partial observability (because of sensor occlu-
sion or noise) as well as the multi-modal nature of the possible outcomes. Many
existing approaches have modeled the underlying distribution in a parametric
way (e.g., Gaussian, mixture of Gaussians) [4, 6]. While efficient, this incorpo-
rates strong assumptions, lacks expressivity and is prone to instabilities during
optimization (see [42]). Jain et al. [42] use non-parametric occupancy distribu-
tions for each instance (i.e., actor) naturally capturing complex multi-modal
distributions. However, this is a computationally and memory inefficient repre-
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Fig. 3: Inference diagram of our proposed perception and recurrent occupancy
forecasting model. ‖ symbolizes concatenation along the feature dimension, ⊕
element-wise sum and4 bilinear interpolation used to downscale the occupancy.

sentation that scales poorly with the number of actors, which can be hundreds
in crowded scenes. In contrast, in this paper we propose a novel representation,
where groups of actors are modeled with a single non-parametric distribution
of future semantic occupancy. This removes the need for both detection and
tracking and is both efficient and effective as shown in our experiments.

In particular, these actors are grouped semantically in a hierarchy. We con-
sider vehicles, pedestrians and bikes as the root semantic classes C, as shown in
Fig. 2. For each root category, we consider mutually-exclusive subclasses which
include a negative (not occupied) subclass. Note that the root categories are
not mutually exclusive as actors that belong to different classes can share the
same occupied space (e.g., pedestrian getting in or out of a car). We create these
subdivisions because we wish to learn different planning costs for each of these
subclass occupancies, given that such subcategories have very different semantics
for driving. For instance, parked vehicles require a smaller safety buffer than a
fast moving vehicle in a lane that conflicts with the SDV route, since they are
not likely to move and therefore the uncertainty around them is smaller. We do
not subdivide the pedestrians and bikes (with riders) by their semantic location
(road/sidewalk) or behavior (stationary/moving), as they are vulnerable road
users and thus we want to make sure we plan a safe maneuver around them, no
matter their actions. We model fully occluded traffic participants (i.e., vehicles,
pedestrians, bikes) through additional occupancy maps, just by adding one more
subcategory. This can then be used for motion planning to exert caution.

More precisely, we represent the occupancy of each class c ∈ C as a collection
of categorical random variables ot,ci,j over space and time. Space is discretized
into a BEV spatial grid on the ground plane with a resolution of 0.4 m/pixel,
where i, j denotes the spatial location. Time is discretized into 11 evenly spaced
horizons into the future, ranging from 0 to 5 seconds, every 0.5 seconds.

To obtain the output logits lt,c of these spatio-temporal discrete distributions
we employ a multi-scale context fusion by performing two parallel fully convo-
lutional networks with different dilation rates. One stream performs regular 2D
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convolutions over F2x, providing very local, fine-grained features needed to make
accurate predictions in the recent future. The other stream takes the coarser fea-
tures F and performs dilated 2D convolutions to obtain a bigger receptive field
that is able to place occupancy mass far away from the initial actor location
for those that move fast. We then concatenate the two feature maps into Focc.
Finally, we design an efficient recurrent occupancy update for each root class to
output the logits for all its subclasses

lt,c = lt−1,c + U tθ(Focc ‖ I(l0:t−1,c))

where U tθ is a neural network that contains a transposed convolution to upsample
the resolution by 2, l0:t−1,c are the predicted logits up to timestep t − 1, I
is a 2x bilinear interpolation, and ‖ represents feature-wise concatenation. We
perform the recurrence at a lower resolution to reduce the memory impact. We
refer the reader to Fig. 3 for a detailed illustration of the recurrency. Recurrent
convolutions provide the right inductive bias to express the intuition that further
future horizons need a bigger receptive field, given that actors could have moved
away from their starting location. Finally, to output the categorical distribution
ot,ci,j we use a softmax across the mutually-exclusive subclasses of the root class
c, for each space grid cell i, j and time horizon t.

3.2 Motion Planning

Given the occupancy predictions o and the input data x in the form of the HD-
map, the high level route, traffic-lights states, and the kinematic state of the
SDV, we perform motion planning by sampling a diverse set of trajectories for
the ego-car and pick the one that minimizes a learned cost function as follows:

τ∗ = argmin
τ

f(τ,x, o;w) (1)

Here w represents the learnable parameters of the planner. The objective func-
tion f is composed of subcosts, fo, that make sure the trajectory is safe with
regards to the semantic occupancy forecasts, as well as other subcosts, fr related
to comfort, traffic rules and progress in the route (see Fig. 4). Thus

f(τ,x, o;w) = fo(τ,x, o;wo) + fr(τ,x, o;wr) (2)

with w = (wr, wo) the vector of all learnable parameters for the motion planner.
We now describe the safety costs in details, as it is one of our major contri-
butions. We include a very brief explanation of fr and refer the reader to the
supplementary material for more details.

Safety Cost: The SDV should not collide with other objects on the road and
needs to navigate cautiously when it is uncertain. For this purpose, we use the
predicted semantic-occupancy o to penalize trajectories that intersect occupied
regions. In particular, at each time step t of trajectory τ , we find all the cells in
the occupancy layer that have intersection with the SDV polygon (with a safety
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Fig. 4: Examples of the motion planner cost functions: (a) collision, (b)
driving-path, (c) lane boundary, (d) traffic-light, (e) comfort, (f) route, (g)
progress.

margin indicated by parameter λ), and conservatively use the value of the cell
with maximum probability as occupancy subcost, denoted by oc(τ, t, λ). Then
the safety cost is computed by

fo(τ, o) =
∑
t

∑
c

wcoc(τ, t, 0) + wcvoc(τ, t, λ)v(τ, t) (3)

with wc and wcv the weighting parameters. Note that the first term penalizes
trajectories that intersect regions with high occupancy probability whereas the
second term penalizes high-velocity motion in areas with uncertain occupancy.

Traffic rules, Comfort and Route Progress Costs: The trajectory of the
SDV must obey traffic rules. We use the information available in the map to pe-
nalize trajectories that violate the lane boundaries, road boundaries, stop signs,
red traffic-lights, speed-limit, and do not stay close to the lane center. As it
is common in self-driving systems, the mission route is given to our planner
as a sequence of lanes that the SDV needs to follow to reach the destination.
We penalize the number of lane-changes required to switch to these lanes. This
encourages behaviors that are consistent with the input route. Additionally, in
order to promote comfortable driving, we penalize trajectories for acceleration
and violation thereof, lateral acceleration and violation thereof, jerk and viola-
tion thereof, curvature and its first and second derivatives. Note that the vio-
lations are computed with regards to a predefined threshold that is considered
comfortable. Fig. 4 shows some of the described cost functions.

Trajectory Parametrization and Sampling: The output of the motion plan-
ner is a sequence of vehicle states that describes how the SDV should move within
the planning horizon. At each planning iteration, a set of sampled trajectories
are evaluated using the cost function in Eq 2, and the one with minimum cost
is selected for execution. It is important that the sampled set, while being small
enough to allow real-time computation, cover various maneuvers such as lane-
following, lane-changes, and nudging encroaching objects. Hence, to achieve this
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efficiently, we choose a sampling approach that is aware of the lane structures.
In particular, we follow the trajectory parameterization and sampling procedure
proposed in [17, 46], where trajectories are sampled by combining longitudinal
motion and lateral deviations relative to a particular lane (e.g., current SDV
lane, right lane). Consequently, the sampled trajectories correspond to appro-
priate lane-based driving with variations in lateral motions which can be applied
to many traffic scenarios. The details of the sampling algorithm are presented in
the supplementary material.

3.3 Learning

We trained our full model of perception, prediction and planning end-to-end.
The final goal is to be able to drive safely and comfortably similar to human
demonstrations. Additionally, the model should forecast the semantic occupancy
distributions that are similar to what happened in the real scene. We thus learn
the model parameters by exploiting these two loss functions:

L = λSLS + λMLM (4)

Semantic Occupancy Loss: This loss is defined as the cross entropy between
the ground truth distribution p and the predicted distribution qφ of the semantic
occupancy random variables ot,ci,j .

LS = H(p, qθ) = −
∑
t

∑
c∈C

∑
i,j∈St,c

∑
ot,ci,j∈Oc

p(ot,ci,j) log qθ(o
t,c
i,j) (5)

Due to the highly imbalanced data in terms of spatial occupancy since the ma-
jority of the space is free, we obtain the subset of spatial locations St,c at time
t for class c by performing hard negative mining.

Planning Loss: Since selecting the minimum-cost trajectory within a discrete
set is not differentiable, we use the max-margin loss to penalize trajectories that
have small cost and are different from the human driving trajectory or are unsafe.
Let x and τh be the input and human trajectory respectively for a given example.
We utilize the max margin loss to encourage the human driving trajectory to
have smaller cost f than other trajectories. In particular,

LM = max
τ

[
fr(x, τh)− fr(x, τ) + lim +

∑
t

[
f to(x, τh)− f to(x, τ) + lto

]
+

]
+

(6)

where f to is the occupancy cost function at time step t, fr is the rest of the
planning subcosts as defined in Section 3.2 (note that we omitted o and w from
f for brevity), and []+ represents the ReLU function. The imitation task-loss
lim measures the `1 distance between trajectory τ and the ground-truth for the
entire horizon, and the safety task-loss lto accounts for collisions and their severity
at each trajectory step.



P3: Safe Motion Planning Through Interpretable Semantic Representations 11

4 Experimental Evaluation

Dataset and Training: We train our models using our large-scale dataset
that includes challenging scenarios where the operators are instructed to drive
smoothly and in a safe manner. It contains 6100 scenarios for the training set,
while validation and test sets contain 500 and 1500 scenarios. Each scenario is 25
seconds. Compared to KITTI [47], our dataset has 33x more hours of driving and
42x more objects. We use exponentiated gradient decent to update the planner
parameters and Adam optimizer for the occupancy forecasting. We scale the
gradient that is passed to perception and prediction from the planner to avoid
instability in P&P training.

Baselines: We compare against the following baselines: ACC which performs
a simple car-following behavior using the measured state of the lead vehicle.
Imitation Learning (IL) where the future positions of the SDV are predicted
directly from the fused LiDAR and map features (Fig 3), and is trained using L2
loss. NMP [10] where a planning cost-map is predicted from the fused features
directly and detection and predictions are treated only as an axillary task. PLT:
which is the joint behavior-trajectory planning method of [17], where planning is
accomplished using a combination of interpretable subcosts, including collision
costs with regards to predicted trajectories of actors. However, the detection and
prediction modules are trained separately from the planner.

Metrics: Planning metrics include cumulative collision rate indicating the
percentage of collisions with ground-truth bounding-boxes of the actors at each
trajectory time step, L2 distance to human trajectory which indicates how
well the model imitated the human driving, jerk and lateral acceleration
which show how comfortable the produced trajectories are. We also measure the
progress of the SDV along the route.

Results: The first set of experiments are performed in an open-loop setting in
which the LiDAR data up to the current timestamp is passed to the model and
the generated trajectory is assumed to be executed by the ego vehicle for the
5sec planning horizon (as opposed to closed-loop execution where the trajectory
is constantly replanned as new sensor data becomes available). Table 1 shows
the planing metrics for our proposed method and the baselines. It shows that our
proposed model (P3) outperforms all the baselines in (almost) all planning met-
rics. In particular, our motion planner generates much safer trajectories, with
40% less collisions at 5s compared to PLT. It also outperforms NMP by a very
significant margin, which could be due to our consistent use of perception and
prediction outputs in motion planning, as opposed to the free-form cost volume
from sensor data in [10]. Another aspect that we observed to improve safety was
the temporally smoother occupancies output by our recurrent occupancy update
as opposed to a convolutional one. A more nuanced detail that could also con-
tribute to our increased safety is the pooling of the cost on the space occupied by
the SDV, as opposed to the simple indexing on its centroid previously proposed
by [10]. Our model also produces less jerk which indicates the effectiveness of
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Model Collisions rate (%) L2 human Jerk Lat. acc. Progress
1s 3s 5s @1s @3s @5s

ACC 0.31 2.00 8.73 0.20 1.75 5.16 1.74 2.87 29.3
IL 1.47 4.33 12.29 0.33 1.46 3.37 - - 27.5

NMP [10] 0.17 0.72 5.22 0.23 2.19 5.61 4.36 2.86 31.7
PLT [17] 0.07 0.40 2.94 0.18 1.35 3.80 1.52 3.03 28.0

P3 (Ours) 0.05 0.17 1.78 0.18 1.18 3.34 1.27 2.89 27.6

Table 1: Comparison against other methods

ID e2e Prediction Collision rate (%) L2 human Jerk Lat.
acc.

Progress

Traj. Occup. 1s 3s 5s @1s @3s @5s

M1 X 0.07 0.40 2.94 0.18 1.35 3.80 1.52 3.03 28.0
M2 X X 0.05 0.32 2.21 0.18 1.35 3.65 1.50 2.85 27.8
M3 X X 0.05 0.22 2.36 0.18 1.27 3.64 1.38 2.93 28.0
M4 X 0.05 0.20 1.96 0.18 1.21 3.49 1.23 2.78 27.3
M5 X X 0.05 0.17 1.78 0.18 1.18 3.34 1.27 2.89 27.6

Table 2: Ablation study

including multiple interpretable subcosts in the planning objective. Besides, our
model exhibits much closer behavior to human compared to IL that has been
optimized to match human trajectories. The progress metric also shows that our
model is less agggressive compared to the other baselines and similar to IL.

Ablation Study: We report the result of the ablation study in Table 2. Our
best model is M5 (P3 in Table 1) corresponds to the semantic occupancy and
the motion planner being jointly trained. M1 and M2 perform detection and
multi-modal trajectory prediction which is used in motion planner to form col-
lision costs. Overall, end-to-end training of perception and planning modules
improve safety as indicated by the collision metrics. Furthermore, using occu-
pancy representation yields much better performance in driving metrics. The
progress metric also indicates that the occupancy model is not overly cautious
and the advancement in the route is similar to other models. Note that we also
includeM3 which is similar toM1, but the predicted trajectories are rasterized
to form an occupancy representation for motion planning.

Qualitative results: Fig. 5 shows examples of generated semantic occupancy
layers at different time horizons for two traffic scenarios (refer to the caption for
corresponding color of each semantic class). In Fig. 5(c), for example, we can
see multiple modes in the prediction of a vehicle with corresponding semantics
of conflicting and oncoming. In the bottom scene, our model is able to recog-
nize the occluded region on the right end of the intersection. Furthermore, the
oncoming vehicle (red color) which has a low initial velocity is predicted with
large uncertainty which is visible in Fig. 5(f).

Closed-loop Evaluation: We also perform experiments in a closed-loop simu-
lated environment leveraging realistic LiDAR simulation [48]. At each simulation
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(a) t=0s (b) t=2.5s (c) t=5s

(d) t=0s (e) t=2.5s (f) t=5s

Fig. 5: Qualitative results: The colors red, orange, dark-green, dark-blue, and
purple respectively shows vehicle with sub-categories of oncoming, conflicting,
on-route, stationary and others. Pedestrians and bicyclists are shown with light
green and brown colors. Cyan color is used to show occlusion for all classes. We
also show the ground-truth bounding boxes of all actors, and planned trajectory
of the ego vehicle (solid black rectangle)

ID Collision rate
(%)

Jerk Lateral
acceleration

Acceleration Deceleration Speed

M2 18.5 4.08 0.24 0.94 -0.79 9.1
M5 9.8 1.85 0.17 0.50 -0.50 8.6

Table 3: Closed-loop Evaluation Results See Table 2 for definition of M2

and M5. The collision rate shows the percentage of the simulation runs where
the SDV had collision with other actors. The rest of the metrics show the mean
value over all the simulation steps.

time-step, the simulated LiDAR point-cloud is passed to our model and a tra-
jectory is planned for the ego vehicle and is executed by the simulation for
100ms. This process continues iteratively for 15s of simulation. We tested our
models in a scenario with one or two initially-occluded non-compliant actors
with trajectories that are in conflict with the route of the ego-vehicle (see Fig
6(a)). By varying the initial velocity and along-the-lane location of each actor,
we created 80 highly challenging traffic scenes (12k frames) for our tests. We
compared the performance of our proposed end-to-end autonomy system that
uses semantic occupancy with the alternative trajectory-based method (M5 and
M2 respectively). As shown in Table 3, our full approach can react safely to the
non-compliant vehicles, resulting in less collisions than M2. This cautious be-
havior is also reflected in the rest of the metrics such as jerk, acceleration, and
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(a) Scenarios (b) t=0s (c) t=5s (d) t=10s

Fig. 6: Closed-loop scenario: The general setup of the closed-loop evaluation
is shown in (a) where the SDV (gray vehicle) is approaching an intersection
with 3 potential non-reactive vehicles (orange colored) with conflicting routes.
The variations of the scenario are generated by including 1 or 2 of the indicated
vehicles with various initial speed and location. (b,c,d) show and example of the
simulation run at different time horizons.

velocity where M2 exhibits more aggressive behavior. Fig. 6 demonstrates an
example run of the simulation. As the SDV approaches the intersection, the non-
reactive vehicle, which is turning right, becomes visible (Fig. 6(c)). The planner
generates a lane-change trajectory to avoid the slow-moving vehicle (Fig. 6(d)).

5 Conclusion

In this paper, we have proposed an end-to-end perception, prediction and mo-
tion planning model that generates safe trajectories for the SDV from raw sen-
sor data. Importantly, our model not only produces interpretable intermediate
representations, but also the generated ego-vehicle trajectories are consistent
with the perception and prediction outputs. Furthermore, unlike most previ-
ous approaches that employ thresholded activations in detection and trajectory
prediction of objects, we use semantic occupancy layers that are able to carry
information about low probability objects to the motion planning module. Our
experiments on a large dataset of challenging scenarios and closed-loop simu-
lations showed that the proposed method, while exhibiting human-like driving
behavior, is significantly safer than the state-of-the-art learnable planners.
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