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1 Methodology Figures

Figures 1 and 2 depict the progressive holistically nested network (PHNN) ar-
chitecture and our holes-based pseudo-labeling, respectively.
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Fig. 1. PHNN architecture. Here we use the V-phase pathway coloring from Fig-
ure 3. At each backbone stage, deeply supervised predictions and losses are calculated.
Similar to residual-style connections [1], each stage’s predictions are built off the prior
one’s using addition.

2 Implementation details

2.1 Network training

We first initialize co-heterogenous and adaptive segmentation (CHASe) with the
weights trained on supervised venous phase data from the public datasets. To
train this segmentation network, we use the Adam optimizer [2] with an initial
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Fig. 2. Hole-Based Pseudo-Labelling. 3D holes greater than 100 voxels are ex-
tracted as lesion pseudo-masks missed by the prediction. Regions outside the hole are
ignored. The third liver slice from left shows a TACE-treated lesion, which is not seen
in public datasets.

learning rate of 3 × 10−4 and values of 0.9 and 0.99 for the β1 and β2 hyper-
paramters, respectively. We reduce learning rateswhen the validation accuracy
does not improve for 10 epochs using a factor of 0.1.

To train CHASe, we use the stochastic gradient descent (SGD) optimizer
with an initial learning rate of 1 × 10−5 and a momentum of 0.9. We reduce
the learning rate when the validation loss does not reduce for 10 epochs using a
factor of 0.1.

For training the discriminator, we use the Adam optimizer with an initial
learning rate of 3 × 10−4 and reduce the learning rate with a polynomial decay
schedule with a power of 0.9 as specified in [3].

We augment the dataset in both source and target domain by performing
random rotation, random elastic deformation, gamma correction and random
scaling.

3 Additional Results

Table 2 shows the performance of different models on the test dataset using all 15
possible combinations of phases during inference. For H-DenseUNet, Baseline,
Co-training, which do not naturally accept multi-channel inputs, we perform
majority voting across the appropriate single-phase predictions.

Table 1. Data distribution for D`. Each dataset shows whether it contains only
healthy liver or pathological liver and the number of volumes.

Dataset (D`) Total Healthy Pathological
liver

LiTS 130 3

CHAOS 40 3

3D-IRCADb 20 3

Gibson 35 3

Sliver07 20 3
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Table 2. Combination of views. Mean DSCs are tabulated across different com-
binations of contrast phases used for input. The number of samples are indicated in
parentheses. 3 signifies the presence of a phase and 6 represents the absence of a
phase.
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6 6 6 3 85.7 86.4 92.9 93.8 94.0 94.3
6 6 3 6 90.9 90.7 93.7 94.5 94.9 95.0
6 6 3 3 90.5 90.9 93.8 94.7 94.9 94.8
6 3 6 6 90.8 91.1 93.6 94.1 94.3 94.6
6 3 6 3 91.1 91.3 93.1 94.6 94.9 95.1
6 3 3 6 91.9 91.8 92.9 94.8 94.8 95.0
6 3 3 3 91.4 91.6 93.5 95.0 95.2 95.2
3 6 6 6 85.6 85.9 92.4 93.5 93.8 94.0
3 6 6 3 90.4 90.7 92.6 93.8 94.0 94.1
3 6 3 6 91.1 91.8 93.4 94.9 95.1 95.2
3 6 3 3 91.2 92.0 94.1 94.8 95.0 95.4
3 3 6 6 90.9 91.6 93.7 94.9 94.8 95.0
3 3 6 3 91.6 91.4 94.3 95.0 95.0 95.2
3 3 3 6 91.5 91.9 94.4 95.0 95.1 95.3
3 3 3 3 91.6 92.1 94.5 95.1 95.4 95.7
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Table 3. Pathological Liver Segmentation. Mean DSC and ASSD results on the
Anonymized PACS dataset are tabulated across different contrast phase inputs. For
“All”, all available phases in the CT study are used as input. Number of samples are
indicated in parentheses. The segmentation model is trained with VGG16 backbone.

Models
NC (96) A (98) V (97) D (98) All (100)

DSC ASSD DSC ASSD DSC ASSD DSC ASSD DSC ASSD

HDenseUNet 85.2 3.25 90.1 2.19 90.7 2.61 85.2 2.91 89.9 2.59
Baseline 85.1 2.81 90.1 1.33 90.2 1.21 86.9 2.03 90.9 1.25
Baseline w pseudo 87.4 1.47 90.3 1.37 90.8 1.13 91.1 1.12 91.7 1.23
Baseline w ADA 88.3 1.38 91.2 1.08 91.1 1.12 92.1 0.99 92.4 1.01
Co-training 91.8 1.03 92.5 1.01 92.9 0.95 92.5 1.02 93.8 0.99
Co-hetero 93.1 0.95 93.3 0.95 94.0 0.80 93.1 1.06 94.6 0.73
Co-hetero w ADA 93.4 0.89 93.6 0.85 94.3 0.74 93.6 0.91 94.7 0.73
CHASe 93.7 0.82 93.8 0.83 94.2 0.73 93.8 0.87 95.0 0.70

Table 3 provides the ablation study results when VGG16 is used as backbone.
As can be seen, the results exhibit identical trends as when using a ResNet50-
based DeepLabv2 backbone, except that absolute numbers are slightly worse.
Nonetheless, even with an older backbone CHASe is able to provide excellent
results.

Figure 3 depicts a box-and-whisker plot of the lesion DSC scores on the
public dataset. As can be seen, all components of CHASe contribute to higher
performance. Although the mean scores of CHASe were lower when using the
holes-based pseudo-labeling (see main text), the figure demonstrates that the
median values are higher, with a tighter spread of quartile values.

Figure 4 depicts additional qualitative results demonstrating the visual im-
provements provided by CHASe.
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Fig. 3. Box-and-whisker plots of lesion scores on the public dataset. DSCs of 1.0 and
near 0.0 are possible, as many studies had no lesions present. If the model did not
predict any lesions, it yielded perfect DSCs. Conversely, predictions of any lesion when
none are present penalize scores very heavily.
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Fig. 4. Qualitative results. Green and red curves depict the ground truth and
segmentation predictions, respectively. All predictions executed with all phases used
as input. The first and last rows depict failure cases, where the latter is an extremely
challenging case with an extraordinarily large lesion occupying much of the liver space.
CHASe still manages to provide superior results compared to the alternatives. The
second row demonstrates CHASe’s ability to account for TACE-treated lesions, which
are not present in public datasets. The fourth row depicts another highly challenging
case, where the gallbladder is difficult to distinguish from a lesion. As can be seen,
CHASe is the only model able to successfully differentiate these two structures.


